Search results for: powder holding capacities
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1783

Search results for: powder holding capacities

373 Optimization of Mechanical Properties of Alginate Hydrogel for 3D Bio-Printing Self-Standing Scaffold Architecture for Tissue Engineering Applications

Authors: Ibtisam A. Abbas Al-Darkazly

Abstract:

In this study, the mechanical properties of alginate hydrogel material for self-standing 3D scaffold architecture with proper shape fidelity are investigated. In-lab built 3D bio-printer extrusion-based technology is utilized to fabricate 3D alginate scaffold constructs. The pressure, needle speed and stage speed are varied using a computer-controlled system. The experimental result indicates that the concentration of alginate solution, calcium chloride (CaCl2) cross-linking concentration and cross-linking ratios lead to the formation of alginate hydrogel with various gelation states. Besides, the gelling conditions, such as cross-linking reaction time and temperature also have a significant effect on the mechanical properties of alginate hydrogel. Various experimental tests such as the material gelation, the material spreading and the printability test for filament collapse as well as the swelling test were conducted to evaluate the fabricated 3D scaffold constructs. The result indicates that the fabricated 3D scaffold from composition of 3.5% wt alginate solution, that is prepared in DI water and 1% wt CaCl2 solution with cross-linking ratios of 7:3 show good printability and sustain good shape fidelity for more than 20 days, compared to alginate hydrogel that is prepared in a phosphate buffered saline (PBS). The fabricated self-standing 3D scaffold constructs measured 30 mm × 30 mm and consisted of 4 layers (n = 4) show good pore geometry and clear grid structure after printing. In addition, the percentage change of swelling degree exhibits high swelling capability with respect to time. The swelling test shows that the geometry of 3D alginate-scaffold construct and of the macro-pore are rarely changed, which indicates the capability of holding the shape fidelity during the incubation period. This study demonstrated that the mechanical and physical properties of alginate hydrogel could be tuned for a 3D bio-printing extrusion-based system to fabricate self-standing 3D scaffold soft structures. This 3D bioengineered scaffold provides a natural microenvironment present in the extracellular matrix of the tissue, which could be seeded with the biological cells to generate the desired 3D live tissue model for in vitro and in vivo tissue engineering applications.

Keywords: biomaterial, calcium chloride, 3D bio-printing, extrusion, scaffold, sodium alginate, tissue engineering

Procedia PDF Downloads 101
372 The Effects of Physician-Family Communication from the Point View of Clinical Staff

Authors: Lu-Chiu Huang, Pei-Pei Chen, Li-Chin Yu, Chiao-Wen Kuo, Tsui-Tao Liu, Rung-Chuang Feng

Abstract:

Purpose: People put increasing emphasis on demands of medical quality and protecting their interests. Patients' or family's dissatisfaction with medical care may easily lead to medical dispute. Physician-family communication plays an essential role in medical care. A sound communication cannot only strengthen patients' belief in the medical team but make patient have definite insight into treatment course of the disease. A family meeting provides an effective platform for communication between clinical staff, patients and family. Decisions and consensuses formed in family meetings can promote patients' or family's satisfaction with medical care. Clinical staff's attitudes toward family meeting may determine behavioral intentions to hold family meeting. This study aims to explore clinical staff's difficulties in holding family meeting and evaluate how their attitudes and behavior influence the effect of family meetings. Methods: This was a cross-sectional study. It was conducted at a regional teaching hospital in Taipei city. The research team developed its own structural questionnaires, whose expert validity was checked by the nursing experts. Participants filled in the questionnaires online. Data were collected by convenience sampling. A total of 568 participants were invited. They included doctors, nurses, social workers, and so on. Results: 1) The average score of ‘clinical staff’s attitudes to family meetings’ was 5.15 (SD=0.898). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. It indicated that clinical staff had positive attitudes toward family meetings, 2) The average score of ‘clinical staff’s behavior to family meetings’ was 5.61 (SD=0.937). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. It meant clinical staff tended to have positive behavior at the family meeting, and 3) The average score of ‘Difficulty in conducting family meetings’ was 5.15 (SD=0.897). It fell between ‘somewhat agree’ and ‘mostly agree’ on the 7-point likert scale. The higher the score was, the less difficulty the clinical staff felt. It demonstrated clinical staff felt less difficulty in conducting family meetings. Clinical staff's identification with family meetings brought favored effects. Persistent and active promotion for family meetings can bring patients and family more benefits. Implications for practice: Understanding clinical staff's difficulty in participating family meeting and exploring their attitudes or behavior toward physician-family communication are helpful to develop modes of interaction. Consequently, quality and satisfaction of physician-family communication can be increased.

Keywords: clinical staff, communication, family meeting, physician-family

Procedia PDF Downloads 320
371 Tiebout and Crime: How Crime Affect the Income Tax Capacity

Authors: Nik Smits, Stijn Goeminne

Abstract:

Despite the extensive literature on the relation between crime and migration, not much is known about how crime affects the tax capacity of local communities. This paper empirically investigates whether the Flemish local income tax base yield is sensitive to changes in the local crime level. The underlying assumptions are threefold. In a Tiebout world, rational voters holding the local government accountable for the safety of its citizens, move out when the local level of security gets too much alienated from what they want it to be (first assumption). If migration is due to crime, then the more wealthy citizens are expected to move first (second assumption). Looking for a place elsewhere implies transaction costs, which the more wealthy citizens are more likely to be able to pay. As a consequence, the average income per capita and so the income distribution will be affected, which in turn, will influence the local income tax base yield (third assumption). The decreasing average income per capita, if not compensated by increasing earnings by the citizens that are staying or by the new citizens entering the locality, must result in a decreasing local income tax base yield. In the absence of a higher level governments’ compensation, decreasing local tax revenues could prove to be disastrous for a crime-ridden municipality. When communities do not succeed in forcing back the number of offences, this can be the onset of a cumulative process of urban deterioration. A spatial panel data model containing several proxies for the local level of crime in 306 Flemish municipalities covering the period 2000-2014 is used to test the relation between crime and the local income tax base yield. In addition to this direct relation, the underlying assumptions are investigated as well. Preliminary results show a modest, but positive relation between local violent crime rates and the efflux of citizens, persistent up until a 2 year lag. This positive effect is dampened by possible increasing crime rates in neighboring municipalities. The change in violent crimes -and to a lesser extent- thefts and extortions reduce the influx of citizens with a one year lag. Again this effect is diminished by external effects from neighboring municipalities, meaning that increasing crime rates in neighboring municipalities (especially violent crimes) have a positive effect on the local influx of citizens. Crime also has a depressing effect on the average income per capita within a municipality, whereas increasing crime rates in neighboring municipalities increase it. Notwithstanding the previous results, crime does not seem to significantly affect the local tax base yield. The results suggest that the depressing effect of crime on the income basis has to be compensated by a limited, but a wealthier influx of new citizens.

Keywords: crime, local taxes, migration, Tiebout mobility

Procedia PDF Downloads 299
370 Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit

Authors: Fanyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling.

Keywords: polycrystalline diamond compact, scanning electron microscope, wear resistance, cutting distance

Procedia PDF Downloads 186
369 Study on Shifting Properties of CVT Rubber V-belt

Authors: Natsuki Tsuda, Kiyotaka Obunai, Kazuya Okubo, Hideyuki Tashiro, Yoshinori Yamaji, Hideyuki Kato

Abstract:

The objective of this study is to investigate the effect of belt stiffness on the performance of the CVT unit, such as the required pulley thrust force and the ratio coverage. The CVT unit consists of the V-grooved pulleys and the rubber CVT belt. The width of the driving pulley groove was controlled by the stepper motor, while that of the driven pulley was controlled by the hydraulic pressure. The generated mechanical power on the motor was transmitted from the driving axis to the driven axis through the CVT unit. The rotational speed and the transmitting torque of both axes were measured by the tachometers and the torque meters attached with these axes, respectively. The transmitted, mechanical power was absorbed by the magnetic powder brake. The thrust force acting on both pulleys and the force between both shafts were measured by the load cell. The back face profile of the rubber CVT belt along with width direction was measured by the 2-dimensional laser displacement meter. This paper found that when the stiffness of the rubber CVT belt in the belt width direction was reduced, the thrust force required for shifting was reduced. Moreover, when the stiffness of the rubber CVT belt in the belt width direction was reduced, the ratio coverage of the CVT unit was reduced. Due to the decrement of stiffness in belt width direction, the excessive concave deformation of belt in pulley groove was confirmed. Because of this excessive concave deformation, apparent wrapping radius of belt would have been reduced. Proposed model could be effectively estimated the difference of ratio coverage due to concave deformation. The proposed model could also be utilized for designing the rubber CVT belt with optimal bending stiffness in width direction.

Keywords: CVT, countinuously variable transmission, rubber, belt stiffness, transmission

Procedia PDF Downloads 130
368 Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa

Authors: Ayanda Ndokwana, Stanley Fore

Abstract:

Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted.

Keywords: bioethanol, economic evaluation, maize, profitability indicators

Procedia PDF Downloads 216
367 Tapping Traditional Environmental Knowledge: Lessons for Disaster Policy Formulation in India

Authors: Aparna Sengupta

Abstract:

The paper seeks to find answers to the question as to why India’s disaster management policies have been unable to deliver the desired results. Are the shortcomings in policy formulation, effective policy implementation or timely prevention mechanisms? Or is there a fundamental issue of policy formulation which sparsely takes into account the cultural specificities and uniqueness, technological know-how, educational, religious and attitudinal capacities of the target population into consideration? India was slow in legislating disaster policies but more than that the reason for lesser success of disaster polices seems to be the gap between policy and the people. We not only keep hearing about the failure of governmental efforts but also how the local communities deal far more efficaciously with disasters utilizing their traditional knowledge. The 2004 Indian Ocean tsunami which killed 250,000 people (approx.) could not kill the tribal communities who saved themselves due to their age-old traditional knowledge. This large scale disaster, considered as a landmark event in history of disasters in the twenty-first century, can be attributed in bringing and confirming the importance of Traditional Environmental Knowledge in managing disasters. This brings forth the importance of cultural and traditional know-how in dealing with natural disasters and one is forced to question as to why shouldn’t traditional environmental knowledge (TEK) be taken into consideration while formulating India’s disaster resilience policies? Though at the international level, many scholars have explored the connectedness of disaster to cultural dimensions and several research examined how culture acts as a stimuli in perceiving disasters and their management (Clifford, 1956; Mcluckie, 1970; Koentjaraningrat, 1985; Peacock, 1997; Elliot et.al, 2006; Aruntoi, 2008; Kulatunga, 2010). But in the Indian context, this field of inquiry i.e. linking disaster policies with tradition and generational understanding has seldom received attention of the government, decision- making authorities, disaster managers and even in the academia. The present study attempts to fill this gap in research and scholarship by presenting an historical analysis of disaster and its cognition by cultural communities in India. The paper seeks to interlink the cultural comprehension of Indian tribal communities with scientific-technology towards more constructive disaster policies in India.

Keywords: culture, disasters, local communities, traditional knowledge

Procedia PDF Downloads 94
366 Experimental Investigation of Cutting Forces and Temperature in Bone Drilling

Authors: Vishwanath Mali, Hemant Warhatkar, Raju Pawade

Abstract:

Drilling of bone has been always challenging for surgeons due to the adverse effect it may impart to bone tissues. Force has to be applied manually by the surgeon while performing conventional bone drilling which may lead to permanent death of bone tissues and nerves. During bone drilling the temperature of the bone tissues increases to higher values above 47 ⁰C that causes thermal osteonecrosis resulting into screw loosening and subsequent implant failures. An attempt has been made here to study the input drilling parameters and surgical drill bit geometry affecting bone health during bone drilling. A One Factor At a Time (OFAT) method is used to plan the experiments. Input drilling parameters studied include spindle speed and feed rate. The drill bit geometry parameter studied include point angle and helix angle. The output variables are drilling thrust force and bone temperature. The experiments were conducted on goat femur bone at room temperature 30 ⁰C. For measurement of thrust forces KISTLER cutting force dynamometer Type 9257BA was used. For continuous data acquisition of temperature NI LabVIEW software was used. Fixture was made on RPT machine for holding the bone specimen while performing drilling operation. Bone specimen were preserved in deep freezer (LABTOP make) under -40 ⁰C. In case of drilling parameters, it is observed that at constant feed rate when spindle speed increases, thrust force as well as temperature decreases and at constant spindle speed when feed rate increases thrust force as well as temperature increases. The effect of drill bit geometry shows that at constant helix angle when point angle increases thrust force as well as temperature increases and at constant point angle when helix angle increase thrust force as well as temperature decreases. Hence it is concluded that as the thrust force increases temperature increases. In case of drilling parameter, the lowest thrust force and temperature i.e. 35.55 N and 36.04 ⁰C respectively were recorded at spindle speed 2000 rpm and feed rate 0.04 mm/rev. In case of drill bit geometry parameter, the lowest thrust force and temperature i.e. 40.81 N and 34 ⁰C respectively were recorded at point angle 70⁰ and helix angle 25⁰ Hence to avoid thermal necrosis of bone it is recommended to use higher spindle speed, lower feed rate, low point angle and high helix angle. The hard nature of cortical bone contributes to a greater rise in temperature whereas a considerable drop in temperature is observed during cancellous bone drilling.

Keywords: bone drilling, helix angle, point angle, thrust force, temperature, thermal necrosis

Procedia PDF Downloads 303
365 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites

Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt

Abstract:

Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.

Keywords: copper based composites, mechanical properties, wear properties, microstructure

Procedia PDF Downloads 352
364 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 260
363 Evaluation of Elements Impurities in Drugs According to Pharmacopoeia by use FESEM-EDS Technique

Authors: Rafid Doulab

Abstract:

Elemental Impurities in the Pharmaceuticals industryis are indispensable to ensure pharmaceuticalssafety for 24 elements. Although atomic absorption and inductively coupled plasma are used in the U.S Pharmacopeia and the European Pharmacopoeia, FESEM with energy dispersive spectrometers can be applied as an alternative analysis method for quantitative and qualitative results for a variety of elements without chemical pretreatment, unlike other techniques. This technique characterizes by shortest time, with more less contamination, no reagent consumption, and generation of minimal residue or waste, as well as sample preparations time limiting, with minimal analysis error. Simple dilution for powder or direct analysis for liquid, we analyzed the usefulness of EDS method in testing with field emission scanning electron microscopy (FESEM, SUPRA 55 Carl Zeiss Germany) with an X-ray energy dispersion (XFlash6l10 Bruker Germany). The samples analyzed directly without coating by applied 5µ of known concentrated diluted sample on carbon stub with accelerated voltage according to sample thickness, the result for this spot was in atomic percentage, and by Avogadro converted factor, the final result will be in microgram. Conclusion and recommendation: The conclusion of this study is application of FESEM-EDS in US pharmacopeia and ICH /Q3D guideline to reach a high-precision and accurate method in element impurities analysis of drugs or bulk materials to determine the permitted daily exposure PDE in liquid or solid specimens, and to obtain better results than other techniques, by the way it does not require complex methods or chemicals for digestion, which interfere with the final results with the possibility of to keep the sample at any time for re analysis. The recommendation is to use this technique in pharmacopeia as standard methods like inductively coupled plasma both ICP-AES, ICP-OES, and ICP-MS.

Keywords: pharmacopoeia, FESEM-EDS, element impurities, atomic concentration

Procedia PDF Downloads 105
362 Accelerating Entrepreneurship among Young Women in Sabah Malaysia

Authors: Imelda Albert Gisip, Tarisah T. Z. Taman

Abstract:

In Asia, particularly in Malaysia, women entrepreneurs contribute substantially to economic growth. This paper presents a review of women entrepreneurs’ program, focusing on Creating Millionaires among Young Women Entrepreneurs (CREAM@YWE) program in Sabah Malaysia, which aims to accelerate entrepreneurship among young women in Sabah Malaysia. Entrepreneurs are seen as essential for growth, job creation, and social progress, and the virtues of small business for Sabah Maju Jaya (SMJ), the Sabah state government Sabah State development plan for the year 2021-2025. SMJ guides the direction of the government's policies and programs, further guiding the implementation in a planned and strategic manner to achieve targets and goals that coincide with the development needs of the state. One of the government’s agendas is to put more effort into ensuring that women entrepreneurs are well supported and enhanced. Thus, The CreaM@YWE Program was developed in 2018 with the main objective is to produce competitive young women entrepreneurs in Sabah and achieve "millionaire" status. CreaM@YWE Program is an innovation process specifically developed to accelerate the entrepreneurship sector, particularly for women entrepreneurs in Sabah, by incorporating strategic partnerships and collaborations with government agencies and industry players. Being the first of its kind in Sabah, the novelty of this project is providing a supportive ecosystem, including six months of intensive courses guided through "hands-holding”, collaborations with strategic partners, and easy access to government assistance. Since its inception, the program has significantly impacted society’s wellbeing, particularly in empowering young women entrepreneurs in Sabah for the past six years, and has produced many successful women entrepreneurs with “millionaire” status. Generally, improving the women’s enterprise sector in Malaysia needs an overall environment that provides development opportunities for women entrepreneurs, including access to resources and support services. Since achieving the goal of women's entrepreneurship policy requires effective partnerships and inclusiveness, Cream @YWE Program has managed to practice these in assisting small entrepreneurs among young women in Sabah in accessing public goods and business opportunities. This proves that achieving women’s economic empowerment requires sound policies, a holistic approach, and long-term commitment. Thus, this paper presents how the Cream@YWE Program has been supporting Sabah young women entrepreneurs by reforming the business environment to help create opportunities for women while addressing the few existing gender-specific hurdles.

Keywords: young, women, entrepreneurs, Sabah, Malaysia

Procedia PDF Downloads 34
361 Natural Enemies of the Fall Armyworm (Spodoptera frugiperda, Smith) and Comparing Neem Aqueous Extracts against Its Larvae in Gurage Zone, Central Ethiopia

Authors: Abera Hailu Degaga, Emana Getu Degaga

Abstract:

Spodoptera frugiperda is an invasive insect pest that infests and feeds various crops, particularly affecting maize yields. However, nature has its own way of maintaining balance, and in this case, natural enemies play a crucial role in regulating the population of S. frugiperda. Locally available and easily prepared botanical sources, bio-pesticides, are also important. The objectives of the study were to investigate the natural enemies of S. frugiperda in the Gurage zone and to compare Neem aqueous extracts against its larvae in central Ethiopia. S. frugiperda larvae and egg masses were collected randomly from smallholder maize farms infested with pests between June and August 2023. Our findings revealed the existence of diverse types of parasitoids, predators, and entomopathogenic fungi associated with S. frugiperda. Notably, we documented three species of parasitoids, namely Exorista xanthaspis and Tachina spp. (Diptera: Tachinidae) and Charops annulipes (Hymenoptera: Ichneumonidae). All three species of parasitoids were recorded from Ethiopia for the first time. The overall parasitism rate was 5.3%, with individual rates ranging from 1.3 to 4%. Additionally, we identified ten species of predator insects from four different orders, including Hemiptera, Dermaptera, Coleoptera, and Mantodea, in the maize farms infested with S. frugiperda. Aqueous extract of Neem seed and leaf powder and green leaf exhibited similar mortality rates of S. frugiperda larvae at 72 hours even though there was a significant difference at 24 and 48 hours of the test. For effective management of S. frugiperda further research is necessary to fully exploit the potential of these natural enemies and additionally to use botanical source pesticides like Azadirachta indica.

Keywords: bio-pesticide, natural enemy, parasitoids, predators, Tachinid flies

Procedia PDF Downloads 56
360 Adsorption of Atmospheric Gases Using Atomic Clusters

Authors: Vidula Shevade, B. J. Nagare, Sajeev Chacko

Abstract:

First principles simulation, meaning density functional theory (DFT) calculations with plane waves and pseudopotential, has become a prized technique in condensed matter theory. Nanoparticles (NP) have been known to possess good catalytic activities, especially for molecules such as CO, O₂, etc. Among the metal NPs, Aluminium based NPs are also widely known for their catalytic properties. Aluminium metal is a lightweight, excellent electrical, and thermal abundant chemical element in the earth’s crust. Aluminium NPs, when added to solid rocket fuel, help improve the combustion speed and considerably increase combustion heat and combustion stability. Adding aluminium NPs into normal Al/Al₂O₃ powder improves the sintering processes of the ceramics, with high heat transfer performance, increased density, and enhanced thermal conductivity of the sinter. We used VASP and Gaussian 0₃ package to compute the geometries, electronic structure, and bonding properties of Al₁₂Ni as well as its interaction with O₂ and CO molecules. Several MD simulations were carried out using VASP at various temperatures from which hundreds of structures were optimized, leading to 24 unique structures. These structures were then further optimized through a Gaussian package. The lowest energy structure of Al₁₂Ni has been reported to be a singlet. However, through our extensive search, we found a triplet state to be lower in energy. In our structure, the Ni atom is found to be on the surface, which gives the non-zero magnetic moment. Incidentally, O2 and CO molecules are also triplet in nature, due to which the Al₁₂-Ni cluster is likely to facilitate the oxidation process of the CO molecule. Our results show that the most favourable site for the CO molecule is the Ni atom and that for the O₂ molecule is the Al atom that is nearest to the Ni atom. Al₁₂Ni-O₂ and Al₁₂-Ni-CO structures we extracted using VMD. Al₁₂Ni nanocluster, due to in triplet electronic structure configuration, indicates it to be a potential candidate as a catalyst for oxidation of CO molecules.

Keywords: catalyst, gaussian, nanoparticles, oxidation

Procedia PDF Downloads 87
359 Investigating Pack Boriding as a Surface Treatment for WC-Co Cold Forming Die Materials

Authors: Afshin Zohdi, Selçuk Özdemir, Mustafa Aksoy

Abstract:

Tungsten carbide-cobalt (WC-Co) is a widely utilized material for cold forming dies, including those employed in fastener production. In this study, we investigated the effectiveness of the pack boriding method in improving the surface properties of WC-Co cold forging dies. The boriding process involved embedding WC-Co samples, along with a steel control sample, within a chamber made of H13 tool steel. A boriding powder mixture was introduced into the chamber, which was then sealed using a paste. Subsequently, the samples were subjected to a temperature of 700°C for 5 hours in a furnace. Microstructural analysis, including cross-sectional examination and scanning electron microscopy (SEM), confirmed successful boron diffusion and its presence on the surface of the borided samples. The microhardness of the borided layer was significantly increased (3980 HV1) compared to the unborided sample (1320 HV3), indicating enhanced hardness. The borided layer exhibited an acceptable thickness of 45 microns, with a diffusion coefficient of 1.125 × 10-7 mm²/s, signifying a moderate diffusion rate. Energy-dispersive X-ray spectroscopy (EDS) mapping revealed an increase in boron content, desirable for the intended purpose, while an undesired increase in oxygen content was observed. Furthermore, the pin-on-disk wear test demonstrated a reduction in friction coefficient, indicating improved mechanical and tribological properties of the surface. The successful implementation of the pack boriding process highlights its potential for enhancing the performance of WC-Co cold forging dies.

Keywords: WC-Co, cold forging dies, pack boriding, surface hardness, wear resistance, microhardness, diffusion coefficient, scanning electron microscopy, energy-dispersive X-ray spectroscopy

Procedia PDF Downloads 56
358 Prevalence and Mechanisms of Antibiotic Resistance in Escherichia coli Isolated from Mastitic Dairy Cattle in Canada

Authors: Satwik Majumder, Dongyun Jung, Jennifer Ronholm, Saji George

Abstract:

Bovine mastitis is the most common infectious disease in dairy cattle, with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with three heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics, and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = +0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates, corroborating phenotype observations. This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through milk and dairy products.

Keywords: antimicrobial resistance, E. coli, bovine mastitis, antibiotics, heavy-metals, efflux pump, ß-lactamase enzyme, biofilm, whole-genome sequencing

Procedia PDF Downloads 198
357 Preparation and Characterization of Calcium Phosphate Cement

Authors: W. Thepsuwan, N. Monmaturapoj

Abstract:

Calcium phosphate cements (CPCs) is one of the most attractive bioceramics due to its moldable and shape ability to fill complicated bony cavities or small dental defect positions. In this study, CPCs were produced by using mixtures of tetracalcium phosphate (TTCP, Ca4O(PO4)2) and dicalcium phosphate anhydrous (DCPA, CaHPO4) in equimolar ratio (1/1) with aqueous solutions of acetic acid (C2H4O2) and disodium hydrogen phosphate dehydrate (Na2HPO4.2H2O) in combination with sodium alginate in order to improve theirs moldable characteristic. The concentrations of the aqueous solutions and sodium alginate were varied to investigate the effects of different aqueous solution and alginate on properties of the cements. The cement paste was prepared by mixing cement powder (P) with aqueous solution (L) in a P/L ratio of 1.0 g/ 0.35 ml. X-ray diffraction (XRD) was used to analyses phase formation of the cements. Setting times and compressive strength of the set CPCs were measured using the Gilmore apparatus and Universal testing machine, respectively. The results showed that CPCs could be produced by using both basic (Na2HPO4.2H2O) and acidic (C2H4O2) solutions. XRD results show the precipitation of hydroxyapatite in all cement samples. No change in phase formation among cements using difference concentrations of Na2HPO4.2H2O solutions. With increasing concentration of acidic solutions, samples obtained less hydroxyapatite with a high dicalcium phosphate dehydrate leaded to a shorter setting time. Samples with sodium alginate exhibited higher crystallization of hydroxyapatite than that of without alginate as a result of shorten setting time in basic solution but a longer setting time in acidic solution. The stronger cement was attained from samples using acidic solution with sodium alginate; however it was lower than using the basic solution.

Keywords: calcium phosphate cements, TTCP, DCPA, hydroxyapatite, properties

Procedia PDF Downloads 378
356 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair

Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar

Abstract:

Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.

Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol

Procedia PDF Downloads 196
355 Fluoride as Obturating Material in Primary Teeth

Authors: Syed Ameer Haider Jafri

Abstract:

The primary goal of a root canal treatment in deciduous teeth is to eliminate infection and to retain the tooth in a functional state until it gets physiologically exfoliated and replaced by permanent successor. Important requisite of a root canal filling material for primary teeth is that, it should resorb at a similar rate as the roots of primary tooth, be harmless to the periapical tissue and to the permanent tooth germ, resorb readily if pushed beyond the apex, be antiseptic, radio-opaque, should not shrink, adhere to the walls, not discolor the tooth and easy to fill & remove, if required at any stage. Presently available, commonly used obturating materials for primary teeth are zinc oxide eugenol, calcium hydroxide and iodoform based pastes. None of these materials so far meet the ideal requirement of root canal filling material. So in search of ideal obturating material, this study was planed, in which mixture of calcium hydroxide, zinc oxide & sodium fluoride and mixture of calcium hydroxide & sodium fluoride was compared clinically and radiographically with calcium hydroxide for the obturation of root canals of 75 carious exposed primary mandibular second molars of 59 children aged 4-9 years. All the three material shows good results, but after a follow-up of 9 months mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide powder closely follow the resorption of root, mixture of calcium hydroxide, two percent sodium fluoride follow resorption of root in the beginning but later on majority of cases shows faster resorption whereas calcium hydroxide starts depleting from the canal from the beginning even as early as 3 months. Thus mixture of calcium hydroxide, two percent sodium fluoride & zinc oxide found to be best obturaring material for primary tooth.

Keywords: obturating material, primary teeth, root canal treatment, success rate

Procedia PDF Downloads 295
354 Implementing Critical Friends Groups in Schools

Authors: S. Odabasi Cimer, A. Cimer

Abstract:

Recently, the poor quality of education, low achieving students, low international exam performances and little or no effect of the education reforms on the teaching in the classrooms are the main problems of education discussed in Turkey. Research showed that the quality of an education system can not exceed the quality of its teachers and teaching. Therefore, in-service training (INSET) courses are important to improve teacher quality, thereby, the quality of education. However, according to the research conducted on the evaluation of the INSET courses in Turkey, they are not effective in improving the quality of teaching in the classroom. The main reason for this result is because INSET courses are conducted and delivered in limited time and presented theoretically, which does not meet the needs of teachers and as a result, the knowledge and skills taught are not used in the classrooms. Recently, developed countries have been using Critical Friends Groups (CFGs) successfully for the purpose of school-based training of teachers. CFGs are the learning groups which contain 6-10 teachers aimed at fostering their capacities to undertake instructional and personal improvement and schoolwide reform. CFGs have been recognized as a critical feature in school reform, improving teaching practice and improving student achievement. In addition, in the USA, teachers have named CFGs one of the most powerful professional development activities in which they have ever participated. Whereas, in Turkey, the concept is new. This study aimed to investigate the implications of application, evaluation, and promotion of CFGs which has the potential to contribute to teacher development and student learning in schools in Turkey. For this purpose, the study employed a qualitative approach and case study methodology to implement the model in high schools. The research was conducted in two schools and 13 teachers working in these schools participated. The study lasted two years and the data were collected through various data collection tools including interviews, meeting transcripts, questionnaires, portfolios, and diaries. The results of the study showed that CFGs contributed professional development of teachers and their students’ learning. It also contributed to a culture of collaborative work in schools. A number of barriers and challenges which prevent effective implementation were also determined.

Keywords: critical friends group, education reform, science learning, teacher education

Procedia PDF Downloads 115
353 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications

Authors: S. Koul, Joshua Adedamola

Abstract:

Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.

Keywords: ICP, dopant, EMI, shielding

Procedia PDF Downloads 67
352 Effects of Pre-Storage Invigoration Treatments on Ageing Dendrocalamus hamiltonii Seeds

Authors: Geetika Richa, M. L. Sharma

Abstract:

Bamboo as an ancient herbal medicine has been used for thousands of years in Asia and goes by many names such as tabashir, banslochan etc. It is often used for its tonic and astringent properties. Modern analysis of bamboos show high amount of vitamins and minerals which makes them valuable as a curative. Bamboo leaf decoction and young shoots are known as remedy for intestinal worms, healing of ulcers and stomach disorders. Bamboos are known to be propagated by large scale plantations but propagation through seeds occurs very limited as they have very short viability of few months. Seeds loses viability over a period of time even under controlled conditions and important factors that affect seed viability is the decline in reserve food material, decrease in membrane integrity and fall in endogenous level of growth hormones. Invigoration treatments that include hydration, dehydration, incorporation of bioactive chemicals such as growth regulators, nutrients and antioxidants etc. improve the seed performance. Our studies were aimed to determine the most effective invigoration treatments to enhance vigour and viability of seeds by following invigoration treatments, i.e., hardening. Treated seeds were stored at controlled temperature and humidity (in desiccators at 4°C). In hardening, chemicals were applied in 3 different concentrations to three replicates of 10 seeds. Hardening was done withGA3, IAA, (each with concentrations of 10 ppm, 20 ppm and 50 ppm), calcium oxychloride, neem leaf powder and clay (each with concentrations of 2%, 5% and 10%). Statistically all the hardening materials were effective but GA3 50 ppm was the most effective one in maintaining germination percentage and vigour index. Hardening treatments increased the germination percentage of seeds, i.e. 86.2%, over control which showed germination percentage of 80.2%. It was concluded that in order to maintain seed viability during storage for longer period of time, invigoration treatments have been found to be very effective.

Keywords: invigoration, seed quality, viability, hardening, membrane integrity, decoction

Procedia PDF Downloads 311
351 The Effect of Inulin on Aflatoxin M1 Binding Ability of Probiotic Bacteria in Yoghurt

Authors: Sumeyra Sevim, Gulsum Gizem Topal, Mercan Merve Tengilimoglu-Metin, Banu Sancak, Mevlude Kizil

Abstract:

Aflatoxin M1 (AFM1) represents mutagenic, carcinogenic, hepatotoxic and immunosuppressive properties, and shows adverse effect on human health. Recently the use of probiotics are focused on AFM1 detoxification because of the fact that probiotic strains have a binding ability to AFM1. Moreover, inulin is a prebiotic to improve the ability of probiotic bacteria. Therefore, the aim of the study is to investigate the effect of inulin on AFM1 binding ability of some probiotic bacteria. Yoghurt samples were manufactured by using skim milk powder artificially contaminated with AFM1 at concentration 100 pg/ml. Different samples were prepared for the study as: first sample consists of yoghurt starter bacteria (L. bulgaricus and S. thermophilus), the second sample consists of starter and L. plantarum, starter and B. bifidum ATCC were added to the third sample, starter and B. animalis ATCC 27672 were added to the forth sample, and the fifth sample is a binary culture consisted of starter and B. bifidum and B. animalis. Moreover, the same work groups were prepared with inulin (4%). The samples were incubated at 42°C for 4 hours, then stored for three different time interval (1,5 and 10 days). The toxin was measured by the ELISA. When inulin was added to work groups, there was significant change on AFM1 binding ability at least one sample in all groups except the one with L. plantarum (p<0.05). The highest levels of AFM1 binding ability (68.7%) in samples with inulin were found in the group which B. bifidum was added, whereas the lowest levels of AFM1 binding ability (44.4%) in samples with inulin was found in the fifth sample. The most impressive effect of inulin was found on B.bifidum. In this study, it was obtained that there was a significant effect of storage on AFM1 binding ability in the all groups with inulin except the one with L. plantarum (p<0.05). Consequently, results show that AFM1 detoxification by probiotics have a potential application to reduce toxin concentrations in yoghurt. Besides, inulin has different effects on AFM1 binding ability of each probiotic bacteria strain.

Keywords: aflatoxin M1, inulin, probiotics, storage

Procedia PDF Downloads 300
350 Decent Work Agenda in the Philippines: A Capacity Assessment

Authors: Dianne Lyneth Alavado

Abstract:

At the turn of the millennium, development paradigms in the international scene revolved around one goal: elimination of global poverty without comprising human rights. One measure which achieved high endorsement and visibility in the world of work is the Decent Work Agenda (DWA) championed by the United Nation’s (UN) specialized agency for work, the International Labour Organization (ILO). The DWA has been thoroughly promoted and recommended as an ingredient of development planning and a poverty reduction strategy, particularly in developing countries such as the Philippines. The global imperative of economic growth is measurable not only in the numbers raked in by countries in terms of expanding economy but also by the development and realization of the full capacities of their people. Decent work (DW), as an outcome and not just a development approach, promises poverty eradication by means of providing both quantity and quality work that is accompanied by rights, representation, and protection. As a party to these international pacts, the Philippines is expected to heed the call towards a world free from poverty through well-endorsed measures such as the DWA with the aid of multilateral and donor organizations such as the ILO. This study aims to assess the capacity and readiness of the Philippines to achieve the goals of the DWA. This is a qualitative research using the sociological and juridical lens in the desk analysis of existing Philippine laws, policies, and programs vis-à-vis decent work indicators set forth by the ILO. Interview with experts on the Philippine labor situation is conducted for further validation. The paper identifies gaps within the Philippine legal system and its collection of laws, acts, presidential decrees, department orders and other policy instruments aimed towards achieving the goals of the DWA. Among the major findings of this paper are: the predisposition of Philippine labor laws towards the formal sector; the need for alternative solutions for the informal sector veering away from the usual dole-outs and livelihood projects; the needs for evaluation of policies and programs that are usually self-evaluated; the minimal reach of the labour inspectorate which ensures decent work; and the lack of substantial penalty for non-compliance with labor laws. The paper concludes with policy implications and recommendations towards addressing the potholes on the road to Decent Work.

Keywords: decent work agenda, labor laws, millennium development goals, poverty eradication, sustainable development goal

Procedia PDF Downloads 264
349 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges

Authors: Mohamad Mahdi Namdari

Abstract:

In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.

Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing

Procedia PDF Downloads 14
348 PLGA Nanoparticles Entrapping dual anti-TB drugs of Amikacin and Moxifloxacin as a Potential Host-Directed Therapy for Multidrug Resistant Tuberculosis

Authors: Sharif Abdelghany

Abstract:

Polymeric nanoparticles have been widely investigated as a controlled release drug delivery platform for the treatment of tuberculosis (TB). These nanoparticles were also readily internalised into macrophages, leading to high intracellular drug concentration. In this study two anti-TB drugs, amikacin and moxifloxacin were encapsulated into PLGA nanoparticles. The novelty of this work appears in: (1) the efficient encapsulation of two hydrophilic second-line anti-TB drugs, and (2) intramacrophage delivery of this synergistic combination potentially for rapid treatment of multi-drug resistant TB (MDR-TB). Two water-oil-water (w/o/w) emulsion strategies were employed in this study: (1) alginate coated PLGA nanoparticles, and (2) alginate entrapped PLGA nanoparticles. The average particle size and polydispersity index (PDI) of the alginate coated PLGA nanoparticles were found to be unfavourably high with values of 640 ± 32 nm and 0.63 ± 0.09, respectively. In contrast, the alginate entrapped PLGA nanoparticles were within the desirable particle size range of 282 - 315 nm and the PDI was 0.08 - 0.16, and therefore were chosen for subsequent studies. Alginate entrapped PLGA nanoparticles yielded a drug loading of over 10 µg/mg powder for amikacin, and more than 5 µg/mg for moxifloxacin and entrapment efficiencies range of approximately 25-31% for moxifloxacin and 51-59% for amikacin. To study macrophage uptake efficiency, the nanoparticles of alginate entrapped nanoparticle formulation were loaded with acridine orange as a marker, seeded to THP-1 derived macrophages and viewed under confocal microscopy. The particles were readily internalised into the macrophages and highly concentrated in the nucleus region. Furthermore, the anti-mycobacterial activity of the drug-loaded particles was evaluated using M. tuberculosis-infected macrophages, which revealed a significant reduction (4 log reduction) of viable bacterial count compared to the untreated group. In conclusion, the amikacin-moxifloxacin alginate entrapped PLGA nanoparticles are promising for further in vivo studies.

Keywords: moxifloxacin and amikacin, nanoparticles, multidrug resistant TB, PLGA

Procedia PDF Downloads 360
347 In-situ and Laboratory Characterization of Fiji Lateritic Soils

Authors: Faijal Ali, Darga Kumar N., Ravikant Singh, Rajnil Lal

Abstract:

Fiji has three major landforms such as plains, low mountains, and hills. The low land soils are formed on beach sand. Fiji soils contain high concentration of iron (III), aluminum oxides and hydroxides. The soil possesses reddish or yellowish colour. The characterization of lateritic soils collected from different locations along the national highway in Viti Levu, Fiji Islands. The research has been carried out mainly to understand the physical and strength properties to assess their suitability for the highway and building construction. In this paper, the field tests such as dynamic cone penetrometer test, field vane shear, field density and laboratory tests such as unconfined compression stress, compaction, grain size analysis and Atterberg limits are conducted. The test results are analyzed and presented. From the results, it is revealed that the soils are having more percentage of silt and clay which is more than 80% and 5 to 15% of fine to medium sand is noticed. The dynamic cone penetrometer results up to 3m depth had similar penetration resistance. For the first 1m depth, the rate of penetration is found 300mm per 3 to 4 blows. In all the sites it is further noticed that the rate of penetration at depths beyond 1.5 m is decreasing for the same number of blows as compared to the top soil. From the penetration resistance measured through dynamic cone penetrometer test, the California bearing ratio and allowable bearing capacities are 4 to 5% and 50 to 100 kPa for the top 1m layer and below 1m these values are increasing. The California bearing ratio of these soils for below 1m depth is in the order of 10% to 20%. The safe bearing capacity of these soils below 1m and up to 3m depth is varying from 150 kPa to 250 kPa. The field vane shear was measured within a depth of 1m from the surface and the values were almost similar varying from 60 kPa to 120 kPa. The liquid limit and plastic limits of these soils are in the range of 40 to 60% and 20 to 25%. Overall it is found that the top 1m soil along the national highway in majority places possess a soft to medium stiff behavior with low to medium bearing capacity as well low California bearing ratio values. It is recommended to ascertain these soils behavior in terms of geotechnical parameters before taking up any construction activity.

Keywords: California bearing ratio, dynamic cone penetrometer test, field vane shear, unconfined compression stress.

Procedia PDF Downloads 177
346 The School Governing Council as the Impetus for Collaborative Education Governance: A Case Study of Two Benguet Municipalities in the Highlands of Northern Philippines

Authors: Maria Consuelo Doble

Abstract:

For decades, basic public education in the Philippines has been beleaguered by a governance scenario of multi-layered decision-making and the lack of collaboration between sectors in addressing issues on poor access to schools, high dropout rates, low survival rates, and poor student performance. These chronic problems persisted despite multiple efforts making it appear that the education system is incapable of reforming itself. In the mountainous rural towns of La Trinidad and Tuba, in the province of Benguet in Northern Philippines, collaborative education governance was catalyzed by the intervention of Synergeia Foundation, a coalition made up of individuals, institutions and organizations that aim to improve the quality of education in the Philippines. Its major thrust is to empower the major stakeholders at the community level to make education work by building the capacities of School Governing Councils (SGCs). Although mandated by the Department of Education in 2006, the SGCs in Philippine public elementary schools remained dysfunctional. After one year of capacity-building by Synergeia Foundation, some SGCs are already exhibiting active community-based multi-sectoral collaboration, while there are many that are not. With the myriad of factors hindering collaboration, Synergeia Foundation is now confronted with the pressing question: What are the factors that promote collaborative governance in the SGCs so that they can address the education-related issues that they are facing? Using Emerson’s (2011) framework on collaborative governance, this study analyzes the application of collaborative governance by highly-functioning SGCs in the public elementary schools of Tuba and La Trinidad. Findings of this action research indicate how the dynamics of collaboration composed of three interactive and iterative components – principled engagement, shared motivation and capacity for joint action – have resulted in meaningful short-term impact such as stakeholder engagement and decreased a number of dropouts. The change in the behavior of stakeholders is indicative of adaptation to a more collaborative approach in governing education in Benguet highland settings such as Tuba and La Trinidad.

Keywords: basic public education, Benguet highlands, collaborative governance, School Governing Council

Procedia PDF Downloads 278
345 Relations between the Internal Employment Conditions of International Organizations and the Characteristics of the National Civil Service

Authors: Renata Hrecska

Abstract:

This research seeks to fully examine the internal employment law of international organizations by comparing it with the characteristics of the national civil service. The aim of the research is to compare the legal system that has developed over many centuries and the relatively new internal staffing regulations to find out what solution schemes can help each other through mutual legal development in order to respond effectively to the social challenges of everyday life. Generally, the rules of civil service of any country or international entity have in common that they have, in their pragmatics inherently, the characteristic that makes them serving public interests. Though behind the common base there are many differences: there is the clear fragmentation of state regulation and the unity of organizational regulation. On the other hand, however, this difference disappears to some extent: the public service regulation of international organizations can be considered uniform until we examine it within, but not outside an organization. As soon as we compare the different organizations we may find many different solutions for staffing regulations. It is clear that the national civil service is a strong model for international organizations, but the question may be whether the staffing policy of international organizations can serve the national civil service as an example, too. In this respect, the easiest way to imagine a legislative environment would be to have a single comprehensive code, the general part of which is the Civil Service Act itself, and the specific part containing specific, necessarily differentiating rules for each layer of the civil service. Would it be advantageous to follow the footsteps of the leading international organizations, or is there any speciality in national level civil service that we cannot avoid during regulating processes? In addition to the above, the personal competencies of officials working in international organizations and public administrations also show a high degree of similarity, regardless of the type of employment. Thus, the whole public service system is characterized by the fundamental and special values that a person capable of holding a public office must be able to demonstrate, in some cases, even without special qualifications. It is also interesting how we can compare the two spheres of employment in light of the theory of Lawyer Louis Brandeis, a judge at the US Supreme Court, who formulated a complex theory of profession as distinguished from other occupations. From this point of view we can examine the continuous development of research and specialized knowledge at work; the community recognition and social status; that to what extent we can see a close-knit professional organization of altruistic philosophy; that how stability grows in the working conditions due to the stability of the profession; and that how the autonomy of the profession can prevail.

Keywords: civil service, comparative law, international organizations, regulatory systems

Procedia PDF Downloads 118
344 Elucidating Microstructural Evolution Mechanisms in Tungsten via Layerwise Rolling in Additive Manufacturing: An Integrated Simulation and Experimental Approach

Authors: Sadman Durlov, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Md Najmus Salehin, Nora Shayesteh Ameri

Abstract:

In the field of additive manufacturing, tungsten stands out for its exceptional resistance to high temperatures, making it an ideal candidate for use in extreme conditions. However, its inherent brittleness and vulnerability to thermal cracking pose significant challenges to its manufacturability. This study explores the microstructural evolution of tungsten processed through layer-wise rolling in laser powder bed fusion additive manufacturing, utilizing a comprehensive approach that combines advanced simulation techniques with empirical research. We aim to uncover the complex processes of plastic deformation and microstructural transformations, with a particular focus on the dynamics of grain size, boundary evolution, and phase distribution. Our methodology employs a combination of simulation and experimental data, allowing for a detailed comparison that elucidates the key mechanisms influencing microstructural alterations during the rolling process. This approach facilitates a deeper understanding of the material's behavior under additive manufacturing conditions, specifically in terms of deformation and recrystallization. The insights derived from this research not only deepen our theoretical knowledge but also provide actionable strategies for refining manufacturing parameters to improve the tungsten components' mechanical properties and functional performance. By integrating simulation with practical experimentation, this study significantly enhances the field of materials science, offering a robust framework for the development of durable materials suited for challenging operational environments. Our findings pave the way for optimizing additive manufacturing techniques and expanding the use of tungsten across various demanding sectors.

Keywords: additive manufacturing, layer wise rolling, refractory materials, in-situ microstructure modifications

Procedia PDF Downloads 46