Search results for: magnetic bearing
850 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data
Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani
Abstract:
Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry
Procedia PDF Downloads 221849 Influence of Silica Surface Hydrophilicity on Adsorbed Water and Isopropanol Studied by in-situ NMR
Authors: Hyung T. Kwak, Jun Gao, Yao An, Alfred Kleinhammes, Yue Wu
Abstract:
Surface wettability is a crucial factor in oil recovery. In oil industry, the rock wettability involves the interplay between water, oil, and solid surface. Therefore, studying the interplay between adsorptions of water and hydrocarbon molecules on solid surface would be very informative for understanding rock wettability. Here we use the in-situ Nuclear Magnetic Resonance (NMR) gas isotherm technique to study competitive adsorptions of water and isopropanol, an intermediate step from hydrocarbons. This in-situ NMR technique obtains information on thermodynamic properties such as the isotherm, molecular dynamics via spin relaxation measurements, and adsorption kinetics such as how fast the system can reach thermal equilibrium after changes of vapor pressures. Using surfaces of silica glass beads, which can be modified from hydrophilic to hydrophobic, we obtained information on the influence of surface hydrophilicity on the state of surface water via obtained thermodynamic and dynamic properties.Keywords: Wettability, NMR, Gas Isotherm, Hydrophilicity, adsorption
Procedia PDF Downloads 179848 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics
Authors: Animesh Pan, Geoffrey D. Bothun
Abstract:
With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting
Procedia PDF Downloads 128847 Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density
Authors: Suyong Kim
Abstract:
Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density.Keywords: motor, BLDC, spoke, ferrite
Procedia PDF Downloads 575846 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk
Authors: Paras Ram, Vikas Kumar
Abstract:
The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model
Procedia PDF Downloads 422845 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator
Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj
Abstract:
This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field
Procedia PDF Downloads 432844 Synthesis of 2-Aminoisocoumarinoselenazoles via Transition Metal-Free Alkylation and Ru(II)-Catalyzed [4+2] Alkyne Annulation
Authors: Sunil Kumar, Sandip Dhole, Deepak Salunke, Chung-ming Sun
Abstract:
Heterocycles bearing nitrogen, oxygen, and selenium are present in innumerable biologically active compounds. For instance, coumarin containing dicoumarol acts as naturally occurring anticoagulant. 2-Acylamido selenazole works as Store-Operated Calcium (SOC) channel regulator. Therefore, due to biologically significance of selenazole and coumarin and our quest to develop efficient methodologies for the synthesis of complex heterocycles, the trisubstituted angular isocoumarinoselenazole synthesis was proposed and achieved by starting from nitrobenzoic acid derivative, available commercially. Synthetic procedure involves three steps: i) the construction of 2-aminobenzoselenazoles, ii) their regioselective N-alkylation at position-2 and iii) alkyne insertion via Ru catalyzed C-H activation. Transition metal free synthesis of benzoselenazoles was successfully brought about by the addition/elimination reaction via intramolecular C-Se bond formation. In the next step, N-alkylation of selenazole furnished two regioisomers. Both the isomers exhibited different reactivity towards [4+2] alkyne annulation reaction. The fusion of α-pyrone ring on the benzo[1,3-d]selenazole skeleton was achieved via Ru(II)-catalyzed C-H activation and alkyne insertion. As evident from mechanism, the selenazole 'N' plays an important role for the experiential selectivity.Keywords: alkylation, alkyne insertion, coumarin, selenazole
Procedia PDF Downloads 127843 Magnetohydrodynamic (MHD) Effects on Micropolar-Newtonian Fluid Flow through a Composite Porous Channel
Authors: Satya Deo, Deepak Kumar Maurya
Abstract:
The present study investigates the ow of a Newtonian fluid sandwiched between two rectangular porous channels filled with micropolar fluid in the presence of a uniform magnetic field applied in a direction perpendicular to that of the fluid motion. The governing equations of micropolar fluid are modified by Nowacki's approach. For respective porous channels, expressions for velocity vectors, microrotations, stresses (shear and couple) are obtained analytically. Continuity of velocities, continuities of micro rotations and continuity of stresses are used at the porous interfaces; conditions of no-slip and no spin are applied at the impervious boundaries of the composite channel. Numerical values of flow rate, wall shear stresses and couple stresses at the porous interfaces are calculated for different values of various parameters. Graphs of the ow rate and fluid velocity are plotted and their behaviors are discussed.Keywords: couple stress, flow rate, Hartmann number, micropolar fluids
Procedia PDF Downloads 242842 Improving the Strength Characteristics of Soil Using Cotton Fibers
Authors: Bindhu Lal, Karnika Kochal
Abstract:
Clayey soil contains clay minerals with traces of metal oxides and organic matter, which exhibits properties like low drainage, high plasticity, and shrinkage. To overcome these issues, various soil reinforcement techniques are used to elevate the stiffness, water tightness, and bearing capacity of the soil. Such techniques include cementation, bituminization, freezing, fiber inclusion, geo-synthetics, nailing, etc. Reinforcement of soil with fibers has been a cost-effective solution to soil improvement problems. An experimental study was undertaken involving the inclusion of cotton waste fibers in clayey soil as reinforcement with different fiber contents (1%, 1.5%, 2%, and 2.5% by weight) and analyzing its effects on the unconfined compressive strength of the soil. Two categories of soil were taken, comprising of natural clay and clay mixed with 5% sodium bentonite by weight. The soil specimens were subjected to proctor compaction and unconfined compression tests. The validated outcome shows that fiber inclusion has a strikingly positive impact on the compressive strength and axial strain at failure of the soil. Based on the commendatory results procured, compressive strength was found to be directly proportional to the fiber content, with the effect being more pronounced at lower water content.Keywords: bentonite clay, clay, cotton fibers, unconfined compressive strength
Procedia PDF Downloads 180841 Magnetic Study on Ybₐ₂Cu₃O₇₋δ Nanoparticles Doped by Ferromagnetic Nanoparticles of Y₃Fe₅O₁₂
Authors: Samir Khene
Abstract:
Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBₐ₂Cu₃O₇₋δ and La₁.₈₅ Sr₀.₁₅CuO will be presented. It will be given special attention to the study of the YBₐ₂Cu₃O₇₋δ nanoparticles doped by ferromagnetic nanoparticles of Y₃Fe₅O₁₂. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBₐ₂Cu₃O7₇₋δ nanoparticles as a function of applied field H and temperature T will be studied.Keywords: superconductors, high critical temperature, vortices pinning, nanoparticles, ferromagnetism, coexistence
Procedia PDF Downloads 70840 Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model
Authors: M. J. Uddin, M. M. Rahman
Abstract:
Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited.Keywords: nanofluids, annulus, nonhomogeneous dynamic model, heat transfer
Procedia PDF Downloads 171839 Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating
Authors: DuckHwan Bae, YongSung Kwon, Min Young Shon, SanTaek Oh, GuNi Kim
Abstract:
The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size.Keywords: induction heating, thermoplastic polyurethane, nickel, composite, hysteresis loss, eddy current loss, curie temperature
Procedia PDF Downloads 362838 Experimental Studies of the Response of Single Piles Under Torsional and Vertical Combined Loads in Contaminated Sand
Authors: Ahmed Mohamed Nasr, Waseim Ragab Azzam, Nada Osama Ramadan
Abstract:
Contaminated soil can weaken the stability of buildings and infrastructure, posing serious risks to their structural integrity. Therefore, this study aims to understand how oil contamination affects the torsion behavior of model steel piles at different soil densities. This research is crucial for evaluating the structural integrity and stability of piles in oil-contaminated environments. Clean sand samples and heavy motor oil were mixed in amounts ranging from 0 to 6% of the soil's dry weight. The mixture was thoroughly mixed to ensure uniform distribution of the oil throughout the sandy soil for simulating the field conditions. In these investigations, the relative densities (Dr), pile slenderness ratio (Lp/Dp), oil content (O.C%), and contaminated sand layer thickness (LC) were all different. Also, the paper presents an analysis of piles that are loaded both vertically and torsionally. The findings demonstrated that the pre-applied torsion load led to a decrease in the vertical bearing ability of the pile. Also, at Dr = 80%, the ultimate vertical load under combined load at constant torsional load T = (1/3Tu, 2/3Tu, and Tu) in the cases of (Lc/Lp) = 0.5 and (Lp/Dp) =13.3 was found to be reduced by (1.48, 2.78, and 4.15%) less than piles under independent vertical load, respectively so it is crucial to consider the torsion load during pile design.Keywords: torsion-vertical load, oil-contaminated sand, twist angle, steel pile
Procedia PDF Downloads 73837 Catalytic Degradation of Tetracycline in Aqueous Solution by Magnetic Ore Pyrite Nanoparticles
Authors: Allah Bakhsh Javid, Ali Mashayekh-Salehi, Fatemeh Davardoost
Abstract:
This study presents the preparation, characterization and catalytic activity of a novel natural mineral-based catalyst for destructive adsorption of tetracycline (TTC) as water emerging compounds. Degradation potential of raw and calcined magnetite catalyst was evaluated at different experiments situations such as pH, catalyst dose, reaction time and pollutant concentration. Calcined magnetite attained greater catalytic potential than the raw ore in the degradation of tetracycline, around 69% versus 3% at reaction time of 30 min and TTC aqueous solution of 50 mg/L, respectively. Complete removal of TTC could be obtained using 2 g/L calcined nanoparticles at reaction time of 60 min. The removal of TTC increased with the increase in solution temperature. Accordingly, considering its abundance in nature together with its very high catalytic potential, calcined pyrite is a promising and reliable catalytic material for destructive decomposition for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC in water and wastewater.Keywords: catalytic degradation, tetracycline, pyrite, emerging pollutants
Procedia PDF Downloads 192836 Non-AIDS Related Multiple Brain and Orbital Lymphoma Mimicking Meningioma: A Case Report
Authors: Eghosa Morgan, Bourtarbouch Mahjouba, Heida El Ouahabi, Poluyi Edward, Diawarra Seylan
Abstract:
Non-AIDS lymphoma, a type of primary central nervous system (CNS) lymphoma is an uncommon aggressive infiltrative malignant tumour involving several sites in the central nervous system, such as the periventricular region and leptomeninges. In this article, the authors presented a 26-year old man with painless progressive right exophthalmos and scalp swelling with no symptoms and signs of intracranial hypertension and hyperthyroidism. Magnetic resonance imaging (MRI) done revealed isointense masses with brilliant homogenous enhancement on contrast administration resembling a meningioma, with a dura tail – like attachment as seen in meningioma. He had surgery for the right orbital tumour and histopathological diagnosis confirmed our suspicion of lymphoma (B type). Steroid was given in the post-operative period which led to significant regression of the tumours, hence its description as ‘vanishing tumour’. He is presently receiving methotrexate-based chemotherapy and subsequently planned for radiotherapy.Keywords: central nervous system (CNS), meningioma, non-aids lymphoma, orbital
Procedia PDF Downloads 91835 Wall Heat Flux Mapping in Liquid Rocket Combustion Chamber with Different Jet Impingement Angles
Authors: O. S. Pradeep, S. Vigneshwaran, K. Praveen Kumar, K. Jeyendran, V. R. Sanal Kumar
Abstract:
The influence of injector attitude on wall heat flux plays an important role in predicting the start-up transient and also determining the combustion chamber wall durability of liquid rockets. In this paper comprehensive numerical studies have been carried out on an idealized liquid rocket combustion chamber to examine the transient wall heat flux during its start-up transient at different injector attitude. Numerical simulations have been carried out with the help of a validated 2d axisymmetric, double precision, pressure-based, transient, species transport, SST k-omega model with laminar finite rate model for governing turbulent-chemistry interaction for four cases with different jet intersection angles, viz., 0o, 30o, 45o, and 60o. We concluded that the jets intersection angle is having a bearing on the time and location of the maximum wall-heat flux zone of the liquid rocket combustion chamber during the start-up transient. We also concluded that the wall heat flux mapping in liquid rocket combustion chamber during the start-up transient is a meaningful objective for the chamber wall material selection and the lucrative design optimization of the combustion chamber for improving the payload capability of the rocket.Keywords: combustion chamber, injector, liquid rocket, rocket engine wall heat flux
Procedia PDF Downloads 488834 Investigation of Mechanical Properties on natural fiber Reinforced Epoxy Composites
Authors: Gopi Kerekere Rangaraju, Madhu Puttegowda
Abstract:
Natural fibres composites include coir, jute, bagasse, cotton, bamboo, and hemp. Natural fibers come from plants. These fibers contain lingo cellulose in nature. Natural fibers are eco-friendly; lightweight, strong, renewable, cheap, and biodegradable. The natural fibers can be used to reinforce both thermosetting and thermoplastic matrices. Thermosetting resins such as epoxy, polyester, polyurethane, and phenolic are commonly used composites requiring higher performance applications. They provide sufficient mechanical properties, in particular, stiffness and strength at acceptably low-price levels. Recent advances in natural fibers development are genetic engineering. The composites science offers significant opportunities for improved materials from renewable resources with enhanced support for global sustainability. Natural fibers composites are attractive to industry because of their low density and ecological advantages over conventional composites. These composites are gaining importance due to their non-carcinogenic and bio-degradable nature. Natural fibers composites are a very costeffective material, especially in building and construction, packaging, automobile and railway coach interiors, and storage devices. These composites are potential candidates for the replacement of high- cost glass fibers for low load bearing applications. Natural fibers have the advantages of low density, low cost, and biodegradabilityKeywords: PMC, basalt, coir, carbon fibers
Procedia PDF Downloads 134833 Numerical Analysis and Influence of the Parameters on Slope Stability
Authors: Fahim Kahlouche, Alaoua Bouaicha, Sihem Chaîbeddra, Sid-Ali Rafa, Abdelhamid Benouali
Abstract:
A designing of a structure requires its realization on rough or sloping ground. Besides the problem of the stability of the landslide, the behavior of the foundations that are bearing the structure is influenced by the destabilizing effect of the ground’s slope. This article focuses on the analysis of the slope stability exposed to loading by introducing the different factors influencing the slope’s behavior on the one hand, and on the influence of this slope on the foundation’s behavior on the other hand. This study is about the elastoplastic modelization using FLAC 2D. This software is based on the finite difference method, which is one of the older methods of numeric resolution of differential equations system with initial and boundary conditions. It was developed for the geotechnical simulation calculation. The aim of this simulation is to demonstrate the notable effect of shear modulus « G », cohesion « C », inclination angle (edge) « β », and distance between the foundation and the head of the slope on the stability of the slope as well as the stability of the foundation. In our simulation, the slope is constituted by homogenous ground. The foundation is considered as rigid/hard; therefore, the loading is made by the application of the vertical strengths on the nodes which represent the contact between the foundation and the ground.Keywords: slope, shallow foundation, numeric method, FLAC 2D
Procedia PDF Downloads 290832 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation
Authors: O. Hinrichs, H. Franz, G. Reiter
Abstract:
Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing
Procedia PDF Downloads 339831 Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics
Authors: Camille Perréard, Yoann Ladner, Fanny D'Orlyé, Stéphanie Descroix, Vélan Taniga, Anne Varenne, Cédric Guyon, Michael. Tatoulian, Frédéric Kanoufi, Cyrine Slim, Sophie Griveau, Fethi Bedioui
Abstract:
The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare.Keywords: alkyne-azide click chemistry (CuAAC), electrochemical modification, microsystem, plasma bromination, surface functionalization, thermoplastic polymers
Procedia PDF Downloads 443830 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams
Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous
Abstract:
Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams
Procedia PDF Downloads 89829 The Impact of Ramadan Fasting on Blood Pressure: Observational Study and a Meta-Analysis
Authors: Rami Al Jafar, Paul Elliott, Konstantinos K. Tsilidis, Abbas Dehghan
Abstract:
Although Ramadan fasting is a ritual that is practiced every year by millions of Muslims, studies on Ramadan fasting are still scarce. To the best of our knowledge, none of the previous studies comprehensively explored the effect on the metabolic profile. In London Ramadan Fasting Study, blood samples were collected from 81 participants before and 10-14 days after Ramadan. Blood samples were analysed using nuclear magnetic resonance (NMR) spectroscopy which covers 249 metabolites. Mixed-effects models were used to analyse collected data and assess the effect of Ramadan fasting on the metabolic profile. Our observational study involved 85 individuals with a mean age of 45.2 years, and 53.1% of them were males. After Ramadan, forty metabolites were affected significantly by Ramadan fasting. Most of these metabolites were metabolites ratios (24), and the rest were three Glycolysis, three ketone bodies, nine Lipoprotein subclasses and one inflammation marker. This study suggests that Ramadan fasting is significantly associated with changes in the metabolic profile. However, the changes are assumed to be temporary, and the long-term effect of these changes is unknown.Keywords: metabolic profile, Ramadan fasting, metabolites, intermittent fasting
Procedia PDF Downloads 169828 Design of Single Point Mooring Buoy System by Parametric Analysis
Authors: Chul-Hee Jo, Do-Youb Kim, Seok-Jin Cho, Yu-Ho Rho
Abstract:
The Catenary Anchor Leg Mooring (CALM) Single Point Mooring (SPM) buoy system is the most popular and widely used type of offshore loading terminals. SPM buoy mooring systems have been deployed worldwide for a variety of applications, water depths and vessel sizes ranging from small production carriers to Very Large Crude Carriers (VLCCs). Because of safe and easy berthing and un-berthing operations, the SPM buoy mooring system is also preferred for offshore terminals. The SPM buoy consists of a buoy that is permanently moored to the seabed by means of multiple mooring lines. The buoy contains a bearing system that allows a part of it to rotate around the moored geostatic part. When moored to the rotating part of the buoy, a vessel is able to freely weathervane around the buoy. This study was verified the effects of design variables in order to design an SPM buoy mooring system through parametric analysis. The design variables have independent and nonlinear characteristics. Using parametric analysis, this research was found that the fairlead departure angle, wave height and period, chain diameter and line length effect to the mooring top tension, buoy excursion and line layback.Keywords: Single Point Mooring (SPM), Catenary Anchor Leg Mooring(CALM), design variables, parametric analysis, mooring system optimization
Procedia PDF Downloads 396827 An Attempt on Antimicrobial Studies of Lanthanide Schiff Base Complexes
Authors: Lekha Logu
Abstract:
The coordination behavior of the newly synthesized Schiff base ligands, 4-bromo-2-((p-tolyl imino) methyl) phenol obtained by condensing para-toluidine with 5-bromo salicylaldehyde and N-(3,4-dichloro benzylidene)-4-methylbenzenamine obtained by condensing Para-toluidine with 3,4-dichloro benzaldehyde in ethanolic medium has been explored in this current study. The synthesized Schiff’s base ligands were complexed with lanthanide nitrate salts yielding [LnL(NO3)2(H2O)2]NO3, (Ln=Pr, Sm). Elemental analysis, conductance measurement, and spectral techniques like Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-Vis) and Fourier Transform Infrared (FTIR) have been used to characterize Schiff’s base ligands and their lanthanide metal complexes. An attempt has been made on these complexes for their antimicrobial activity against the gram-positive and gram-negative bacterial species like Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and fungal species like Canadida and Aspergillus.Keywords: lanthanide complexes, Schiff's base, antimicrobial assay, synthesis, characterization
Procedia PDF Downloads 70826 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms
Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma
Abstract:
Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.Keywords: image fusion, pyramid, wavelets, principal component analysis
Procedia PDF Downloads 284825 Navigating the Complexity of Guillain-Barré Syndrome and Miller Fisher Syndrome Overlap Syndrome: A Pediatric Case Report
Authors: Kamal Chafiq, Youssef Hadzine, Adel Elmekkaoui, Othmane Benlenda, Houssam Rajad, Soukaina Wakrim, Hicham Nassik
Abstract:
Guillain-Barré syndrome/Miller Fishe syndrome (GBS/MFS) overlap syndrome is an extremely rare variant of Guillain-Barré syndrome (GBS) in which Miller Fisher syndrome (MFS) coexists with other characteristics of GBS, such as limb weakness, paresthesia, and facial paralysis. We report the clinical case of a 12-year-old patient, with no pathological history, who acutely presents with ophthalmoplegia, areflexia, facial diplegia, and swallowing and phonation disorders, followed by progressive, descending, and symmetrical paresis affecting first the upper limbs and then the lower limbs. An albuminocytological dissociation was found in the cerebrospinal fluid study. Magnetic resonance imaging of the spinal cord showed enhancement and thickening of the cauda equina roots. The patient was treated with immunoglobulins with a favorable clinical outcome.Keywords: Guillain-Barré syndrome, Miller Fisher syndrome, overlap syndrome, anti-GQ1b antibodies
Procedia PDF Downloads 79824 Synthesis and Electromagnetic Wave Absorbing Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe₁₂O₁₉ Nanorod Composite
Authors: Tingkai Zhao, Jingtian Hu, Xiarong Peng, Wenbo Yang, Tiehu Li
Abstract:
Homogeneous amorphous carbon nanotube (ACNT) networks have been synthesized using floating catalyst chemical vapor deposition method on a three-dimensional (3D) graphene aerogel (GA)/BaFe₁₂O₁₉ nanorod (BNR) composite which prepared by a self-propagating combustion process. The as-synthesized ACNT/GA/BNR composite which has 3D network structures could be directly used as a good absorber in the electromagnetic wave absorbent materials. The experimental results indicated that the maximum absorbing peak of ACNT/GA/BNR composite with a thickness of 2 mm was -18.35 dB at 10.64 GHz in the frequency range of 2-18 GHz. The bandwidth of the reflectivity below -10 dB is 3.32 GHz. The 3D graphene aerogel structures which composed of dense interlined tubes and amorphous structure of ACNTs bearing quantities of dihedral angles could consume the incident waves through multiple reflection and scattering inside the 3D web structures. The interlinked ACNTs have both the virtues of amorphous CNTs (multiple reflections inside the wall) and crystalline CNTs (high conductivity), consuming the electromagnetic wave as resistance heat. ACNT/GA/BNR composite has a good electromagnetic wave absorbing performance.Keywords: amorphous carbon nanotubes, graphene aerogel, barium ferrite nanorod, electromagnetic wave absorption
Procedia PDF Downloads 282823 Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades
Authors: Majid Mokhtari, Masoud Bahrami Alamdarlo, Babak Nazari, Hossein Zakerinya, Mehdi Salehi
Abstract:
In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades.Keywords: hot roller, wear, behavior, microstructure
Procedia PDF Downloads 243822 Comparison Study between Deep Mixed Columns and Encased Sand Column for Soft Clay Soil in Egypt
Authors: Walid El Kamash
Abstract:
Sand columns (or granular piles) can be employed as soil strengthening for flexible constructions such as road embankments, oil storage tanks in addition to multistory structures. The challenge of embedding the sand columns in soft soil is that the surrounding soft soil cannot avail the enough confinement stress in order to keep the form of the sand column. Therefore, the sand columns which were installed in such soil will lose their ability to perform needed load-bearing capacity. The encasement, besides increasing the strength and stiffness of the sand column, prevents the lateral squeezing of sands when the column is installed even in extremely soft soils, thus enabling quicker and more economical installation. This paper investigates the improvement in load capacity of the sand column by encasement through a comprehensive parametric study using the 3-D finite difference analysis for the soft clay of soil in Egypt. Moreover, the study was extended to include a comparison study between encased sand column and Deep Mixed columns (DM). The study showed that confining the sand by geosynthetic resulted in an increment of shear strength. That result paid the attention to use encased sand stone rather than deep mixed columns due to relative high permeability of the first material.Keywords: encased sand column, Deep mixed column, numerical analysis, improving soft soil
Procedia PDF Downloads 380821 Jalovchat Gabbroic Intrusive of the Caucasus: Petrological Study, Geochemical Peculiarities and Formation Conditions
Authors: Giorgi Chichinadze, David Shengelia, Tamara Tsutsunava, Nikoloz Maisuradze, Giorgi Beridze
Abstract:
The Jalovchat intrusive is built up of hornblende gabbros, gabbro-norites and norites. Within the intrusive hornblende-bearing gabbro-pegmatites are widespread. That is a coarse-grained rock with gigantic hornblende crystals. By its unusual composition, the Jalovchat intrusive has no analogue in the Caucasus. However, petrologically and geochemically, the intrusive rocks were studied insufficiently. For comprehensive investigations, the authors applied appropriate methodologies: Microscopic study of thin sections, petro- and geochemical analyses of the samples and also different petrogenic, rare and rare earth elements diagrams and spidergrams. Analytical study established that the Jalovchat intrusive by its composition corresponds mainly to the mid-ocean ridge basalts and according to geodynamic type belongs to the subduction type. In general, it is an anomalous phenomenon, as in the rocks of such composition crystallization of hornblende and especially of its gigantic crystals is atypical. The authors believe that the water-rich magma reservoir, which was necessary for the crystallization of gigantic hornblende crystals, appeared as a result of melting of water-rich mid-ocean ridge basaltic rocks during the subduction process in Bajocian time.Keywords: gabbro-pegmatite, intrusive, petrogenesis, petrogeochemistry, the Caucasus
Procedia PDF Downloads 210