Search results for: Sunil Kumar Lal
345 Hydrological Analysis for Urban Water Management
Authors: Ranjit Kumar Sahu, Ramakar Jha
Abstract:
Urban Water Management is the practice of managing freshwater, waste water, and storm water as components of a basin-wide management plan. It builds on existing water supply and sanitation considerations within an urban settlement by incorporating urban water management within the scope of the entire river basin. The pervasive problems generated by urban development have prompted, in the present work, to study the spatial extent of urbanization in Golden Triangle of Odisha connecting the cities Bhubaneswar (20.2700° N, 85.8400° E), Puri (19.8106° N, 85.8314° E) and Konark (19.9000° N, 86.1200° E)., and patterns of periodic changes in urban development (systematic/random) in order to develop future plans for (i) urbanization promotion areas, and (ii) urbanization control areas. Remote Sensing, using USGS (U.S. Geological Survey) Landsat8 maps, supervised classification of the Urban Sprawl has been done for during 1980 - 2014, specifically after 2000. This Work presents the following: (i) Time series analysis of Hydrological data (ground water and rainfall), (ii) Application of SWMM (Storm Water Management Model) and other soft computing techniques for Urban Water Management, and (iii) Uncertainty analysis of model parameters (Urban Sprawl and correlation analysis). The outcome of the study shows drastic growth results in urbanization and depletion of ground water levels in the area that has been discussed briefly. Other relative outcomes like declining trend of rainfall and rise of sand mining in local vicinity has been also discussed. Research on this kind of work will (i) improve water supply and consumption efficiency (ii) Upgrade drinking water quality and waste water treatment (iii) Increase economic efficiency of services to sustain operations and investments for water, waste water, and storm water management, and (iv) engage communities to reflect their needs and knowledge for water management.Keywords: Storm Water Management Model (SWMM), uncertainty analysis, urban sprawl, land use change
Procedia PDF Downloads 428344 Corporate Social Responsibility (CSR) and Energy Efficiency: Empirical Evidence from the Manufacturing Sector of India
Authors: Baikunthanath Sahoo, Santosh Kumar Sahu, Krishna Malakar
Abstract:
With the essence of global environmental sustainability and green business management, the wind of business research moved towards Corporate Social Responsibility. In addition to international and national treaties, businesses have also started realising environmental protection and energy efficiency through CSR as part of business strategy in response to climate change. Considering the ambitious emission reduction target and rapid economic development of India, this study is an attempt to explore the effect of CSR on the energy efficiency management of manufacturing firms in India. By using firm-level data, the panel fixed effect model shows that the CSR dummy variable is negatively influencing the energy intensity or technically, they are energy efficient. The result demonstrates that in the presence of CSR, all the production economic variables are significant. The result also shows that doing environmental expenditure does not improve energy efficiency might be because very few firms are motivated to do such expenditure and also not common to all sectors. The interactive effect model result conforms that without considering CSR dummy as an intervening variable only Manufacturers of Chemical and Chemical products, Manufacturers of Pharmaceutical, medical chemical, and botanical products firms energy intensity low but after considering CSR in their business practices all six sub-sector firms become energy efficient. The empirical result also validate that firms are continuously engaged in CSR activities they are highly energy efficient. It is an important motivational factor for firms to become economically and environmentally sustainable in the corporate world. This analysis would help business practitioners to know how to manage today’s profitability and tomorrow’s sustainability to achieve a comparative advantage in the emerging market economy. The paper concludes that reducing energy consumption as part of their social responsibility to care for the environment, will need collaborative efforts of business society and policy bodies.Keywords: CSR, Energy Efficiency, Indian manufacturing Sector, Business strategy
Procedia PDF Downloads 88343 Wet Processing of Algae for Protein and Carbohydrate Recovery as Co-Product of Algal Oil
Authors: Sahil Kumar, Rajaram Ghadge, Ramesh Bhujade
Abstract:
Historically, lipid extraction from dried algal biomass remained a focus area of the algal research. It has been realized over the past few years that the lipid-centric approach and conversion technologies that require dry algal biomass have several challenges. Algal culture in cultivation systems contains more than 99% water, with algal concentrations of just a few hundred milligrams per liter ( < 0.05 wt%), which makes harvesting and drying energy intensive. Drying the algal biomass followed by extraction also entails the loss of water and nutrients. In view of these challenges, focus has shifted toward developing processes that will enable oil production from wet algal biomass without drying. Hydrothermal liquefaction (HTL), an emerging technology, is a thermo-chemical conversion process that converts wet biomass to oil and gas using water as a solvent at high temperature and high pressure. HTL processes wet algal slurry containing more than 80% water and significantly reduces the adverse cost impact owing to drying the algal biomass. HTL, being inherently feedstock agnostic, i.e., can convert carbohydrates and proteins also to fuels and recovers water and nutrients. It is most effective with low-lipid (10--30%) algal biomass, and bio-crude yield is two to four times higher than the lipid content in the feedstock. In the early 2010s, research remained focused on increasing the oil yield by optimizing the process conditions of HTL. However, various techno-economic studies showed that simply converting algal biomass to only oil does not make economic sense, particularly in view of low crude oil prices. Making the best use of every component of algae is a key for economic viability of algal to oil process. On investigation of HTL reactions at the molecular level, it has been observed that sequential HTL has the potential to recover value-added products along with biocrude and improve the overall economics of the process. This potential of sequential HTL makes it a most promising technology for converting wet waste to wealth. In this presentation, we will share our experience on the techno-economic and engineering aspects of sequential HTL for conversion of algal biomass to algal bio-oil and co-products.Keywords: algae, biomass, lipid, protein
Procedia PDF Downloads 219342 Development of Pre-Mitigation Measures and Its Impact on Life-Cycle Cost of Facilities: Indian Scenario
Authors: Mahima Shrivastava, Soumya Kar, B. Swetha Malika, Lalu Saheb, M. Muthu Kumar, P. V. Ponambala Moorthi
Abstract:
Natural hazards and manmade destruction causes both economic and societal losses. Generalized pre-mitigation strategies introduced and adopted for prevention of disaster all over the world are capable of augmenting the resiliency and optimizing the life-cycle cost of facilities. In countries like India where varied topographical feature exists requires location specific mitigation measures and strategies to be followed for better enhancement by event-driven and code-driven approaches. Present state of vindication measures followed and adopted, lags dominance in accomplishing the required development. In addition, serious concern and debate over climate change plays a vital role in enhancing the need and requirement for the development of time bound adaptive mitigation measures. For the development of long-term sustainable policies incorporation of future climatic variation is inevitable. This will further assist in assessing the impact brought about by the climate change on life-cycle cost of facilities. This paper develops more definite region specific and time bound pre-mitigation measures, by reviewing the present state of mitigation measures in India and all over the world for improving life-cycle cost of facilities. For the development of region specific adoptive measures, Indian regions were divided based on multiple-calamity prone regions and geo-referencing tools were used to incorporate the effect of climate changes on life-cycle cost assessment. This study puts forward significant effort in establishing sustainable policies and helps decision makers in planning for pre-mitigation measures for different regions. It will further contribute towards evaluating the life cycle cost of facilities by adopting the developed measures.Keywords: climate change, geo-referencing tools, life-cycle cost, multiple-calamity prone regions, pre-mitigation strategies, sustainable policies
Procedia PDF Downloads 382341 Effect of Madecassoside on the Antioxidant Status of Streptozotocin-Nicotinamide Induced Diabetes in Sprague-Dawley Rats
Authors: C. Mayuren, C. K. Paul Wang, K. Purushotham, C. Dinesh Kumar
Abstract:
Diabetes Mellitus (DM) is one of the most common non-communicable diseases globally. Although significant advances have led to better understanding of the condition and the development of effective therapies and preventive strategies, the pathway to cure remains elusive and DM prevails as a serious medical challenge in the 21st century. Oxidative stress has been suggested to contribute to the progression and pathophysiological conditions of diabetes. Madecassoside (MA) a major pentacyclic triterpenoid, has been demonstrated to possess various biological activities. However, no attempt has been made to study the antioxidant activity in diabetic rats. Therefore, the present study is aimed to evaluate the antioxidant effect of MA on streptozotocin-nicotinamide induced type-2 diabetes in Sprague-Dawley rats. The study protocol was approved by the institutional ethical committee prior to the conduct of research. Adult male Sprague-Dawley rats weighing 250-300 g were used in the study. The animals were rendered diabetic with a single intraperitoneal dose of streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg). The diabetic animals after a stabilisation period of 14 days received various treatments (Madecassoside 50 mg/kg; Glimepiride 2.5 mg/kg) suspended in 0.5% carboxymethyl cellulose orally, for a period of 28 days. The animals fasted overnight after the last treatment were sacrificed and the pancreas, liver and kidneys were isolated. The weighted quantity of the samples of various treatments were homogenised in ice-cold condition and were subjected to lipid peroxidation, catalase and superoxide dismutase assay. The data’s obtained were subjected to statistical analysis. Diabetic rats showed significant increase in lipid peroxidation and decrease in enzymatic antioxidant levels. All the treated groups had significantly higher SOD, CAT and reduced LPO activity in the pancreas, liver and kidney. Results suggest madecassoside to have potential antioxidant effect against the diabetic model. However further investigations are necessary to study the mechanism at the cellular level.Keywords: antioxidant, diabetes, madecassoside, nicotinamide, streptozotocin
Procedia PDF Downloads 380340 Formulation and Evaluation of Solid Dispersion of an Anti-Epileptic Drug Carbamazepine
Authors: Sharmin Akhter, M. Salahuddin, Sukalyan Kumar Kundu, Mohammad Fahim Kadir
Abstract:
Relatively insoluble candidate drug like carbamazepine (CBZ) often exhibit incomplete or erratic absorption; and hence wide consideration is given to improve aqueous solubility of such compound. Solid dispersions were formulated with an aim of improving aqueous solubility, oral bioavailability and the rate of dissolution of Carbamazepine using different hydrophyllic polymer like Polyethylene Glycol (PEG) 6000, Polyethylene Glycol (PEG) 4000, kollidon 30, HPMC 6 cps, poloxamer 407 and povidone k 30. Solid dispersions were prepared with different drug to polymer weight ratio by the solvent evaporation method where methanol was used as solvent. Drug-polymer physical mixtures were also prepared to compare the rate of dissolution. Effects of different polymer were studied for solid dispersion formulation as well as physical mixtures. These formulations were characterized in the solid state by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM). Solid state characterization indicated CBZ was present as fine particles and entrapped in carrier matrix of PEG 6000 and PVP K30 solid dispersions. Fourier Transform Infrared (FTIR) spectroscopic studies showed the stability of CBZ and absence of well-defined drug-polymer interactions. In contrast to the very slow dissolution rate of pure CBZ, dispersions of drug in polymers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersion formulations containing PEG 6000 and Povidone K 30 showed maximum drug release within one hour at the ratio of 1:1:1. Even physical mixtures of CBZ prepared with both carriers also showed better dissolution profiles than those of pure CBZ. In conclusions, solid dispersions could be a promising delivery of CBZ with improved oral bioavailability and immediate release profiles.Keywords: carbamazepine, FTIR, kollidon 30, HPMC 6 CPS, PEG 6000, PEG 4000, poloxamer 407, water solubility, povidone k 30, SEM, solid dispersion
Procedia PDF Downloads 302339 Antimicrobial Action and Its Underlying Mechanism by Methanolic Seed Extract of Syzygium cumini on Bacillus subtilis
Authors: Alok Kumar Yadav, Saurabh Saraswat, Preeti Sirohi, Manjoo Rani, Sameer Srivastava, Manish Pratap Singh, Nand K. Singh
Abstract:
The development of antibiotic resistance in bacteria is increasing at an alarming rate, and this is considered as one of the most serious threats in the history of medicine, and an alternative solution should be derived so as to tackle this problem. In many countries, people use the medicinal plants for the treatment of various diseases as these are cheaper, easily available and least toxic. Syzygium cumini is used for the treatment of various kinds of diseases but their mechanism of action is not reported. The antimicrobial activity of Syzygium cumini was tested by the well diffusion assay and zone of inhibition was reported to be 20.06 mm as compared to control with MIC of 0.3 mg/ml. Genomic DNA fragmentation of Bacillus subtilis revealed apoptosis and FE-SEM indicate cell wall cracking on several intervals of time. Propidium iodide staining results showed that few bacterial cells were stained in the control and population of stained cells increase after exposing them for various period of time. Flow cytometric kinetic data analysis on the membrane permeabilization in bacterial cell showed the significant contribution of antimicrobial potential of the seed extract on antimicrobial-induced permeabilization. Two components of Syzygium cumini methanolic seed extract was found to be quite active against four enzymes like PDB ID- 1W5D, 4OX3, 3MFD and 5E2F which have a very crucial role in membrane synthesis in Bacillus subtilis by in silico analysis. Through in silico analysis, lupeol showed highest binding energy for macromolecule 1W5D and 4OX3 whereas stigmasterol showed the highest binding energy for macromolecule 3MFD and 5E2F respectively. It showed that methanolic seed extract of Syzygium cumini can be used for the inhibition of foodborne infections caused by Bacillus subtilis and also as an alternative of prevalent antibiotics.Keywords: antibiotics, Bacillus subtilis, inhibition, Syzygium cumini
Procedia PDF Downloads 204338 Human Factors Interventions for Risk and Reliability Management of Defence Systems
Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan
Abstract:
Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.Keywords: defence systems, reliability, risk, safety
Procedia PDF Downloads 140337 Pegylated Liposomes of Trans Resveratrol, an Anticancer Agent, for Enhancing Therapeutic Efficacy and Long Circulation
Authors: M. R. Vijayakumar, Sanjay Kumar Singh, Lakshmi, Hithesh Dewangan, Sanjay Singh
Abstract:
Trans resveratrol (RES) is a natural molecule proved for cancer preventive and therapeutic activities devoid of any potential side effects. However, the therapeutic application of RES in disease management is limited because of its rapid elimination from blood circulation thereby low biological half life in mammals. Therefore, the main objective of this study is to enhance the circulation as well as therapeutic efficacy using PEGylated liposomes. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is applied as steric surface decorating agent to prepare RES liposomes by thin film hydration method. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Encapsulation efficiency and invitro drug release were determined by dialysis bag method. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies were performed in sprague dawley rats. The prepared liposomes were found to be spherical in shape. Particle size and zeta potential of prepared formulations varied from 64.5±3.16 to 262.3±7.45 nm and -2.1 to 1.76 mV, respectively. DSC study revealed absence of potential interaction. XRD study revealed presence of amorphous form in liposomes. Entrapment efficiency was found to be 87.45±2.14 % and the drug release was found to be controlled up to 24 hours. Minimized MEC in MTT assay and tremendous enhancement in circulation time of RES PEGylated liposomes than its pristine form revealed that the stearic stabilized PEGylated liposomes can be an alternative tool to commercialize this molecule for chemopreventive and therapeutic applications in cancer.Keywords: trans resveratrol, cancer nanotechnology, long circulating liposomes, bioavailability enhancement, liposomes for cancer therapy, PEGylated liposomes
Procedia PDF Downloads 593336 The Impact of Insider Trading on Open Market Share Repurchase: A Study in Indian Context
Authors: Sarthak Kumar Jena, Chandra Sekhar Mishra, Prabina Rajib
Abstract:
Purpose: This paper aims to derive undervaluation signal from the insiders trading of Indian companies where the ownership is complex and concentrated, investors protection is weak, and the insider rules and regulations are not stringent like developed country. This study examines the relationship between insider trading with short term and long term abnormal return. The study also examines the relationship between insider trading and the actual share repurchase by the firm. Methodology: A sample of 78 companies over the period 2008-2013 are analyzed in the study due to not availability of insider data in Indian context. For preliminary analysis T-test and Wilcoxon rank sum test is used to find the difference between the insider trading before and after the share repurchase announcement. Tobit model is used to find out whether insider trading influence shares repurchase decisions or not. Return on the basis of market model and buy hold are calculated in the previous year and the following year of share repurchase announcement. Findings: The paper finds that insider trading around share repurchase is more than control firms and there is positive and significant difference in insider buying between the previous year of share buyback announcement and the following year of buyback announcement. Insider buying before share repurchase announcement has a positive influence on share repurchase decisions. We find insider buying has a positive and significant relationship with announcement return, whereas insider selling has a negative significant relationship with announcement return. Actual share repurchase and program completion also depend on insider trading before share repurchase. Research limitation: The study is constrained by the small sample size, so the results should be viewed by keeping this limitation in mind. Originality: The paper is to our best knowledge the first study based on Indian context to extend the insider trading literature to share repurchase event and examine insider trading to find out undervaluation signal associated with insider buying.Keywords: insider trading, buyback, open market share repurchase, signalling
Procedia PDF Downloads 202335 Nanomaterials Based Biosensing Chip for Non-Invasive Detection of Oral Cancer
Authors: Suveen Kumar
Abstract:
Oral cancer (OC) is the sixth most death causing cancer in world which includes tumour of lips, floor of the mouth, tongue, palate, cheeks, sinuses, throat, etc. Conventionally, the techniques used for OC detection are toluidine blue staining, biopsy, liquid-based cytology, visual attachments, etc., however these are limited by their highly invasive nature, low sensitivity, time consumption, sophisticated instrument handling, sample processing and high cost. Therefore, we developed biosensing chips for non-invasive detection of OC via CYFRA-21-1 biomarker. CYFRA-21-1 (molecular weight: 40 kDa) is secreted in saliva of OC patients which is a non-invasive biological fluid with a cut-off value of 3.8 ng mL-1, above which the subjects will be suffering from oral cancer. Therefore, in first work, 3-aminopropyl triethoxy silane (APTES) functionalized zirconia (ZrO2) nanoparticles (APTES/nZrO2) were used to successfully detect CYFRA-21-1 in a linear detection range (LDR) of 2-16 ng mL-1 with sensitivity of 2.2 µA mL ng-1. Successively, APTES/nZrO2-RGO was employed to prevent agglomeration of ZrO2 by providing high surface area reduced graphene oxide (RGO) support and much wider LDR (2-22 ng mL-1) was obtained with remarkable limit of detection (LOD) as 0.12 ng mL-1. Further, APTES/nY2O3/ITO platform was used for oral cancer bioseneor development. The developed biosensor (BSA/anti-CYFRA-21-1/APTES/nY2O3/ITO) have wider LDR (0.01-50 ng mL-1) with remarkable limit of detection (LOD) as 0.01 ng mL-1. To improve the sensitivity of the biosensing platform, nanocomposite of yattria stabilized nanostructured zirconia-reduced graphene oxide (nYZR) based biosensor has been developed. The developed biosensing chip having ability to detect CYFRA-21-1 biomolecules in the range of 0.01-50 ng mL-1, LOD of 7.2 pg mL-1 with sensitivity of 200 µA mL ng-1. Further, the applicability of the fabricated biosensing chips were also checked through real sample (saliva) analysis of OC patients and the obtained results showed good correlation with the standard protein detection enzyme linked immunosorbent assay (ELISA) technique.Keywords: non-invasive, oral cancer, nanomaterials, biosensor, biochip
Procedia PDF Downloads 133334 Effect of Dynamic Loading by Cyclic Triaxial Tests on Sand Stabilized with Cement
Authors: Priyanka Devi, Mohammad Muzzaffar Khan, G. Kalyan Kumar
Abstract:
Liquefaction of saturated soils due to dynamic loading is an important and interesting area in the field of geotechnical earthquake engineering. When the soil liquefies, the structures built on it develops uneven settlements thereby producing cracks in the structure and weakening the foundation. The 1964 Alaskan Good Friday earthquake, the 1989 San Francisco earthquake and 2011 Tōhoku earthquake are some of the examples of liquefaction occurred due to an earthquake. To mitigate the effect of liquefaction, several methods such use of stone columns, increasing the vertical stress, compaction and removal of liquefiable soil are practiced. Grouting is one of those methods used to increase the strength of the foundation and develop resistance to liquefaction of soil without affecting the superstructure. In the present study, an attempt has been made to investigate the undrained cyclic behavior of locally available soil, stabilized by cement to mitigate the seismically induced soil liquefaction. The specimens of 75mm diameter and 150mm height were reconstituted in the laboratory using water sedimentation technique. A series of strain-controlled cyclic triaxial tests were performed on saturated soil samples followed by consolidation. The effects of amplitude, confining pressure and relative density on the dynamic behavior of sand was studied for soil samples with varying cement content. The results obtained from the present study on loose specimens and medium dense specimens indicate that (i) the higher the relative density, the more will be the liquefaction resistance, (ii) with increase of effective confining pressure, a decrease in developing of excess pore water pressure during cyclic loading was observed and (iii) sand specimens treated with cement showed reduced excess pore pressures and increased liquefaction resistance suggesting it as one of the mitigation methods.Keywords: cyclic triaxial test, liquefaction, soil-cement stabilization, pore pressure ratio
Procedia PDF Downloads 298333 Identification and Classification of Medicinal Plants of Indian Himalayan Region Using Hyperspectral Remote Sensing and Machine Learning Techniques
Authors: Kishor Chandra Kandpal, Amit Kumar
Abstract:
The Indian Himalaya region harbours approximately 1748 plants of medicinal importance, and as per International Union for Conservation of Nature (IUCN), the 112 plant species among these are threatened and endangered. To ease the pressure on these plants, the government of India is encouraging its in-situ cultivation. The Saussurea costus, Valeriana jatamansi, and Picrorhiza kurroa have also been prioritized for large scale cultivation owing to their market demand, conservation value and medicinal properties. These species are found from 1000 m to 4000 m elevation ranges in the Indian Himalaya. Identification of these plants in the field requires taxonomic skills, which is one of the major bottleneck in the conservation and management of these plants. In recent years, Hyperspectral remote sensing techniques have been precisely used for the discrimination of plant species with the help of their unique spectral signatures. In this background, a spectral library of the above 03 medicinal plants was prepared by collecting the spectral data using a handheld spectroradiometer (325 to 1075 nm) from farmer’s fields of Himachal Pradesh and Uttarakhand states of Indian Himalaya. The Random forest (RF) model was implied on the spectral data for the classification of the medicinal plants. The 80:20 standard split ratio was followed for training and validation of the RF model, which resulted in training accuracy of 84.39 % (kappa coefficient = 0.72) and testing accuracy of 85.29 % (kappa coefficient = 0.77). This RF classifier has identified green (555 to 598 nm), red (605 nm), and near-infrared (725 to 840 nm) wavelength regions suitable for the discrimination of these species. The findings of this study have provided a technique for rapid and onsite identification of the above medicinal plants in the field. This will also be a key input for the classification of hyperspectral remote sensing images for mapping of these species in farmer’s field on a regional scale. This is a pioneer study in the Indian Himalaya region for medicinal plants in which the applicability of hyperspectral remote sensing has been explored.Keywords: himalaya, hyperspectral remote sensing, machine learning; medicinal plants, random forests
Procedia PDF Downloads 207332 Postharvest Studies Beyond Fresh Market Eating Quality: Phytochemical Changes in Peach Fruit During Ripening and Advanced Senescence
Authors: Mukesh Singh Mer, Brij Lal Attri, Raj Narayan, Anil Kumar
Abstract:
Postharvest studies were conducted under the concept that fruit do not qualify for the fresh market may be used as a source of bioactive compounds. One peach (Prunus persica cvs Red June) were evaluated for their photochemical content and antioxidant capacity during the ripening and over ripening periods (advanced senescence) for 12 and 15 d, respectively. Firmness decreased rapidly during this period from an initial pre –ripe stage of 5.85 lb/in2 for peach until the fruit reached the fully ripe stage of lb/in2. In this study we evaluate the varietal performance in respect of the quality beyond fresh market eating and nutrition levels. The varieties are (T-1 F-16-23), (T-2 Florda king), (T-3 Nectarine), (T-4 Red June). The result pertaining are there the highest fruit length (68.50 mm), fruit breadth (71.38 mm), fruit weight (186.11 g) found in T4 Red June and fruit firmness (8.74 lb/in 2) found in T3-Nectarine. The acidity (1.66 %), ascorbic acid (440 mg/100 g), reducing sugar (19.77 %) and total sugar (51.73 %) found in T4- Red June, T-2 Florda King, T-3 Nectarine at harvesting time but decrease in fruit length ( 60.81 mm), fruit breadth (51.84 mm), fruit weight (143.03 g) found in T4 Red June and fruit firmness (6.29 lb/in 2) found in T3-Nectarine. The acidity (0.80 %), ascorbic acid (329.50 mg/100 g), reducing sugar (34.03 %) and total sugar (26.97 %) found in T1- F-16-23, T-2 Florda King, T-1 F-16-23 and T-3 Nectarine after 15 days in freeze conditions when will have been since reached beyond market. The study reveals that the size and yield good in Red June and the nutritional value higher in Florda King and Nectarine peach. Fruit firmness remained unchanged afterwards. In addition, total soluble solids in peach were basically similar during the ripening and over ripening periods. Further research on secondary metabolism regulation during ripening and advanced senescence is needed to obtain fruit as enriched dietary sources of bioactive compounds or for its use in alternative high value health markets including dietary supplements, functional foods cosmetics and pharmaceuticals.Keywords: metabolism, acidity, ascorbic acid, pharmaceuticals
Procedia PDF Downloads 567331 Redox-Mediated Supramolecular Radical Gel
Authors: Sonam Chorol, Sharvan Kumar, Pritam Mukhopadhyay
Abstract:
In biology, supramolecular systems require the use of chemical fuels to stay in sustained nonequilibrium steady states termed dissipative self-assembly in contrast to synthetic self-assembly. Biomimicking these natural dynamic systems, some studies have demonstrated artificial self-assembly under nonequilibrium utilizing various forms of energies (fuel) such as chemical, redox, and pH. Naphthalene diimides (NDIs) are well-known organic molecules in supramolecular architectures with high electron affinity and have applications in controlled electron transfer (ET) reactions, etc. Herein, we report the endergonic ET from tetraphenylborate to highly electron-deficient phosphonium NDI²+ dication to generate NDI•+ radical. The formation of radicals was confirmed by UV-Vis-NIR absorption spectroscopy. Electron-donor and electron-acceptor energy levels were calculated from experimental electrochemistry and theoretical DFT analysis. The HOMO of the electron donor locates below the LUMO of the electro-acceptor. This indicates that electron transfer is endergonic (ΔE°ET = negative). The endergonic ET from NaBPh₄ to NDI²+ dication was achieved thermodynamically by the formation of coupled biphenyl product confirmed by GC-MS analysis. NDI molecule bearing octyl phosphonium at the core and H-bond forming imide moieties at the axial position forms a gel. The rheological properties of purified radical ion NDI⦁+ gels were evaluated. The atomic force microscopy studies reveal the formation of large branching-type networks with a maximum height of 70-80 nm. The endergonic ET from NaBPh₄ to NDI²+ dication was used to design the assembly and disassembly redox reaction cycle using reducing (NaBPh₄) and oxidizing agents (Br₂) as chemical fuels. A part of NaBPh₄ is used to drive assembly, while a fraction of the NaBPh₄ is dissipated by forming a useful product. The system goes back to the disassembled NDI²+ dication state with the addition of Br₂. We think bioinspired dissipative self-assembly is the best approach to developing future lifelike materials with autonomous behavior.Keywords: Ionic-gel, redox-cycle, self-assembly, useful product
Procedia PDF Downloads 88330 Zingiberaceous Plants as a Source of Anti-Bacterial Activity: Targeting Bacterial Cell Division Protein (FtsZ)
Authors: S. Reshma Reghu, Shiburaj Sugathan, T. G. Nandu, K. B. Ramesh Kumar, Mathew Dan
Abstract:
Bacterial diseases are considered to be one of the most prevalent health hazards in the developing world and many bacteria are becoming resistant to existing antibiotics making the treatment ineffective. Thus, it is necessary to find novel targets and develop new antibacterial drugs with a novel mechanism of action. The process of bacterial cell division is a novel and attractive target for new antibacterial drug discovery. FtsZ, a homolog of eukaryotic tubulin, is the major protein of the bacterial cell division machinery and is considered as an important antibacterial drug target. Zingiberaceae, the Ginger family consists of aromatic herbs with creeping rhizomes. Many of these plants have antimicrobial properties.This study aimed to determine the anti-bacterial activity of selected Zingiberaceous plants by targeting bacterial cell division protein, FtsZ. Essential oils and methanol extracts of Amomum ghaticum, Alpinia galanga, Kaempferia galanga, K. rotunda, and Zingiber officinale were tested to find its antibacterial efficiency using disc diffusion method against authentic bacterial strains obtained from MTCC (India). Essential oil isolated from A.galanga and Z.officinale were further assayed for FtsZ inhibition assay following non-radioactive malachite green-phosphomolybdate assay using E. coli FtsZ protein obtained from Cytoskelton Inc., USA. Z.officinale essential oil possess FtsZ inhibitory property. A molecular docking study was conducted with the known bioactive compounds of Z. officinale as ligands with the E. coli FtsZ protein homology model. Some of the major constituents of this plant like catechin, epicatechin, and gingerol possess agreeable docking scores. The results of this study revealed that several chemical constituents in Ginger plants can be utilised as potential source of antibacterial activity and it can warrant further investigation through drug discovery studies.Keywords: antibacterial, FtsZ, zingiberaceae, docking
Procedia PDF Downloads 475329 Effect of Pressure and Glue Spread on the Bonding Properties of CLT Panels Made from Low-Grade Hardwood
Authors: Sumanta Das, Miroslav Gašparík, Tomáš Kytka, Anil Kumar Sethy
Abstract:
In this modern century, Cross-laminated timber (CLT) evolved as an excellent material for building and high load-bearing structural applications worldwide. CLT is produced mainly from softwoods such as Norway spruce, White fir, Scots pine, European larch, Douglas fir, and Swiss stone pine. The use of hardwoods in CLT production is still at an early stage, and the utilization of hardwoods is expected to provide the opportunity for obtaining higher bending stiffness and shear resistance to CLT panels. In load-bearing structures like CLT, bonding is an important character that is needed to evaluate. One particular issue with using hardwood lumber in CLT panels is that it is often more challenging to achieve a strong, durable adhesive bond. Several researches in the past years have already evaluated the bonding properties of CLT panels from hardwood both from higher and lower densities. This research aims to identify the effect of pressure and glue spread and evaluate which poplar lumber characteristics affect adhesive bond quality. Three-layered CLT panels were prepared from poplar wood with one-component polyurethane (PUR) adhesive by applying pressure of 0.6 N/mm2 and 1 N/mm2 with a glue spread rate of 160 and 180 g/m2. The delamination and block shear tests were carried out as per EN 16351:2015, and the wood failure percentage was also evaluated. The results revealed that glue spread rate and applied pressure significantly influenced both the shear bond strength and wood failure percentage of the CLT. However, samples with lower pressure 0.6 N/mm2 and less glue spread rate showed delamination, and in samples with higher pressure 1 N/mm2 and higher glue spread rate, no delamination was observed. All the properties determined by this study met the minimum requirement mentioned in EN 16351:2015 standard.Keywords: cross-laminated timber, delamination, glue spread rate, poplar, pressure, PUR, shear strength, wood failure percentage
Procedia PDF Downloads 165328 Development of an Experimental Model of Diabetes Co-Existing with Metabolic Syndrome in Rats
Authors: Rajesh Kumar Suman, Ipseeta Ray Mohanty, Manjusha K. Borde, Ujjawala maheswari, Y. A. Deshmukh
Abstract:
Background: Metabolic syndrome encompasses cluster of risk factors for cardiovascular disease which includes abdominal obesity, dyslipidemia, hypertension, and hyperglycemia. The incidence of metabolic syndrome is on the rise globally. Objective: The present study was designed to develop a unique animal model that will mimic the pathological features seen in a large pool of individuals with diabetes and metabolic syndrome; suitable for pharmacological screening of drugs beneficial in this condition. Material and Methods: A combination of high fat diet (HFD) and low dose of streptozotocin (STZ) at 30, 35 and 40 mg/kg was used to induce metabolic syndrome co-existing with diabetes mellitus in Wistar rats. Results: The 40 mg/kg STZ produced sustained hyperglycemia and the dose was thus selected for our study to induce diabetes mellitus. Rat fed HFD (HF-DC) group showed significant (p < 0.001) increase in body weight on 4th and 7th week as compared with NC (Normal Control) group rats. However, the increase in body weight of HF-DC group rats was not sustained at the end of 10th weeks. Various components of metabolic syndrome such as dyslipidemia {(Increased Triglyceride, total Cholesterol, LDL Cholesterol and decreased HDL Cholesterol)}, diabetes mellitus (Blood Glucose, HbA1c, Serum Insulin, C-peptide), hypertension {Systolic Blood pressure (p < 0.001)} were mimicked in the developed model of metabolic syndrome co existing with diabetes mellitus. In addition significant cardiac injury as indicated by CPK-MB levels, artherogenic index, hs-CRP. The decline in hepatic function {(p < 0.01) increase in the level of SGPT (U/L)} and renal function {(increase in creatinine levels (p < 0.01)} when compared to NC group rats. The histopathological assessment confirmed presence of edema, necrosis and inflammation in Heart, Pancreas, Liver and Kidney of HFD-DC group as compared to NC. Conclusion: The present study has developed a unique rodent model of metabolic syndrome; with diabetes as an essential component.Keywords: diabetes, metabolic syndrome, high fat diet, streptozotocin, rats
Procedia PDF Downloads 351327 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)
Procedia PDF Downloads 327326 Improving Fluid Catalytic Cracking Unit Performance through Low Cost Debottlenecking
Authors: Saidulu Gadari, Manoj Kumar Yadav, V. K. Satheesh, Debasis Bhattacharyya, S. S. V. Ramakumar, Subhajit Sarkar
Abstract:
Most Fluid Catalytic Cracking Units (FCCUs) are big profit makers and hence, always operated with several constraints. It is the primary source for production of gasoline, light olefins as petrochemical feedstocks, feedstock for alkylate & oxygenates, LPG, etc. in a refinery. Increasing unit capacity and improving product yields as well as qualities such as gasoline RON have dramatic impact on the refinery economics. FCCUs are often debottlenecked significantly beyond their original design capacities. Depending upon the unit configuration, operating conditions, and feedstock quality, the FCC unit can have a variety of bottlenecks. While some of these are aimed to increase the feed rate, improve the conversion, etc., the others are aimed to improve the reliability of the equipment or overall unit. Apart from investment cost, the other factors considered generally while evaluating the debottlenecking options are shutdown days, faster payback, risk on investment, etc. A low-cost solution such as replacement of feed injectors, air distributor, steam distributors, spent catalyst distributor, efficient cyclone system, etc. are the preferred way of upgrading FCCU. It also has lower lead time from idea inception to implementation. This paper discusses various bottlenecks generally encountered in FCCU and presents a case study on improvement of performance of one of the FCCUs in IndianOil through implementation of cost-effective technical solution including use of improved internals in Reactor-Regeneration (R-R) section. After implementation reduction in regenerator air, gas superficial velocity in regenerator and cyclone velocities by about 10% and improvement of CLO yield from 10 to 6 wt% have been achieved. By ensuring proper pressure balance and optimum immersion of cyclone dipleg in the standpipe, frequent formation of perforations in regenerator cyclones could be addressed which in turn improved the unit on-stream factor.Keywords: FCC, low-cost, revamp, debottleneck, internals, distributors, cyclone, dipleg
Procedia PDF Downloads 216325 Numerical Modelling of Prestressed Geogrid Reinforced Soil System
Authors: Soukat Kumar Das
Abstract:
Rapid industrialization and increase in population has resulted in the scarcity of suitable ground conditions. It has driven the need of ground improvement by means of reinforcement with geosynthetics with the minimum possible settlement and with maximum possible safety. Prestressing the geosynthetics offers an economical yet safe method of gaining the goal. Commercially available software PLAXIS 3D has made the analysis of prestressed geosynthetics simpler with much practical simulations of the ground. Attempts have been made so far to analyse the effect of prestressing geosynthetics and the effect of interference of footing on Unreinforced (UR), Geogrid Reinforced (GR) and Prestressed Geogrid Reinforced (PGR) soil on the load bearing capacity and the settlement characteristics of prestressed geogrid reinforced soil using the numerical analysis by using the software PLAXIS 3D. The results of the numerical analysis have been validated and compared with those given in the referred paper. The results have been found to be in very good agreement with those of the actual field values with very small variation. The GR soil has been found to be improve the bearing pressure 240 % whereas the PGR soil improves it by almost 500 % for 1mm settlement. In fact, the PGR soil has enhanced the bearing pressure of the GR soil by almost 200 %. The settlement reduction has also been found to be very significant as for 100 kPa bearing pressure the settlement reduction of the PGR soil has been found to be about 88 % with respect to UR soil and it reduced to up to 67 % with respect to GR soil. The prestressing force has resulted in enhanced reinforcement mechanism, resulting in the increased bearing pressure. The deformation at the geogrid layer has been found to be 13.62 mm for GR soil whereas it decreased down to mere 3.5 mm for PGR soil which certainly ensures the effect of prestressing on the geogrid layer. The parameter Improvement factor or conventionally known as Bearing Capacity Ratio for different settlements and which depicts the improvement of the PGR with respect to UR and GR soil and the improvement of GR soil with respect to UR soil has been found to vary in the range of 1.66-2.40 in the present analysis for GR soil and was found to be vary between 3.58 and 5.12 for PGR soil with respect to UR soil. The effect of prestressing was also observed in case of two interfering square footings. The centre to centre distance between the two footings (SFD) was taken to be B, 1.5B, 2B, 2.5B and 3B where B is the width of the footing. It was found that for UR soil the improvement of the bearing pressure was up to 1.5B after which it remained almost same. But for GR soil the zone of influence rose up to 2B and for PGR it further went up to 2.5B. So the zone of interference for PGR soil has increased by 67% than Unreinforced (UR) soil and almost 25 % with respect to GR soil.Keywords: bearing, geogrid, prestressed, reinforced
Procedia PDF Downloads 406324 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth
Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey
Abstract:
Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.Keywords: nanoparticles, seed germination, seed soaking, wheat
Procedia PDF Downloads 231323 Cupric Oxide Thin Films for Optoelectronic Application
Authors: Sanjay Kumar, Dinesh Pathak, Sudhir Saralch
Abstract:
Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented.Keywords: absorber material, cupric oxide, dip coating, thin film
Procedia PDF Downloads 313322 Groundwater Geophysical Studies in the Developed and Sub-Urban BBMP Area, Bangalore, Karnataka, South India
Authors: G. Venkatesha, Urs Samarth, H. K. Ramaraju, Arun Kumar Sharma
Abstract:
The projection for Groundwater states that the total domestic water demand for greater Bangalore would increase from 1,170 MLD in 2010 to 1,336 MLD in 2016. Dependence on groundwater is ever increasing due to rapid Industrialization & Urbanization. It is estimated that almost 40% of the population of Bangalore is dependent on groundwater. Due to the unscientific disposal of domestic and industrial waste generated, groundwater is getting highly polluted in the city. The scale of this impact will depend mainly upon the water-service infrastructure, the superficial geology and the regional setting. The quality of ground water is equally important as that of quantity. Jointed and fractured granites and gneisses constitute the major aquifer system of BBMP area. Two new observatory Borewells were drilled and lithology report has been prepared. Petrographic Analysis (XRD/XRF) and Water quality Analysis were carried out as per the standard methods. Petrographic samples were analysed by collecting chip of rock from the borewell for every 20ft depth, most of the samples were similar and samples were identified as Biotite-Gneiss, Schistose Amphibolite. Water quality analysis was carried out for individual chemical parameters for two borewells drilled. 1st Borewell struck water at 150ft (Total depth-200ft) & 2nd struck at 740ft (Total depth-960ft). 5 water samples were collected till end of depth in each borewell. Chemical parameter values such as, Total Hardness (360-348, 280-320) mg/ltr, Nitrate (12.24-13.5, 45-48) mg/ltr, Chloride (104-90, 70-70)mg/ltr, Fe (0.75-0.09, 1.288-0.312)mg/ltr etc. are calculated respectively. Water samples were analysed from various parts of BBMP covering 750 sq kms, also thematic maps (IDW method) of water quality is generated for these samples for Post-Monsoon season. The study aims to explore the sub-surface Lithological layers and the thickness of weathered zone, which indirectly helps to know the Groundwater pollution source near surface water bodies, dug wells, etc. The above data are interpreted for future ground water resources planning and management.Keywords: lithology, petrographic, pollution, urbanization
Procedia PDF Downloads 294321 Mapping the Core Processes and Identifying Actors along with Their Roles, Functions and Linkages in Trout Value Chain in Kashmir, India
Authors: Stanzin Gawa, Nalini Ranjan Kumar, Gohar Bilal Wani, Vinay Maruti Hatte, A. Vinay
Abstract:
Rainbow trout (Oncorhynchus mykiss) and Brown trout (Salmo trutta fario) are the two species of trout which were once introduced by British in waters of Kashmir has well adapted to favorable climatic conditions. Cold water fisheries are one of the emerging sectors in Kashmir valley and trout holds an important place Jammu and Kashmir fisheries. Realizing the immense potential of trout culture in Kashmir region, the state fisheries department started privatizing trout culture under the centrally funded scheme of RKVY in which they provide 80 percent subsidy for raceway construction and supply of feed and seed for the first year since 2009-10 and at present there are 362 private trout farms. To cater the growing demand for trout in the valley, it is important to understand the bottlenecks faced in the propagation of trout culture. Value chain analysis provides a generic framework to understand the various activities and processes, mapping and studying linkages is first step that needs to be done in any value chain analysis. In Kashmir, it is found that trout hatcheries play a crucial role in insuring the continuous supply of trout seed in valley. Feed is most limiting factor in trout culture and the farmer has to incur high cost in payment and in the transportation of feed from the feed mill to farm. Lack of aqua clinic in the Kashmir valley needs to be addressed. Brood stock maintenance, breeding and seed production, technical assistance to private farmer, extension services have to be strengthened and there is need to development healthier environment for new entrepreneurs. It was found that trout farmers do not avail credit facility as there is no well define credit scheme for fisheries in the state. The study showed weak institutional linkages. Research and development should focus more on applied science rather than basic science.Keywords: trout, Kashmir, value chain, linkages, culture
Procedia PDF Downloads 405320 Religion, Health and Ageing: A Geroanthropological Study on Spiritual Dimensions of Well-Being among the Elderly Residing in Old Age Homes in Jallandher Punjab, India
Authors: A. Rohit Kumar, B. R. K. Pathak
Abstract:
Background: Geroanthropology or the anthropology of ageing is a term which can be understood in terms of the anthropology of old age, old age within anthropology, and the anthropology of age. India is known as the land of spirituality and philosophy and is the birthplace of four major religions of the world namely Hinduasim, Buddhisim, Jainisim, and Sikhism. The most dominant religion in India today is Hinduism. About 80% of Indians are Hindus. Hinduism is a religion with a large number of Gods and Goddesses. Religion in India plays an important role at all life stages i.e. at birth, adulthood and particularly during old age. India is the second largest country in the world with 72 million elder persons above 60 years of age in 2001 as compared to china 127 million. The very concept of old age homes in India is new. The elderly people staying away from their homes, from their children or left to them is not considered to be a very happy situation. This paper deals with anthropology of ageing, religion and spirituality among the elderly residing in old age homes and tries to explain that how religion plays a vital role in the health of the elderly during old age. Methods: The data for the present paper was collected through both Qualitative and Quantitative methods. Old age homes located in Jallandher (Punjab) were selected for the present study. Age sixty was considered as a cut off age. Narratives, case studies were collected from 100 respondents residing in old age homes. The dominant religion in Punjab was found to be Sikhism and Hinduism while Jainism and Buddhism were found to be in minority. It was found that as one grows older the religiosity increases. Religiosity and sprituality was found to be directly proportional to ageing. Therefore religiosity and health were found to be connected. Results and Conclusion: Religion was found out to be a coping mechanism during ill health. The elderly living in old age homes were purposely selected for the study as the elderly in old age homes gets medical attention provided only by the old age home authorities. Moreover, the inmates in old age homes were of low socio-economic status couldn’t afford medical attention on their own. It was found that elderly who firmly believed in religion were found to be more satisfied with their health as compare to elderly who does not believe in religion at all. Belief in particular religion, God and godess had an impact on the health of the elderly.Keywords: ageing, geroanthropology, religion, spirituality
Procedia PDF Downloads 347319 The Significance of Computer Assisted Language Learning in Teaching English Grammar in Tribal Zone of Chhattisgarh
Authors: Yogesh Kumar Tiwari
Abstract:
Chhattisgarh has realized the fundamental role of information and communication technology in the globalized world where knowledge is at the top for the growth and intellectual development. They are spreading so widely that one feels lagging behind if not using them. The influence of these radiating and technological tools has encompassed all aspects of the educational, business, and economic sectors of our world. Undeniably the computer has not only established itself globally in all walks of life but has acquired a fundamental role of paramount importance in the educational process also. This role is getting all pervading and more powerful as computers are being manufactured to be cheaper, smaller in size, adaptable and easy to handle. Computers are becoming indispensable to teachers because of their enormous capabilities and extensive competence. This study aims at observing the effect of using computer based software program of English language on the achievement of undergraduate level students studying in tribal area like Sarguja Division, Chhattisgarh, India. To testify the effect of an innovative teaching in the graduate classroom in tribal area 50 students were randomly selected and separated into two groups. The first group of 25 students were taught English grammar i.e., passive voice/narration, through traditional method using chalk and blackboard asking some formal questions. The second group, the experimental one, was taught English grammar i.e., passive voice/narration, using computer, projector with power point presentation of grammatical items. The statistical analysis was done on the students’ learning capacities and achievement. The result was extremely mesmerizing not only for the teacher but for taught also. The process of the recapitulation demonstrated that the students of experimental group responded the answers of the questions enthusiastically with innovative sense of learning. In light of the findings of the study, it was recommended that teachers and professors of English ought to use self-made instructional program in their teaching process particularly in tribal areas.Keywords: achievement computer assisted language learning, use of instructional program
Procedia PDF Downloads 151318 Enhancing Postharvest Quality and Shelf-Life of Leaf Lettuce (Lactuca sativa L.) by Altering Growing Conditions
Authors: Jung-Soo Lee, Ujjal Kumar Nath, IllSup Nou, Dulal Chandra
Abstract:
Leaf lettuce is one of the most important leafy vegetables that is used as raw for salad and part of everyday dishes in many parts of the world including Asian countries. Since it is used as fresh, its quality maintenance is crucial which depends on several pre- and postharvest factors. In order to investigate the effects of pre-fix factors on the postharvest quality, the interaction of pre-fix factors such as growing conditions and fixed factor like cultivars were evaluated. Four Korean leaf lettuce cultivars ‘Cheongchima’, ‘Cheongchuckmyeon’, ‘Geockchima’ and ‘Geockchuckmyeon’ were grown under natural condition (as control) and altered growing condition (green house) with excess soil water and 50% shading to monitor their postharvest qualities. Several growth parameters like plant height, number of leaves, leaf thickness, fresh biomass yield as well as postharvest qualities like fresh weight loss, respiration rate, changes in color and shelf-life were measured in lettuce during storage up to 36 days at 5°C. Plant height and the number of leaves were affected by both pre-fix growing conditions as well as the cultivars. However, fresh biomass yield was affected by only growing condition, whereas leaf thickness was affected by cultivars. Additionally, the degrees of fresh weight loss and respiration rate of leaf lettuce at postharvest stages were influenced by pre-fix growing conditions and cultivars. However, changes in color of leaves during storage were less remarkable in samples harvested from of ‘Cheongchima’ and ‘Cheongchuckmyeon’ cultivars grown in excess watering with 50% shade than that grown in control condition. Consequently, these two cultivars also showed longer shelf-life when they were grown in excess watering with 50% shade than other cultivars or samples were grown in control condition. Based on the measured parameters, it can be concluded that postharvest quality of leaf lettuce might be accelerated by growing lettuce under excess soil water with 50% shading.Keywords: cultivar, growing condition, leaf lettuce, postharvest quality, shelf-life
Procedia PDF Downloads 266317 Measurement and Simulation of Axial Neutron Flux Distribution in Dry Tube of KAMINI Reactor
Authors: Manish Chand, Subhrojit Bagchi, R. Kumar
Abstract:
A new dry tube (DT) has been installed in the tank of KAMINI research reactor, Kalpakkam India. This tube will be used for neutron activation analysis of small to large samples and testing of neutron detectors. DT tube is 375 cm height and 7.5 cm in diameter, located 35 cm away from the core centre. The experimental thermal flux at various axial positions inside the tube has been measured by irradiating the flux monitor (¹⁹⁷Au) at 20kW reactor power. The measured activity of ¹⁹⁸Au and the thermal cross section of ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction were used for experimental thermal flux measurement. The flux inside the tube varies from 10⁹ to 10¹⁰ and maximum flux was (1.02 ± 0.023) x10¹⁰ n cm⁻²s⁻¹ at 36 cm from the bottom of the tube. The Au and Zr foils without and with cadmium cover of 1-mm thickness were irradiated at the maximum flux position in the DT to find out the irradiation specific input parameters like sub-cadmium to epithermal neutron flux ratio (f) and the epithermal neutron flux shape factor (α). The f value was 143 ± 5, indicates about 99.3% thermal neutron component and α value was -0.2886 ± 0.0125, indicates hard epithermal neutron spectrum due to insufficient moderation. The measured flux profile has been validated using theoretical model of KAMINI reactor through Monte Carlo N-Particle Code (MCNP). In MCNP, the complex geometry of the entire reactor is modelled in 3D, ensuring minimum approximations for all the components. Continuous energy cross-section data from ENDF-B/VII.1 as well as S (α, β) thermal neutron scattering functions are considered. The neutron flux has been estimated at the corresponding axial locations of the DT using mesh tally. The thermal flux obtained from the experiment shows good agreement with the theoretically predicted values by MCNP, it was within ± 10%. It can be concluded that this MCNP model can be utilized for calculating other important parameters like neutron spectra, dose rate, etc. and multi elemental analysis can be carried out by irradiating the sample at maximum flux position using measured f and α parameters by k₀-NAA standardization.Keywords: neutron flux, neutron activation analysis, neutron flux shape factor, MCNP, Monte Carlo N-Particle Code
Procedia PDF Downloads 166316 Bioethanol Production from Marine Algae Ulva Lactuca and Sargassum Swartzii: Saccharification and Process Optimization
Authors: M. Jerold, V. Sivasubramanian, A. George, B.S. Ashik, S. S. Kumar
Abstract:
Bioethanol is a sustainable biofuel that can be used alternative to fossil fuels. Today, third generation (3G) biofuel is gaining more attention than first and second-generation biofuel. The more lignin content in the lignocellulosic biomass is the major drawback of second generation biofuels. Algae are the renewable feedstock used in the third generation biofuel production. Algae contain a large number of carbohydrates, therefore it can be used for the fermentation by hydrolysis process. There are two groups of Algae, such as micro and macroalgae. In the present investigation, Macroalgae was chosen as raw material for the production of bioethanol. Two marine algae viz. Ulva Lactuca and Sargassum swartzii were used for the experimental studies. The algal biomass was characterized using various analytical techniques like Elemental Analysis, Scanning Electron Microscopy Analysis and Fourier Transform Infrared Spectroscopy to understand the physio-Chemical characteristics. The batch experiment was done to study the hydrolysis and operation parameters such as pH, agitation, fermentation time, inoculum size. The saccharification was done with acid and alkali treatment. The experimental results showed that NaOH treatment was shown to enhance the bioethanol. From the hydrolysis study, it was found that 0.5 M Alkali treatment would serve as optimum concentration for the saccharification of polysaccharide sugar to monomeric sugar. The maximum yield of bioethanol was attained at a fermentation time of 9 days. The inoculum volume of 1mL was found to be lowest for the ethanol fermentation. The agitation studies show that the fermentation was higher during the process. The percentage yield of bioethanol was found to be 22.752% and 14.23 %. The elemental analysis showed that S. swartzii contains a higher carbon source. The results confirmed hydrolysis was not completed to recover the sugar from biomass. The specific gravity of ethanol was found to 0.8047 and 0.808 for Ulva Lactuca and Sargassum swartzii, respectively. The purity of bioethanol also studied and found to be 92.55 %. Therefore, marine algae can be used as a most promising renewable feedstock for the production of bioethanol.Keywords: algae, biomass, bioethaol, biofuel, pretreatment
Procedia PDF Downloads 164