Search results for: irregular behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6597

Search results for: irregular behavior

5247 Sensitivity and Reliability Analysis of Masonry Infilled Frames

Authors: Avadhoot Bhosale, Robin Davis P., Pradip Sarkar

Abstract:

The seismic performance of buildings with irregular distribution of mass, stiffness and strength along the height may be significantly different from that of regular buildings with masonry infill. Masonry infilled reinforced concrete (RC) frames are very common structural forms used for multi-storey building construction. These structures are found to perform better in past earthquakes owing to additional strength, stiffness and energy dissipation in the infill walls. The seismic performance of a building depends on the variation of material, structural and geometrical properties. The sensitivity of these properties affects the seismic response of the building. The main objective of the sensitivity analysis is to found out the most sensitive parameter that affects the response of the building. This paper presents a sensitivity analysis by considering 5% and 95% probability value of random variable in the infills characteristics, trying to obtain a reasonable range of results representing a wide number of possible situations that can be met in practice by using pushover analysis. The results show that the strength-related variation values of concrete and masonry, with the exception of tensile strength of the concrete, have shown a significant effect on the structural performance and that this effect increases with the progress of damage condition for the concrete. The seismic risk assessments of the selected frames are expressed in terms of reliability index.

Keywords: fragility curve, sensitivity analysis, reliability index, RC frames

Procedia PDF Downloads 308
5246 Paradigm Shift in Reducing Greenhouse Gas Emissions for Developing Countries: Focus on Behavioral Changes

Authors: Bishal Saha, Musah Ahmed Rufai Muhyedeen, Jubeyer Hossain Joy, Muhammad Muhitur Rahman, Mohammad Shahedur Rahman, Md Arif Hasan, Syed Masiur Rahman

Abstract:

Greenhouse gas (GHG) emission is one of the critical problems of today’s world. Many countries have been taking many short- and long-term plans to reduce climate change mitigation. However, the potential of behavioral changes in addressing this problem is promising, as reported by many researchers. This paper presents a comprehensive literature review that focuses on ways to influence people’s behavior in their homes, workplace, and transportation to mitigate the emission directly or indirectly. This study will investigate different theories pertinent to planned behavior and the key elements for modifying behavior like biophilia, reinforcement to use optimum energy and recyclable products, proper application of greenhouse tax, modern technology, and sustainable design adaptation, transportation sharing, social and community norms, proper education and information, and financial incentives. There is a number of challenges associated with behavioral changes. Behavioral interventions have different actions varied by their type and need to combine various policy tools and great social marketing. Many interventions can reduce GHG emissions without any compromise with household well-being. This study will develop a landscape of prevailing theories of environmental psychology by identifying and reviewing the key themes and findings of this field of study. It will support especially the developing countries to reduce GHG emissions without significant capital investment. It is also expected that the behavioral changes will lead to the successful adoption of climate-friendly policies easily. This study will also generate new research questions and directions.

Keywords: behavioral changes, climate change mitigation, environmental psychology, greenhouse gas emission

Procedia PDF Downloads 216
5245 Perspectives and Outcomes of a Long and Shorter Community Mental Health Program

Authors: Danielle Klassen, Reiko Yeap, Margo Schmitt-Boshnick, Scott Oddie

Abstract:

The development of the 7-week Alberta Happiness Basics program was initiated in 2010 in response to the need for community mental health programming. This provincial wide program aims to increase overall happiness and reduce negative thoughts and feelings through a positive psychology intervention. While the 7-week program has proven effective, a shortened 4-week program has additionally been developed to address client needs. In this study, participants were interviewed to determine if the 4- and 7-week programs had similar success of producing lasting behavior change at 3, 6, and 9 months post-program. A health quality of life (HQOL) measure was also used to compare the two programs and examine patient outcomes. Quantitative and qualitative analysis showed significant improvements in HQOL and sustainable behavior change for both programs. Findings indicate that the shorter, patient-centered program was effective in increasing happiness and reducing negative thoughts and feelings.

Keywords: primary care, mental health, depression, short duration

Procedia PDF Downloads 255
5244 Ultrahigh Thermal Stability of Dielectric Permittivity in 0.6Bi(Mg₁/₂Ti₁/₂)O₃-0.4Ba₀.₈Ca₀.₂(Ti₀.₈₇₅Nb₀.₁₂₅)O₃

Authors: Kaiyuan Chena, Senentxu Lanceros-Méndeza, Laijun Liub, Qi Zhanga

Abstract:

0.6Bi(Mg1/2Ti1/2)O3-0.4Ba0.8Ca0.2(Nb0.125Ti0.875)O3 (0.6BMT-0.4BCNT) ceramics with a pseudo-cubic structure and re-entrant dipole glass behavior have been investigated via X-ray diffraction and dielectric permittivity-temperature spectra. It shows an excellent dielectric-temperature stability with small variations of dielectric permittivity (± 5%, 420 - 802 K) and dielectric loss tangent (tanδ < 2.5%, 441 - 647 K) in a wide temperature range. Three dielectric anomalies are observed from 290 K to 1050 K. The low-temperature weakly coupled re-entrant relaxor behavior was described using Vogel-Fulcher law and the new glass model. The mid- and high-temperature dielectric anomalies are characterized by isothermal impedance and electrical modulus. The activation energy of both dielectric relaxation and conductivity follows the Arrhenius law in the temperature ranges of 633 - 753 K and 833 - 973 K, respectively. The ultrahigh thermal stability of the dielectric permittivity is attributed to the weakly coupling of polar clusters, the formation of diffuse phase transition (DPT) and the local phase transition of calcium-containing perovskite.

Keywords: permittivity, relaxor, electronic ceramics, activation energy

Procedia PDF Downloads 81
5243 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 294
5242 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers

Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion

Abstract:

Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.

Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law

Procedia PDF Downloads 128
5241 Effect of Boundary Retaining Walls Properties on the Raft Foundations Behaviour

Authors: Mohamed Hussein

Abstract:

This paper studies the effect of boundary retaining walls properties on the behavior of the raft foundation. Commercial software program Sap2000 was used in this study. The soil was presented as continuous media (follows the Winkler assumption). Shell elements were employed to model the raft plate. A parametric study has been carried out to examine the effect of boundary retaining walls properties on the behavior of raft plate. These parameters namely, height of the boundary retaining walls, thickness of the boundary retaining walls, flexural rigidity of raft plate, bearing capacity of supporting soil and the earth pressure of boundary soil. The main results which were obtained from this study are positive, negative bending moment, shear stress and deflection in raft plate, where these parameters are considered the main parameters used in design of raft foundation. It was concluded that the boundary retaining walls have a significant effect on the straining actions in raft plate.

Keywords: Sap2000, boundary retaining walls, raft foundations, Winkler model, flexural rigidity

Procedia PDF Downloads 164
5240 Solutions for Large Diameter Piles Stifness Used in Offshore Wind Turbine Farms

Authors: M. H. Aissa, Amar Bouzid Dj

Abstract:

As known, many countries are now planning to build new wind farms with high capacity up to 5MW. Consequently, the size of the foundation increase. These kinds of structures are subject to fatigue damage from environmental loading mainly due to wind and waves as well as from cyclic loading imposed through the rotational frequency (1P) through mass and aerodynamic imbalances and from the blade passing frequency (3P) of the wind turbine which make them behavior dynamically very sensitive. That is why natural frequency must be determined with accuracy from the existing data of the soil and the foundation stiffness sources of uncertainties, to avoid the resonance of the system. This paper presents analytical expressions of stiffness foundation with large diameter in linear soil behavior in different soil stiffness profile. To check the accuracy of the proposed formulas, a mathematical model approach based on non-dimensional parameters is used to calculate the natural frequency taking into account the soil structure interaction (SSI) compared with the p-y method and measured frequency in the North Sea Wind farms.

Keywords: offshore wind turbines, semi analytical FE analysis, p-y curves, piles foundations

Procedia PDF Downloads 452
5239 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme

Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim

Abstract:

Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.

Keywords: functionally graded plate, thermal buckling analysis, neutral surface

Procedia PDF Downloads 387
5238 Low-Dose Chest Computed Tomography Can Help in Differential Diagnosis of Asthma–COPD Overlap Syndrome in Children

Authors: Frantisek Kopriva, Kamila Michalkova, Radim Dudek, Jana Volejnikova

Abstract:

Rationale: Diagnostic criteria of asthma–COPD overlap syndrome (ACOS) are controversial in pediatrics. Emphysema is characteristic of COPD and usually does not occur in typical asthma; its presence in patients with asthma suggests the concurrence with COPD. Low-dose chest computed tomography (CT) allows a non-invasive assessment of the lung tissue structure. Here we present CT findings of emphysematous changes in a child with ACOS. Patient and Methods: In a 6-year-old boy, atopy was confirmed by a skin prick test using common allergen extracts (grass and tree pollen, house dust mite, molds, cat, dog; manufacturer Stallergenes Greer, London, UK), where reactions over 3 mm were considered positive. Treatment with corticosteroids was started during the course of severe asthma. At 12 years of age, his spirometric parameters deteriorated despite treatment adjustment (VC 1.76 L=85%, FEV1 1.13 L=67%, TI%VCmax 64%, MEF25 19%, TLC 144%) and the bronchodilator test became negative. Results: Low-dose chest CT displayed irregular regions with increased radiolucency of pulmonary parenchyma (typical for hyperinflation in emphysematous changes) in both lungs. This was in accordance with the results of spirometric examination. Conclusions: ACOS is infrequent in children. However, low-dose chest CT scan can be considered to confirm this diagnosis or eliminate other diagnoses when the clinical condition is deteriorating and treatment response is poor.

Keywords: child, asthma, low-dose chest CT, ACOS

Procedia PDF Downloads 132
5237 Evolution of Structure and Magnetic Behavior by Pr Doping in SrRuO3

Authors: Renu Gupta, Ashim K. Pramanik

Abstract:

We report the evolution of structure and magnetic properties in perovskite ruthenates Sr1-xPrxRuO3 (x = 0.0 and 0.1). Our main expectations, to induce the structural modification and change the Ru charge state by Pr doping at Sr site. By the Pr doping on Sr site retains orthorhombic structure while we find a minor change in structural parameters. The SrRuO3 have itinerant type of ferromagnetism with ordering temperature ~160 K. By Pr doping, the magnetic moment decrease and ZFC show three distinct peaks (three transition temperature; TM1, TM2 and TM3). Further analysis of magnetization of both samples, at high temperature follow modified CWL and Pr doping gives Curie temperature ~ 129 K which is close to TM2. Above TM2 to TM3, the inverse susceptibility shows upward deviation from CW behavior, indicating the existence AFM like clustered in this regime. The low-temperature isothermal magnetization M (H) shows moment decreases by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which also decreases by Pr doping. The evolution of Rhodes-Wohlfarth ratio increases which suggests the FM in this system evolves toward the itinerant type by Pr doping.

Keywords: itinerant ferromagnet, Perovskite structure, Ruthenates, Rhodes-Wohlfarth ratio

Procedia PDF Downloads 340
5236 Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer

Authors: Timothee Gidenne, Xia Pinqi

Abstract:

In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system.

Keywords: actuators, aeroelastic, aeroservoelasticity, carbon nanotubes, flutter, flutter suppression

Procedia PDF Downloads 109
5235 Analyzing Current Transformer’s Transient and Steady State Behavior for Different Burden’s Using LabVIEW Data Acquisition Tool

Authors: D. Subedi, D. Sharma

Abstract:

Current transformers (CTs) are used to transform large primary currents to a small secondary current. Since most standard equipment’s are not designed to handle large primary currents the CTs have an important part in any electrical system for the purpose of Metering and Protection both of which are integral in Power system. Now a days due to advancement in solid state technology, the operation times of the protective relays have come to a few cycles from few seconds. Thus, in such a scenario it becomes important to study the transient response of the current transformers as it will play a vital role in the operating of the protective devices. This paper shows the steady state and transient behavior of current transformers and how it changes with change in connected burden. The transient and steady state response will be captured using the data acquisition software LabVIEW. Analysis is done on the real time data gathered using LabVIEW. Variation of current transformer characteristics with changes in burden will be discussed.

Keywords: accuracy, accuracy limiting factor, burden, current transformer, instrument security factor

Procedia PDF Downloads 332
5234 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Authors: R. I. Liban, N. Tayşi

Abstract:

This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.

Keywords: composite steel-concrete beams, external prestressing, finite element analysis, ANSYS

Procedia PDF Downloads 301
5233 Toughness of a Silt-Based Construction Material Reinforced with Fibers

Authors: Y. Shamas, S. Imanzadeh, A. Jarno, S. Taibi

Abstract:

Silt-based construction material is acknowledged since forever and lately received the researchers’ attention more than before as being an ecological and economical alternative for typical cement-based concrete. Silt-based material is known for its worldwide availability, cheapness, and various applications. Some rules should be defined to obtain a standardized method for the use of raw earth as a modern construction material; but first, its mechanical properties should be precisely studied to better understand its behavior in order to find new aspects in making it a better competitor for the cement concrete that is high energy-demanding in terms of gray energy. Some researches were performed on the raw earth material to enhance its characteristics as strength and ductility for their importance and their wide use for various materials. Yet, many other mechanical properties can be used to study the mechanical behavior of raw earth materials such as Young’smodulus and toughness. Studies concerning the toughness of material were rarely conducted previously except for metals despite its significant role associated to the energy absorbed by the material under loading before fracturing. The purpose of this paper is to restate different toughness definitions used in the literature and propose a new definition.

Keywords: silt-based material, raw earth concrete, stress-strain curve, energy, toughness

Procedia PDF Downloads 196
5232 Investigate and Solving Analytic of Nonlinear Differential at Vibrations (Earthquake)and Beam-Column, by New Approach “AGM”

Authors: Mohammadreza Akbari, Pooya Soleimani Besheli, Reza Khalili, Sara Akbari

Abstract:

In this study, we investigate building structures nonlinear behavior also solving analytic of nonlinear differential at vibrations. As we know most of engineering systems behavior in practical are non- linear process (especial at structural) and analytical solving (no numerical) these problems are complex, difficult and sometimes impossible (of course at form of analytical solving). In this symposium, we are going to exposure one method in engineering, that can solve sets of nonlinear differential equations with high accuracy and simple solution and so this issue will emerge after comparing the achieved solutions by Numerical Method (Runge-Kutte 4th) and exact solutions. Finally, we can proof AGM method could be created huge evolution for researcher and student (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software, we can analytical solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations.

Keywords: new method AGM, vibrations, beam-column, angular frequency, energy dissipated, critical load

Procedia PDF Downloads 371
5231 Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc

Authors: Minto Rattan, Tania Bose, Neeraj Chamoli

Abstract:

The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature.

Keywords: creep, isotropic, steady-state, thermal gradient

Procedia PDF Downloads 254
5230 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars

Authors: Jazlah Majeed Sulaiman, Lakshmi P.

Abstract:

Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.

Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS

Procedia PDF Downloads 90
5229 The Microstructure Development Behavior of Mg-Ag Alloy during High-Temperature Plane Strain Deformation

Authors: Jimin Yun, Yebeen Ji, Kwonhoo Kim

Abstract:

Magnesium and Mg-Ag system alloys are known to be promising biomaterials due to their high specific strengths and biocompatibility. Because the limited numbers of slip systems were activated in the HCP structure at room temperature, their formability was low. To solve these problems, much research about the improvement of room-temperature formability has been studied, but the microstructure development behaviors of Mg-Ag alloys were still limited. Therefore, this study was conducted to investigate the texture development behaviors of Mg-Ag alloy during high-temperature plane strain deformation. The Ag content of the Mg-Ag alloy used in this study was 3.0, 5.0, and 9.0 wt%. Hot rolling was performed at a temperature of 673K with a reduction ratio of 25%, and these specimens were annealed for 1H at 773K, followed by water quenching at room temperature. High-temperature plane strain deformation was performed under temperatures of 623K and 723K, with strain rates from 0.1/s to 0.05/s and strain from -0.4 to –1.0. As a result, it showed a microstructure and texture similar to the AZ61 alloy, which had been studied previously. It was confirmed that the basal texture became stronger with increasing strains at high-temperature plane strain deformation.

Keywords: Mg-Ag, texture, microstructure development behavior, AZ61

Procedia PDF Downloads 49
5228 A Study of the Replacement of Natural Coarse Aggregate by Spherically-Shaped and Crushed Waste Cathode Ray Tube Glass in Concrete

Authors: N. N. M. Pauzi, M. R. Karim, M. Jamil, R. Hamid, M. F. M. Zain

Abstract:

The aim of this study is to conduct an experimental investigation on the influence of complete replacement of natural coarse aggregate with spherically-shape and crushed waste cathode ray tube (CRT) glass to the aspect of workability, density, and compressive strength of the concrete. After characterizing the glass, a group of concrete mixes was prepared to contain a 40% spherical CRT glass and 60% crushed CRT glass as a complete (100%) replacement of natural coarse aggregates. From a total of 16 types of concrete mixes, the optimum proportion was selected based on its best performance. The test results showed that the use of spherical and crushed glass that possesses a smooth surface, rounded, irregular and elongated shape, and low water absorption affects the workability of concrete. Due to a higher specific gravity of crushed glass, concrete mixes containing CRT glass had a higher density compared to ordinary concrete. Despite the spherical and crushed CRT glass being stronger than gravel, the results revealed a reduction in compressive strength of the concrete. However, using a lower water to binder (w/b) ratio and a higher superplasticizer (SP) dosage, it is found to enhance the compressive strength of 60.97 MPa at 28 days that is lower by 13% than the control specimen. These findings indicate that waste CRT glass in the form of spherical and crushed could be used as an alternative of coarse aggregate that may pave the way for the disposal of hazardous e-waste.

Keywords: cathode ray tube, glass, coarse aggregate, compressive strength

Procedia PDF Downloads 150
5227 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example

Authors: Hongyun Li, Zhibin Jiang

Abstract:

The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.

Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern

Procedia PDF Downloads 59
5226 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 332
5225 The Study of Sensory Breadth Experiences in an Online Try-On Environment

Authors: Tseng-Lung Huang

Abstract:

Sensory breadth experiences, such as visualization, a sense of self-location, and haptic experiences, are critical in an online try-on environment. This research adopts an emotional appeal perspective, including concrete and abstract effects, to clarify the relationship between sensory experience and consumer's behavior intention in an online try-on context. This study employed an augmented reality interactive technology (ARIT) in an online clothes-fitting context and applied snowball sampling using e-mail to invite online consumers, first to use ARIT for trying on online apparel and then to complete a questionnaire. One hundred sixty-eight valid questionnaires were collected, and partial least squares (PLS) path modeling was used to test our hypotheses. The results showed that sensory breadth, by arousing concrete effect, induces impulse buying intention and willingness to pay a price premium of online shopping. Parasocial presence, as an abstract effect, diminishes the effect of concrete effects on willingness to pay a price premium.

Keywords: sensory breadth, impulsive behavior, price premium, emotional appeal, online try-on context

Procedia PDF Downloads 536
5224 Hysteretic Behavior of the Precast Concrete Column with Head Splice Sleeve Connection

Authors: Seo Soo-Yeon, Kim Sang-Ku, Noh Sang-Hyun, Lee Ji-Eun, Kim Seol-Ki, Lim Jong-Wook

Abstract:

This paper presents a test result to find the structural capacity of Hollow-Precast Concrete (HPC) column with Head-Splice Sleeve (HSS) for the connection of bars under horizontal cyclic load. Two Half-scaled HPC column specimens were made with the consideration of construction process in site. The difference between the HPC specimens is the location of HSS for bar connection. The location of the first one is on the bottom slab or foundation while the other is above the bottom slab or foundation. Reinforced concrete (RC) column was also made for the comparison. In order to evaluate the hysteretic behavior of the specimens, horizontal cyclic load was applied to the top of specimen under constant axial load. From the test, it is confirmed that the HPC columns with HSS have enough structural capacity that can be emulated to RC column. This means that the HPC column with HSS can be used in the moment resisting frame system.

Keywords: structural capacity, hollow-precast concrete column, head-splice sleeve, horizontal cyclic load

Procedia PDF Downloads 352
5223 Dimethyl fumarate Alleviates Valproic Acid-Induced Autism in Wistar Rats via Activating NRF-2 and Inhibiting NF-κB Pathways

Authors: Sandy Elsayed, Aya Mohamed, Noha Nassar

Abstract:

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social deficits and repetitive behavior. Multiple studies suggest that oxidative stress and neuroinflammation are key factors in the etiology of ASD and often associated with worsening of ASD-related behaviors. Nuclear factor erythroid 2-related factor 2 (NRF-2) is a transcription factor that promotes expression of antioxidant response element genes in oxidative stress. In ASD subjects, decreased expression of NRF-2 in frontal cortex shifted the redox homeostasis towards oxidative stress, and resulted in inflammation evidenced by elevation of nuclear factor kappa B (NF-κB) transcriptional activity. Dimethyl fumarate (DMF) is a NRF-2 activator that is used in the treatment of psoriasis and multiple sclerosis. It participates in the transcriptional control of inflammatory factors via inhibition of NF-κB and its downstream targets. This study aimed to investigate the role of DMF in alleviating the cognitive impairments and behavior deficits associated with ASD through mitigation of oxidative stress and inflammation in prenatal valproic acid (VPA) rat model of autism. Methods: Pregnant female Wistar rats received a single intraperitoneal injection of VPA (600 mg/kg) to induce autistic-like-behavioral and neurobiological alterations in their offspring. Chronic oral gavage of DMF (150mg/kg/day) started from postnatal day (PND) 24 till PND62 (39 days). Prenatal VPA exposure elicited autistic behaviors including decreased social interaction and stereotyped behavior. Social interaction was evaluated using three-chamber sociability test and calculation of sociability index (SI), while stereotyped repetitive behavior and anxiety associated with ASD were assessed using marble burying test (MBT). Biochemical analyses were done on prefrontal cortex homogenates including NRF-2, and NF-κB expression. Moreover, inducible nitric oxide synthase (iNOS) gene expression and tumor necrosis factor (TNF-) protein expression were evaluated as markers of inflammation. Results: Prenatal VPA elicited decreased social interaction shown by decreased SI compared to control group (p < 0.001) and DMF enhanced SI (p < 0.05). In MBT, prenatal injection of VPA manifested stereotyped behavior and enhanced number of buried marbles compared to control (p < 0.05) and DMF reduced the anxiety-related behavior in rats exhibiting ASD-like behaviors (p < 0.05). In prefrontal cortex, NRF-2 expression was downregulated in prenatal VPA model (p < 0.0001) and DMF reversed this effect (p < 0.0001). The inflammatory transcription factor NF-κB was elevated in prenatal VPA model (p < 0.0001) and reduced (p < 0.0001) upon NRF-2 activation by DMF. Prenatal VPA expressed higher levels of proinflammatory cytokine TNF- compared to control group (p < 0.0001) and DMF reduced it (p < 0.0001). Finally, the gene expression of iNOS was downregulated upon NRF-2 activation by DMF (p < 0.01). Conclusion: This study proposes that DMF is a potential agent that can be used to ameliorate autistic-like-changes through NRF-2 activation along with NF-κB downregulation and therefore, it is a promising novel therapy for ASD.

Keywords: autism spectrum disorders, dimethyl fumarate, neuroinflammation, NRF-2

Procedia PDF Downloads 21
5222 Investigation of the Ductility Improvement of Replaceable Hinge Member on Different Types of Precast Concrete Frames

Authors: Ali Berk Bozan, Reşat Atalay Oyguç

Abstract:

The demand for precast reinforced concrete (RC) structures is growing, considering their certain benefits, including faster assembly, homogeneous materials, and high-quality labor. The structural integrity of precast reinforced concrete (RC) constructions is influenced by the effectiveness of the joints and connections. This paper contains an analytical study about four types of precast reinforced concrete frames, which vary according to the number of storeys and the number of bays with two different types of moment-resisting beam-to-column connection is investigated under cyclic displacement loading up to 5.6% drift rate by using ABAQUS software. The first connection type is the widely used moment-resisting connection that is defined as a wet connection in Turkish Seismic Code (TBDY). The second connection type is known as Artificial Controllable Plastic Hinge. The goal of this connection is to defend reinforced concrete components from earthquake-related plastic deformations by keeping them in a specialized connecting section. It will be possible to repair the broken connections after the earthquake. The cyclic behavior of the four types of frames with the mechanical plastic hinge and wet connection was analytically investigated, and then comparisons and suggestions were made on period, ductility, and structural system behavior coefficient. The analytical study shows that the replaceable plastic hinge element provides a significant period increase. Especially in the case of two storeys and two bays, the change in the period was felt the most compared to other frames. The results for ductility show a significant change in the ductility of the frames with replaceable plastic hinges. For the structural system behavior coefficient, a recommendation between 3.90 and 4.52 values was made.

Keywords: precast structures, replaceable plastic hinge, beam to column connections, ductility

Procedia PDF Downloads 10
5221 Structural Behavior of Composite Hollow RC Column under Combined Loads

Authors: Abdul Qader Melhm, Hussein Elrafidi

Abstract:

This paper is dealing with studying the structural behavior of a steel-composite hollow reinforced concrete (RC) column model under combined eccentric loading. The composite model consists of an inner steel tube surrounded via a concrete core with longitudinal and circular transverse reinforcement. The radius of gyration according to American and Euro specifications be calculated, in order to calculate the thinnest ratio for this type of composite column model, in addition to the flexural rigidity. Formulas for interaction diagram is given for this type of model, which is a general loading conditions in which an element is exposed to an axial load with bending at the same time. The structural capacity of this model, elastic, plastic loads and strains will be computed and compared with experimental results. The total eccentric axial load of the column model is calculated based on the effective length KL available from several relationships provided in the paper. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength will be investigated.

Keywords: column, composite, eccentric, inner tube, interaction, reinforcement

Procedia PDF Downloads 179
5220 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: corrosion, duty cycle, pulsed current, zinc

Procedia PDF Downloads 109
5219 Differences in Preschool Educators' and Parents' Interactive Behavior during a Cooperative Task with Children

Authors: Marina Fuertes

Abstract:

Introduction: In everyday life experiences, children are solicited to cooperate with others. Often they perform cooperative tasks with their parents (e.g., setting the table for dinner) or in school. These tasks are very significant since children may learn to turn taking in interactions, to participate as well to accept others participation, to trust, to respect, to negotiate, to self-regulate their emotions, etc. Indeed, cooperative tasks contribute to children social, motor, cognitive and linguistic development. Therefore, it is important to study what learning, social and affective experiences are provided to children during these tasks. In this study, we included parents and preschool educators. Parents and educators are both significant: educative, interactive and affective figures. Rarely parents and educators behavior have been compared in studies about cooperative tasks. Parents and educators have different but complementary styles of interaction and communication. Aims: Therefore, this study aims to compare parents and educators' (of both genders) interactive behavior (cooperativity, empathy, ability to challenge the child, reciprocity, elaboration) during a play/individualized situation involving a cooperative task. Moreover, to compare parents and educators' behavior with girls and boys. Method: A quasi-experimental study with 45 dyads educators-children and 45 dyads with parents and their children. In this study, participated children between 3 and 5 years old and with age appropriate development. Adults and children were videotaped using a variety of materials (e.g., pencils, wood, wool) and tools (e.g., scissors, hammer) to produce together something of their choice during 20-minutes. Each dyad (one adult and one child) was observed and videotaped independently. Adults and children agreed and consented to participate. Experimental conditions were suitable, pleasant and age appropriated. Results: Findings indicate that parents and teachers offer different learning experiences. Teachers were more likely to challenged children to explore new concepts and to accept children ideas. In turn, parents gave more support to children actions and were more likely to use their own example to teach children. Multiple regression analysis indicates that parent versus educator status predicts their behavior. Gender of both children and adults affected the results. Adults acted differently with girls and boys (e.g., adults worked more cooperatively with girls than boys). Male participants supported more girls participation rather than boys while female adults allowed boys to make more decisions than girls. Discussion: Taking our results and past studies, we learn that different qualitative interactions and learning experiences are offered by parents, educators according to parents and children gender. Thus, the same child needs to learn different cooperative strategies according to their interactive patterns and specific context. Yet, cooperative play and individualized activities with children generate learning opportunities and benefits children participation and involvement.

Keywords: early childhood education, parenting, gender, cooperative tasks, adult-child interaction

Procedia PDF Downloads 313
5218 Social Data-Based Users Profiles' Enrichment

Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick

Abstract:

In this paper, we propose a generic model of user profile integrating several elements that may positively impact the research process. We exploit the classical behavior of users and integrate a delimitation process of their research activities into several research sessions enriched with contextual and temporal information, which allows reflecting the current interests of these users in every period of time and infer data freshness. We argue that the annotation of resources gives more transparency on users' needs. It also strengthens social links among resources and users, and can so increase the scope of the user profile. Based on this idea, we integrate the social tagging practice in order to exploit the social users' behavior to enrich their profiles. These profiles are then integrated into a recommendation system in order to predict the interesting personalized items of users allowing to assist them in their researches and further enrich their profiles. In this recommendation, we provide users new research experiences.

Keywords: user profiles, topical ontology, contextual information, folksonomies, tags' clusters, data freshness, association rules, data recommendation

Procedia PDF Downloads 247