Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3
Search results for: isodata
3 Evaluating the Impact of Expansion on Urban Thermal Surroundings: A Case Study of Lahore Metropolitan City, Pakistan
Authors: Usman Ahmed Khan
Abstract:
Urbanization directly affects the existing infrastructure, landscape modification, environmental contamination, and traffic pollution, especially if there is a lack of urban planning. Recently, the rapid urban sprawl has resulted in less developed green areas and has devastating environmental consequences. This study was aimed to study the past urban expansion rates and measure LST from satellite data. The land use land cover (LULC) maps of years 1996, 2010, 2013, and 2017 were generated using landsat satellite images. Four main classes, i.e., water, urban, bare land, and vegetation, were identified using unsupervised classification with iterative self-organizing data analysis (isodata) technique. The LST from satellite thermal data can be derived from different procedures: atmospheric, radiometric calibrations and surface emissivity corrections, classification of spatial changeability in land-cover. Different methods and formulas were used in the algorithm that successfully retrieves the land surface temperature to help us study the thermal environment of the ground surface. To verify the algorithm, the land surface temperature and the near-air temperature were compared. The results showed that, From 1996-2017, urban areas increased to about a considerable increase of about 48%. Few areas of the city also shown in a reduction in LST from the year 1996-2017 that actually began their transitional phase from rural to urban LULC. The mean temperature of the city increased averagely about 1ºC each year in the month of October. The green and vegetative areas witnessed a decrease in the area while a higher number of pixels increased in urban class.Keywords: LST, LULC, isodata, urbanization
Procedia PDF Downloads 1002 Using Time Series NDVI to Model Land Cover Change: A Case Study in the Berg River Catchment Area, Western Cape, South Africa
Authors: Adesuyi Ayodeji Steve, Zahn Munch
Abstract:
This study investigates the use of MODIS NDVI to identify agricultural land cover change areas on an annual time step (2007 - 2012) and characterize the trend in the study area. An ISODATA classification was performed on the MODIS imagery to select only the agricultural class producing 3 class groups namely: agriculture, agriculture/semi-natural, and semi-natural. NDVI signatures were created for the time series to identify areas dominated by cereals and vineyards with the aid of ancillary, pictometry and field sample data. The NDVI signature curve and training samples aided in creating a decision tree model in WEKA 3.6.9. From the training samples two classification models were built in WEKA using decision tree classifier (J48) algorithm; Model 1 included ISODATA classification and Model 2 without, both having accuracies of 90.7% and 88.3% respectively. The two models were used to classify the whole study area, thus producing two land cover maps with Model 1 and 2 having classification accuracies of 77% and 80% respectively. Model 2 was used to create change detection maps for all the other years. Subtle changes and areas of consistency (unchanged) were observed in the agricultural classes and crop practices over the years as predicted by the land cover classification. 41% of the catchment comprises of cereals with 35% possibly following a crop rotation system. Vineyard largely remained constant over the years, with some conversion to vineyard (1%) from other land cover classes. Some of the changes might be as a result of misclassification and crop rotation system.Keywords: change detection, land cover, modis, NDVI
Procedia PDF Downloads 4031 Monitoring the Rate of Expansion of Agricultural Fields in Mwekera Forest Reserve Using Remote Sensing and Geographic Information Systems
Authors: K. Kanja, M. Mweemba, K. Malungwa
Abstract:
Due to the rampant population growth coupled with retrenchments currently going on in the Copper mines in Zambia, a number of people are resorting to land clearing for agriculture, illegal settlements as well as charcoal production among other vices. This study aims at assessing the rate of expansion of agricultural fields and illegal settlements in protected areas using remote sensing and Geographic Information System. Zambia’s Mwekera National Forest Reserve was used as a case study. Iterative Self-Organizing Data Analysis Technique (ISODATA), as well as maximum likelihood, supervised classification on four Landsat images as well as an accuracy assessment of the classifications was performed. Over the period under observation, results indicate annual percentage changes to be -0.03, -0.49 and 1.26 for agriculture, forests and settlement respectively indicating a higher conversion of forests into human settlements and agriculture.Keywords: geographic information system, land cover change, Landsat TM and ETM+, Mwekera forest reserve, remote sensing
Procedia PDF Downloads 144