Search results for: thermal processing
5596 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 1255595 The Structural Pattern: An Event-Related Potential Study on Tang Poetry
Authors: ShuHui Yang, ChingChing Lu
Abstract:
Measuring event-related potentials (ERPs) has been fundamental to our understanding of how people process language. One specific ERP component, a P600, has been hypothesized to be associated with syntactic reanalysis processes. We, however, propose that the P600 is not restricted to reanalysis processes, but is the index of the structural pattern processing. To investigate the structural pattern processing, we utilized the effects of stimulus degradation in structural priming. To put it another way, there was no P600 effect if the structure of the prime was the same with the structure of the target. Otherwise, there would be a P600 effect if the structure were different between the prime and the target. In the experiment, twenty-two participants were presented with four sentences of Tang poetry. All of the first two sentences, being prime, were conducted with SVO+VP. The last two sentences, being the target, were divided into three types. Type one of the targets was SVO+VP. Type two of the targets was SVO+VPVP. Type three of the targets was VP+VP. The result showed that both of the targets, SVO+VPVP and VP+VP, elicited positive-going brainwave, a P600 effect, at 600~900ms time window. Furthermore, the P600 component was lager for the target’ VP+VP’ than the target’ SVO+VPVP’. That meant the more dissimilar the structure was, the lager the P600 effect we got. These results indicate that P600 was the index of the structure processing, and it would affect the P600 effect intensity with the degrees of structural heterogeneity.Keywords: ERPs, P600, structural pattern, structural priming, Tang poetry
Procedia PDF Downloads 1405594 Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness
Authors: Abbas Hadj Abbas, Hacini Massaoud, Aiad Lahcen
Abstract:
In Hassi-Messoud’s oil industry, the systems which are water based (WBM) are generally used for drilling in the first phase. For the rest of the well, the oil mud systems are employed (OBM). In the field of oil exploration, panoply of chemical products is employed in the drilling fluids formulation. These components of different natures and whose toxicity and biodegradability are of ill-defined parameters are; however, thrown into nature. In addition to the hydrocarbon (HC, such as diesel) which is a major constituent of oil based mud, we also can notice spills as well as a variety of other products and additives on the drilling sites. These wastes are usually stored in places called (crud wastes). These may cause major problems to the ecosystem. To treat these wastes, we have considered two methods which are: solidification/ stabilization (chemical) and thermal. So that we can evaluate the techniques of treatment, a series of analyses are performed on dozens of specimens of wastes before treatment. After that, and on the basis of our analyses of wastes, we opted for diagnostic treatments of pollution before and after solidification and stabilization. Finally, we have done some analyses before and after the thermal treatment to check the efficiency of the methods followed in the study.Keywords: wastes treatment, the oil pollution, the norms, wastes drilling
Procedia PDF Downloads 2945593 Relation between Low Thermal Stress and Antioxidant Enzymes Activity in a Sweetening Plant: Stevia Rebaudiana Bert
Authors: T. Bettaieb, S. Soufi, S. Arbaoui
Abstract:
Stevia rebaudiana Bert. is a natural sweet plant. The leaves contain diterpene glycosides stevioside, rebaudiosides A-F, steviolbioside and dulcoside, which are responsible for its sweet taste and have commercial value all over the world as sugar substitute in foods and medicines. Stevia rebaudiana Bert. is sensitive temperature lower than 9°C. The possibility of its outdoor culture in Tunisian conditions demand genotypes tolerant to low temperatures. In order to evaluate the low temperature tolerance of eight genotypes of Stevia rebaudiana, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalases (CAT) were measured. Before carrying out the analyses, three genotypes of Stevia were exposed for 1 month at a temperature regime of 18°C during the day and 7°C at night similar to winter conditions in Tunisia. In response to the stress generated by low temperature, antioxidant enzymes activity revealed on native gel and quantified by spectrophotometry showed variable levels according to their degree of tolerance to low temperatures.Keywords: chilling tolerance, enzymatic activity, stevia rebaudiana bert, low thermal stress
Procedia PDF Downloads 4425592 Memory Retrieval and Implicit Prosody during Reading: Anaphora Resolution by L1 and L2 Speakers of English
Authors: Duong Thuy Nguyen, Giulia Bencini
Abstract:
The present study examined structural and prosodic factors on the computation of antecedent-reflexive relationships and sentence comprehension in native English (L1) and Vietnamese-English bilinguals (L2). Participants read sentences presented on the computer screen in one of three presentation formats aimed at manipulating prosodic parsing: word-by-word (RSVP), phrase-segment (self-paced), or whole-sentence (self-paced), then completed a grammaticality rating and a comprehension task (following Pratt & Fernandez, 2016). The design crossed three factors: syntactic structure (simple; complex), grammaticality (target-match; target-mismatch) and presentation format. An example item is provided in (1): (1) The actress that (Mary/John) interviewed at the awards ceremony (about two years ago/organized outside the theater) described (herself/himself) as an extreme workaholic). Results showed that overall, both L1 and L2 speakers made use of a good-enough processing strategy at the expense of more detailed syntactic analyses. L1 and L2 speakers’ comprehension and grammaticality judgements were negatively affected by the most prosodically disrupting condition (word-by-word). However, the two groups demonstrated differences in their performance in the other two reading conditions. For L1 speakers, the whole-sentence and the phrase-segment formats were both facilitative in the grammaticality rating and comprehension tasks; for L2, compared with the whole-sentence condition, the phrase-segment paradigm did not significantly improve accuracy or comprehension. These findings are consistent with the findings of Pratt & Fernandez (2016), who found a similar pattern of results in the processing of subject-verb agreement relations using the same experimental paradigm and prosodic manipulation with English L1 and L2 English-Spanish speakers. The results provide further support for a Good-Enough cue model of sentence processing that integrates cue-based retrieval and implicit prosodic parsing (Pratt & Fernandez, 2016) and highlights similarities and differences between L1 and L2 sentence processing and comprehension.Keywords: anaphora resolution, bilingualism, implicit prosody, sentence processing
Procedia PDF Downloads 1525591 Microstructure, Mechanical, Electrical and Thermal Properties of the Al-Si-Ni Ternary Alloy
Authors: Aynur Aker, Hasan Kaya
Abstract:
In recent years, the use of the aluminum based alloys in the industry and technology are increasing. Alloying elements in aluminum have further been improving the strength and stiffness properties that provide superior compared to other metals. In this study, investigation of physical properties (microstructure, microhardness, tensile strength, electrical conductivity and thermal properties) in the Al-12.6wt.%Si-%2wt.Ni ternary alloy were investigated. Al-Si-Ni alloy was prepared in a graphite crucible under vacuum atmosphere. The samples were directionally solidified upwards with different growth rate (V) at constant temperature gradient G (7.73 K/mm). The microstructures (flake spacings, λ), microhardness (HV), ultimate tensile strength, electrical resistivity and thermal properties enthalpy of fusion and specific heat and melting temperature) of the samples were measured. Influence of the growth rate and flake spacings on microhardness, ultimate tensile strength and electrical resistivity were investigated and relationships between them were experimentally obtained by using regression analysis. According to results, λ values decrease with increasing V, but microhardness, ultimate tensile strength, electrical resistivity values increase with increasing V. Variations of electrical resistivity for cast samples with the temperature in the range of 300-1200 K were also measured by using a standard dc four-point probe technique. The enthalpy of fusion and specific heat for the same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from liquid to solid. The results obtained in this work were compared with the previous similar experimental results obtained for binary and ternary alloys.Keywords: electrical resistivity, enthalpy, microhardness, solidification, tensile stress
Procedia PDF Downloads 3765590 Thermodynamically Predicting the Impact of Temperature on the Performance of Drilling Bits as a Function of Time
Authors: Talal Al-Bazali
Abstract:
Air drilling has recently received increasing acceptance by the oil and gas industry due to its unique advantages. The main advantages of air drilling include the higher rate of penetration, less formation damage, lower risk of loss of circulation. However, these advantages cannot be fully realized if thermal effects in air drilling are not well understood and minimized. Due to its high frictional coefficient, low heat conductivity, and high compressibility, air can impact the temperature distribution of bit and thus affect its bit performances. Based on energy and mass balances, a transient thermal model that predicts bit temperature is presented along with numerical solutions in this paper. In addition, several important parameters that influence bit temperature distribution are analyzed. Simulation results show that the bit temperature increases with increasing weight on bit and rotary speed but decreases as the standpipe pressure and flow rate increase. These results can be used to optimize drilling operations and flow parameters for an improved bit performance as shown in this paper.Keywords: air drilling, rate of penetration, temperature, rotary speed
Procedia PDF Downloads 2855589 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks
Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios
Abstract:
To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand
Procedia PDF Downloads 1425588 An Analytical and Numerical Solutions for the Thermal Analysis of a Mechanical Draft Wet Cooling Tower
Authors: Hamed Djalal
Abstract:
The thermal analysis of the mechanical draft wet cooling tower is performed in this study by the heat and mass transfer modelization in the packing zone. After combining the heat and mass transfer laws, the mass and energy balances and by involving the Merkel assumptions; firstly, an ordinary differential equations system is derived and solved numerically by the Runge-Kutta method to determine the water and air temperatures, the humidity, and also other properties variation along the packing zone. Secondly, by making some linear assumptions for the air saturation curve, an analytical solution is formed, which is developed for the air washer calculation, but in this study, it is applied for the cooling tower to express also the previous parameters mathematically as a function of the packing height. Finally, a good agreement with experimental data is achieved by both solutions, but the numerical one seems to be the more accurate for modeling the heat and mass transfer process in the wet cooling tower.Keywords: evaporative cooling, cooling tower, air washer, humidification, moist air, heat, and mass transfer
Procedia PDF Downloads 1015587 Neural Correlates of Arabic Digits Naming
Authors: Fernando Ojedo, Alejandro Alvarez, Pedro Macizo
Abstract:
In the present study, we explored electrophysiological correlates of Arabic digits naming to determine semantic processing of numbers. Participants named Arabic digits grouped by category or intermixed with exemplars of other semantic categories while the N400 event-related potential was examined. Around 350-450 ms after the presentation of Arabic digits, brain waves were more positive in anterior regions and more negative in posterior regions when stimuli were grouped by category relative to the mixed condition. Contrary to what was found in other studies, electrophysiological results suggested that the production of numerals involved semantic mediation.Keywords: Arabic digit naming, event-related potentials, semantic processing, number production
Procedia PDF Downloads 5825586 Innovative Fabric Integrated Thermal Storage Systems and Applications
Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison
Abstract:
In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration
Procedia PDF Downloads 1665585 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine
Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu
Abstract:
Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization
Procedia PDF Downloads 1615584 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study
Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala
Abstract:
Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.Keywords: photonic, heavy-metal oxide, glass, crystallization
Procedia PDF Downloads 1455583 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan
Authors: Usman Ahmed Khan
Abstract:
Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.Keywords: LST, LULC, isodata, urbanization
Procedia PDF Downloads 1005582 Elevated Temperature Shot Peening for M50 Steel
Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang
Abstract:
As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature
Procedia PDF Downloads 4565581 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions
Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei
Abstract:
Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design
Procedia PDF Downloads 1605580 Comparing Image Processing and AI Techniques for Disease Detection in Plants
Authors: Luiz Daniel Garay Trindade, Antonio De Freitas Valle Neto, Fabio Paulo Basso, Elder De Macedo Rodrigues, Maicon Bernardino, Daniel Welfer, Daniel Muller
Abstract:
Agriculture plays an important role in society since it is one of the main sources of food in the world. To help the production and yield of crops, precision agriculture makes use of technologies aiming at improving productivity and quality of agricultural commodities. One of the problems hampering quality of agricultural production is the disease affecting crops. Failure in detecting diseases in a short period of time can result in small or big damages to production, causing financial losses to farmers. In order to provide a map of the contributions destined to the early detection of plant diseases and a comparison of the accuracy of the selected studies, a systematic literature review of the literature was performed, showing techniques for digital image processing and neural networks. We found 35 interesting tool support alternatives to detect disease in 19 plants. Our comparison of these studies resulted in an overall average accuracy of 87.45%, with two studies very closer to obtain 100%.Keywords: pattern recognition, image processing, deep learning, precision agriculture, smart farming, agricultural automation
Procedia PDF Downloads 3795579 Mechanical Characterization and Metallography of Sintered Aluminium-Titanium Diboride Metal Matrix Composite
Authors: Sai Harshini Irigineni, Suresh Kumar Reddy Narala
Abstract:
The industrial applicability of aluminium metal matrix composites (AMMCs) has been rapidly growing due to their exceptional materials traits such as low weight, high strength, excellent thermal performance, and corrosion resistance. The increasing demand for AMMCs in automobile, aviation, aerospace and defence ventures has opened up windows of opportunity for the development of processing methods that facilitate low-cost production of AMMCs with superior properties. In the present work, owing to its economy, efficiency, and suitability, powder metallurgy (P/M) technique was employed to develop AMMCs with pure aluminium as matrix material and titanium diboride (TiB₂) as reinforcement. AMMC samples with different weight compositions (Al-0.1%TiB₂, Al-5%TiB₂, Al-10%TiB₂, and Al-15% TiB₂) were prepared through hot press compacting followed by traditional sintering. The developed AMMC was subjected to metallographic studies and mechanical characterization. Experimental evidences show significant improvement in mechanical properties such as tensile strength, hardness with increasing reinforcement content. The current study demonstrates the superiority of AMMCs over conventional metals and alloys and the results obtained may be of immense in material selection for different structural applications.Keywords: AMMCs, mechanical characterization, powder metallurgy, TiB₂
Procedia PDF Downloads 1315578 A Simulation Model and Parametric Study of Triple-Effect Desalination Plant
Authors: Maha BenHamad, Ali Snoussi, Ammar Ben Brahim
Abstract:
A steady-state analysis of triple-effect thermal vapor compressor desalination unit was performed. A mathematical model based on mass, salinity and energy balances is developed. The purpose of this paper is to develop a connection between process simulator and process optimizer in order to study the influence of several operating variables on the performance and the produced water cost of the unit. A MATLAB program is used to solve the model equations, and Aspen HYSYS is used to model the plant. The model validity is examined against a commercial plant and showed a good agreement between industrial data and simulations results. Results show that the pressures of the last effect and the compressed vapor have an important influence on the produced cost, and the increase of the difference temperature in the condenser decreases the specific heat area about 22%.Keywords: steady-state, triple effect, thermal vapor compressor, Matlab, Aspen Hysys
Procedia PDF Downloads 1725577 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger
Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe
Abstract:
Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fractionKeywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat
Procedia PDF Downloads 1535576 Computer Aided Analysis of Breast Based Diagnostic Problems from Mammograms Using Image Processing and Deep Learning Methods
Authors: Ali Berkan Ural
Abstract:
This paper presents the analysis, evaluation, and pre-diagnosis of early stage breast based diagnostic problems (breast cancer, nodulesorlumps) by Computer Aided Diagnosing (CAD) system from mammogram radiological images. According to the statistics, the time factor is crucial to discover the disease in the patient (especially in women) as possible as early and fast. In the study, a new algorithm is developed using advanced image processing and deep learning method to detect and classify the problem at earlystagewithmoreaccuracy. This system first works with image processing methods (Image acquisition, Noiseremoval, Region Growing Segmentation, Morphological Operations, Breast BorderExtraction, Advanced Segmentation, ObtainingRegion Of Interests (ROIs), etc.) and segments the area of interest of the breast and then analyzes these partly obtained area for cancer detection/lumps in order to diagnosis the disease. After segmentation, with using the Spectrogramimages, 5 different deep learning based methods (specified Convolutional Neural Network (CNN) basedAlexNet, ResNet50, VGG16, DenseNet, Xception) are applied to classify the breast based problems.Keywords: computer aided diagnosis, breast cancer, region growing, segmentation, deep learning
Procedia PDF Downloads 955575 Implementing a Database from a Requirement Specification
Abstract:
Creating a database scheme is essentially a manual process. From a requirement specification, the information contained within has to be analyzed and reduced into a set of tables, attributes and relationships. This is a time-consuming process that has to go through several stages before an acceptable database schema is achieved. The purpose of this paper is to implement a Natural Language Processing (NLP) based tool to produce a from a requirement specification. The Stanford CoreNLP version 3.3.1 and the Java programming were used to implement the proposed model. The outcome of this study indicates that the first draft of a relational database schema can be extracted from a requirement specification by using NLP tools and techniques with minimum user intervention. Therefore, this method is a step forward in finding a solution that requires little or no user intervention.Keywords: information extraction, natural language processing, relation extraction
Procedia PDF Downloads 2615574 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels
Authors: Lorenzo Petrucci
Abstract:
This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration
Procedia PDF Downloads 1765573 Biodiesel Synthesis Using Animal Excreta-Based Biochar and Waste Cooking Oil
Authors: Sang-Ryong Lee, Min-Woon Jung, Deugwoo Han, Kiyong Kim
Abstract:
This study laid an emphasis on the possible employment of biochar generated from pyrolysis of animal excreta to establish a green platform for producing biodiesel. To this end, the pseudo-catalytic transesterification reaction using chicken manure biochar and waste cooking oil was investigated. Compared with a commercial porous material (SiO2), chicken manure biochar generated from 350 C showed better performance, resulting in 95.6% of the FAME yield at 350C. The Ca species in chicken manure biochar imparted strong catalytic capability by providing the basicity for transesterification. The identified catalytic effect also led to the thermal cracking of unsaturated FAMEs, which decreased the overall FAME yield. For example, 40–60% of converted FAMEs were thermally degraded. To avoid undesirable thermal cracking arising from the high content of the Ca species in chicken manure biochar, the fabrication of chicken manure biochar at temperatures ≥350C was highly recommended.Keywords: Trasesterification, Animal excreta, FAME, Biochar, Chicken manure
Procedia PDF Downloads 1995572 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016
Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi
Abstract:
This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.Keywords: big health data, data subject rights, GDPR, pandemic
Procedia PDF Downloads 1295571 Performance Analysis of the Precise Point Positioning Data Online Processing Service and Using for Monitoring Plate Tectonic of Thailand
Authors: Nateepat Srivarom, Weng Jingnong, Serm Chinnarat
Abstract:
Precise Point Positioning (PPP) technique is use to improve accuracy by using precise satellite orbit and clock correction data, but this technique is complicated methods and high costs. Currently, there are several online processing service providers which offer simplified calculation. In the first part of this research, we compare the efficiency and precision of four software. There are three popular online processing service providers: Australian Online GPS Processing Service (AUSPOS), CSRS-Precise Point Positioning and CenterPoint RTX post processing by Trimble and 1 offline software, RTKLIB, which collected data from 10 the International GNSS Service (IGS) stations for 10 days. The results indicated that AUSPOS has the least distance root mean square (DRMS) value of 0.0029 which is good enough to be calculated for monitoring the movement of tectonic plates. The second, we use AUSPOS to process the data of geodetic network of Thailand. In December 26, 2004, the earthquake occurred a 9.3 MW at the north of Sumatra that highly affected all nearby countries, including Thailand. Earthquake effects have led to errors of the coordinate system of Thailand. The Royal Thai Survey Department (RTSD) is primarily responsible for monitoring of the crustal movement of the country. The difference of the geodetic network movement is not the same network and relatively large. This result is needed for survey to continue to improve GPS coordinates system in every year. Therefore, in this research we chose the AUSPOS to calculate the magnitude and direction of movement, to improve coordinates adjustment of the geodetic network consisting of 19 pins in Thailand during October 2013 to November 2017. Finally, results are displayed on the simulation map by using the ArcMap program with the Inverse Distance Weighting (IDW) method. The pin with the maximum movement is pin no. 3239 (Tak) in the northern part of Thailand. This pin moved in the south-western direction to 11.04 cm. Meanwhile, the directional movement of the other pins in the south gradually changed from south-west to south-east, i.e., in the direction noticed before the earthquake. The magnitude of the movement is in the range of 4 - 7 cm, implying small impact of the earthquake. However, the GPS network should be continuously surveyed in order to secure accuracy of the geodetic network of Thailand.Keywords: precise point positioning, online processing service, geodetic network, inverse distance weighting
Procedia PDF Downloads 1895570 An Advanced Automated Brain Tumor Diagnostics Approach
Authors: Berkan Ural, Arif Eser, Sinan Apaydin
Abstract:
Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs.Keywords: image processing algorithms, magnetic resonance imaging, neural network, pattern recognition
Procedia PDF Downloads 4185569 Analysis of Control by Flattening of the Welded Tubes
Authors: Hannachi Med Tahar, H. Djebaili, B. Daheche
Abstract:
In this approach, we have tried to describe the flattening of welded tubes, and its experimental application. The test is carried out at the (National product processing company dishes and tubes production). Usually, the final products (tubes) undergo a series of non-destructive inspection online and offline welding, and obviously destructive mechanical testing (bending, flattening, flaring, etc.). For this and for the purpose of implementing the flattening test, which applies to the processing of round tubes in other forms, it took four sections of welded tubes draft (before stretching hot) and welded tubes finished (after drawing hot and annealing), it was also noted the report 'health' flattened tubes must not show or crack or tear. The test is considered poor if it reveals a lack of ductility of the metal.Keywords: flattening, destructive testing, tube drafts, finished tube, Castem 2001
Procedia PDF Downloads 4465568 Dynamic Thermal Modelling of a PEMFC-Type Fuel Cell
Authors: Marco Avila Lopez, Hasnae Ait-Douchi, Silvia De Los Santos, Badr Eddine Lebrouhi, Pamela Ramírez Vidal
Abstract:
In the context of the energy transition, fuel cell technology has emerged as a solution for harnessing hydrogen energy and mitigating greenhouse gas emissions. An in-depth study was conducted on a PEMFC-type fuel cell, with an initiation of an analysis of its operational principles and constituent components. Subsequently, the modelling of the fuel cell was undertaken using the Python programming language, encompassing both steady-state and transient regimes. In the case of the steady-state regime, the physical and electrochemical phenomena occurring within the fuel cell were modelled, with the assumption of uniform temperature throughout all cell compartments. Parametric identification was carried out, resulting in a remarkable mean error of only 1.62% when the model results were compared to experimental data documented in the literature. The dynamic model that was developed enabled the scrutiny of the fuel cell's response in terms of temperature and voltage under varying current conditions.Keywords: fuel cell, modelling, dynamic, thermal model, PEMFC
Procedia PDF Downloads 815567 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior
Procedia PDF Downloads 160