Search results for: fluid catalytic cracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3046

Search results for: fluid catalytic cracking

1696 A Density Functional Theory Study of Metal-Porphyrin Graphene for CO2 Hydration

Authors: Manju Verma, Parag A. Deshpande

Abstract:

Electronic structure calculations of hydrogen terminated metal-porphyrin graphene were carried out to explore the catalytic activity for CO2 hydration reaction. A ruthenium atom was substituted in place of carbon atom of graphene and ruthenium chelated carbon atoms were replaced by four nitrogen atoms in metal-porphyrin graphene system. Ruthenium atom created the active site for CO2 hydration reaction. Ruthenium-porphyrin graphene followed the mechanism of carbonic anhydrase enzyme for CO2 conversion to HCO3- ion. CO2 hydration reaction over ruthenium-porphyrin graphene proceeded via the elementary steps: OH- formation from H2O dissociation, CO2 bending in presence of nucleophilic attack of OH- ion, HCO3- ion formation from proton migration, HCO3- ion desorption by H2O addition. Proton transfer to yield HCO3- ion was observed as a rate limiting step from free energy landscape.

Keywords: ruthenium-porphyrin graphene, CO2 hydration, carbonic anhydrase, heterogeneous catalyst, density functional theory

Procedia PDF Downloads 257
1695 Designing Active Sites on Amicyanin Using Histidine S Plus Cobalt, and Measuring Their Functional Activity

Authors: Han-Bin Kim, Sooim Shin, Moonsung Choi

Abstract:

There is a growing interest in introducing a desired functional group on enzymes in the field of protein engineering. In here, various redox centers were newly created using histidine tag, which is widely used for protein purification, plus cobalt in one of cupredoxins, amicyanin. The coordination of Cobalt-His tag and reactivity of the Co²⁺ loaded His-tag also were characterized. 3xHis-tag, 6xHis-tag, and 9xHis-tag were introduced on amicyanin by site-directed mutagenesis, and then Co²⁺ was loaded on each His-tagged amicyanin. The spectral changes at 330 nm corresponding to cobalt binding on His-tag site indicated the binding ratio of 3xHis-tag, 6xHis-tag, and 9xHis-tag to cobalt as 1:1, 1:2, 1:3 respectively. Based on kinetic studies of binding cobalt to 3xHis-tag, 6xHis-tag, and 9xHis-tagged amicyanin, the nature of the sites was elucidated. In addition, internal electron transfer properties between Cu¹⁺ site and engineered site of amicyanin were determined. These results provide insight into improvement of metal coordination and alternation of the redox properties of metal as a new catalytic site on proteins.

Keywords: amicyanin, cobalt, histidine, protein engineering

Procedia PDF Downloads 161
1694 Cellulose Supported Heterogeneous Pd(II) Catalyst for Synthesis of Biaryls

Authors: Talat Baran

Abstract:

The Suzuki C(sp2)-C(sp2) coupling reaction is considered to be one of the best ways for the synthesis of biaryl compounds. There are many studies reporting the catalytic performance of palladium catalyst in Suzuki coupling reactions. Natural biopolymer (such as zeolite, carbon, silica, and chitosan) supporting catalysts have been lately attracted interest because of their low-cost, nontoxicity, and eco-friendliness. One of the most important natural biopolymer is cellulose, which is widely considered as an eco-friendly biopolymer due to its biodegradable, non-toxic and renewable nature. In this study, (1) cellulose supported Pd(II) catalyst was synthesized (2) its chemical structure was characterized by FT-IR, SEM/EDAX, XRD, TG-DTG, ICP-OES techniques (3) to investigate the performance of the catalyst in Suzuki coupling reactions by using microwave irradiation technique (4) reusability of the catalyst was done under optimum conditions. This cellulose supported Pd(II) catalyst exhibited high selectivity and efficiency in Suzuki coupling reactions under mild conditions (50°C). High TON and TOF values were recorded for the catalyst. Also, the reusability tests showed the catalysts could be used for several times in consequence of reusability tests.

Keywords: palladium, cellulose, Schiff base, reusability

Procedia PDF Downloads 249
1693 Simulation and Experimental Study on Dual Dense Medium Fluidization Features of Air Dense Medium Fluidized Bed

Authors: Cheng Sheng, Yuemin Zhao, Chenlong Duan

Abstract:

Air dense medium fluidized bed is a typical application of fluidization techniques for coal particle separation in arid areas, where it is costly to implement wet coal preparation technologies. In the last three decades, air dense medium fluidized bed, as an efficient dry coal separation technique, has been studied in many aspects, including energy and mass transfer, hydrodynamics, bubbling behaviors, etc. Despite numerous researches have been published, the fluidization features, especially dual dense medium fluidization features have been rarely reported. In dual dense medium fluidized beds, different combinations of different dense mediums play a significant role in fluidization quality variation, thus influencing coal separation efficiency. Moreover, to what extent different dense mediums mix and to what extent the two-component particulate mixture affects the fluidization performance and quality have been in suspense. The proposed work attempts to reveal underlying mechanisms of generation and evolution of two-component particulate mixture in the fluidization process. Based on computational fluid dynamics methods and discrete particle modelling, movement and evolution of dual dense mediums in air dense medium fluidized bed have been simulated. Dual dense medium fluidization experiments have been conducted. Electrical capacitance tomography was employed to investigate the distribution of two-component mixture in experiments. Underlying mechanisms involving two-component particulate fluidization are projected to be demonstrated with the analysis and comparison of simulation and experimental results.

Keywords: air dense medium fluidized bed, particle separation, computational fluid dynamics, discrete particle modelling

Procedia PDF Downloads 380
1692 Aeroacoustics Investigations of Unsteady 3D Airfoil for Different Angle Using Computational Fluid Dynamics Software

Authors: Haydar Kepekçi, Baha Zafer, Hasan Rıza Güven

Abstract:

Noise disturbance is one of the major factors considered in the fast development of aircraft technology. This paper reviews the flow field, which is examined on the 2D NACA0015 and 3D NACA0012 blade profile using SST k-ω turbulence model to compute the unsteady flow field. We inserted the time-dependent flow area variables in Ffowcs-Williams and Hawkings (FW-H) equations as an input and Sound Pressure Level (SPL) values will be computed for different angles of attack (AoA) from the microphone which is positioned in the computational domain to investigate effect of augmentation of unsteady 2D and 3D airfoil region noise level. The computed results will be compared with experimental data which are available in the open literature. As results; one of the calculated Cp is slightly lower than the experimental value. This difference could be due to the higher Reynolds number of the experimental data. The ANSYS Fluent software was used in this study. Fluent includes well-validated physical modeling capabilities to deliver fast, accurate results across the widest range of CFD and multiphysics applications. This paper includes a study which is on external flow over an airfoil. The case of 2D NACA0015 has approximately 7 million elements and solves compressible fluid flow with heat transfer using the SST turbulence model. The other case of 3D NACA0012 has approximately 3 million elements.

Keywords: 3D blade profile, noise disturbance, aeroacoustics, Ffowcs-Williams and Hawkings (FW-H) equations, k-ω-SST turbulence model

Procedia PDF Downloads 210
1691 Effect of Sintering Time and Porosity on Microstructure, Mechanical and Corrosion Properties of Ti6Al15Mo Alloy for Implant Applications

Authors: Jyotsna Gupta, S. Ghosh, S. Aravindan

Abstract:

The requirement of artificial prostheses (such as hip and knee joints) has increased with time. Many researchers are working to develop new implants with improved properties such as excellent biocompatibility with no tissue reactions, corrosion resistance in body fluid, high yield strength and low elastic modulus. Further, the morphological properties of the artificial implants should also match with that of the human bone so that cell adhesion, proliferation and transportation of the minerals and nutrition through body fluid can be obtained. Present study attempts to make porous Ti6Al15Mo alloys through powder metallurgy route using space holder technique. The alloy consists of 6wt% of Al which was taken as α phase stabilizer and 15wt% Mo was taken as β phase stabilizer with theoretical density 4.708. Ammonium hydrogen carbonate is used as a space holder in order to generate the porosity. The porosity of these fabricated porous alloys was controlled by adding the 0, 50, 70 vol.% of the space holder content. Three phases were found in the microstructure: α, α_2 and β phase of titanium. Kirkendall pores are observed to be decreased with increase of holding time during sintering and parallelly compressive strength and elastic modulus value increased slightly. Compressive strength and elastic modulus of porous Ti-6Al-15Mo alloy (1.17 g/cm3 density) is found to be suitable for cancellous bone. Released ions from Ti-6Al-15Mo alloy are far below from the permissible limits in human body.

Keywords: bone implant, powder metallurgy, sintering time, Ti-6Al-15Mo

Procedia PDF Downloads 143
1690 Level of IGF-I and IGFBP-3 in Gingival Crevicular Fluid and Plasma in Patients with Aggressive Periodontitis

Authors: Youjeong Hwang

Abstract:

Purpose: Insulin-like growth factor-I (IGF-I) promotes B-cell development, immunoglobulin formation, and interleukin-6 (IL-6) production, then regulate the immune response and inflammation. As IGF-I and their receptor also exist in the periodontal tissue, they may affect the immune response caused by periodontal pathogens in aggressive periodontitis (AgP) patients. The function of IGF is regulated by IGF binding proteins (IGFBPs), and IGFBP-3 is known to most abundant in plasma. The aim of the present study was to assess the concentration of IGF-I and IGFBP-3 in plasma and gingival crevicular fluid (GCF) in AgP patients and to find out their association. Methods: Nine patients with AgP (test group) and nine healthy subjects (control group) were included in this study. None of the subjects had a history of systemic disease, smoking or steroids medication. GCF samples were collected by microcapillary pipettes and plasma samples were obtained by venipuncture. Probing pocket depth (PD), clinical attachment level (CAL) and bleeding on probing (BOP) were recorded. Samples were assayed for IGF-I and IGFBP-3 levels using ELISA. Results: Mean IGF-I level in GCF was higher in the test group than control. Mean IGF-I level in plasma and IGFBP-3 level in GCF and plasma in control group were higher than that of the test group. However, there was no statistical significance (p > 0.05). The mean level of IGF-I and IGFBP-3 in GCF was lower than those in plasma. Mean IGF-I level in plasma showed a negative correlation with PD and CAL (p < 0.05) in both groups. The levels of IGF-I and IGFBP-3 in GCF seemed to be negatively correlated with BOP in the test group (p < 0.05). Conclusions: The difference in the level of IGF-I and IGFBP-3 between AgP and healthy subjects was not significant. Further studies that explain the mechanism of the protective role of IGF-I with more samples are needed.

Keywords: aggressive periodontitis, pathogenesis, insulin-like growth factor, insulin-like growth factor binding protein

Procedia PDF Downloads 209
1689 Effects of Rumen Protozoa and Nitrate on Fermentation and Methane Production

Authors: S. H. Nguyen, L. Li, R. S. Hegarty

Abstract:

Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in-vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing coconut oil distillate 4.5% (COD) for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation. On d 48, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 48, 55, 62 and 69 were incubated for 23h in-vitro (experiment 1). On day 82, 2% of NO3 (as NaNO3) was included in in-vitro incubations (experiment 2) to test for additivity of NO3 and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production, with methane production rate significantly higher from refaunated heifers than from defaunated heifers 7, 14 and 21 d after refaunation. Concentration and proportions of major VFA, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in-vitro.

Keywords: defaunation, nitrate, fermentation, methane production

Procedia PDF Downloads 557
1688 3D Numerical Investigation of Asphalt Pavements Behaviour Using Infinite Elements

Authors: K. Sandjak, B. Tiliouine

Abstract:

This article presents the main results of three-dimensional (3-D) numerical investigation of asphalt pavement structures behaviour using a coupled Finite Element-Mapped Infinite Element (FE-MIE) model. The validation and numerical performance of this model are assessed by confronting critical pavement responses with Burmister’s solution and FEM simulation results for multi-layered elastic structures. The coupled model is then efficiently utilised to perform 3-D simulations of a typical asphalt pavement structure in order to investigate the impact of two tire configurations (conventional dual and new generation wide-base tires) on critical pavement response parameters. The numerical results obtained show the effectiveness and the accuracy of the coupled (FE-MIE) model. In addition, the simulation results indicate that, compared with conventional dual tire assembly, single wide base tire caused slightly greater fatigue asphalt cracking and subgrade rutting potentials and can thus be utilised in view of its potential to provide numerous mechanical, economic, and environmental benefits.

Keywords: 3-D numerical investigation, asphalt pavements, dual and wide base tires, Infinite elements

Procedia PDF Downloads 213
1687 A Real-World Roadmap and Exploration of Quantum Computers Capacity to Trivialise Internet Security

Authors: James Andrew Fitzjohn

Abstract:

This paper intends to discuss and explore the practical aspects of cracking encrypted messages with quantum computers. The theory of this process has been shown and well described both in academic papers and headline-grabbing news articles, but with all theory and hyperbole, we must be careful to assess the practicalities of these claims. Therefore, we will use real-world devices and proof of concept code to prove or disprove the notion that quantum computers will render the encryption technologies used by many websites unfit for purpose. It is time to discuss and implement the practical aspects of the process as many advances in quantum computing hardware/software have recently been made. This paper will set expectations regarding the useful lifespan of RSA and cipher lengths and propose alternative encryption technologies. We will set out comprehensive roadmaps describing when and how encryption schemes can be used, including when they can no longer be trusted. The cost will also be factored into our investigation; for example, it would make little financial sense to spend millions of dollars on a quantum computer to factor a private key in seconds when a commodity GPU could perform the same task in hours. It is hoped that the real-world results depicted in this paper will help influence the owners of websites who can take appropriate actions to improve the security of their provisions.

Keywords: quantum computing, encryption, RSA, roadmap, real world

Procedia PDF Downloads 130
1686 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur Nidhi

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study

Procedia PDF Downloads 304
1685 A Fast Chemiresistive H₂ Gas Sensor Based on Sputter Grown Nanocrystalline P-TiO₂ Thin Film Decorated with Catalytic Pd-Pt Layer on P-Si Substrate

Authors: Jyoti Jaiswal, Satyendra Mourya, Gaurav Malik, Ramesh Chandra

Abstract:

In the present work, we have fabricated and studied a resistive H₂ gas sensor based on Pd-Pt decorated room temperature sputter grown nanocrystalline porous titanium dioxide (p-TiO₂) thin film on porous silicon (p-Si) substrate for fast H₂ detection. The gas sensing performance of Pd-Pt/p-TiO₂/p-Si sensing electrode towards H₂ gas under low (10-500 ppm) detection limit and operating temperature regime (25-200 °C) was discussed. The sensor is highly sensitive even at room temperature, with response (Ra/Rg) reaching ~102 for 500 ppm H₂ in dry air and its capability of sensing H₂ concentrations as low as ~10 ppm was demonstrated. At elevated temperature of 200 ℃, the response reached more than ~103 for 500 ppm H₂. Overall the fabricated resistive gas sensor exhibited high selectivity, good sensing response, and fast response/recovery time with good stability towards H₂.

Keywords: sputtering, porous silicon (p-Si), TiO₂ thin film, hydrogen gas sensor

Procedia PDF Downloads 256
1684 Iron(III)-Tosylate Doped PEDOT and PEG: A Nanoscale Conductivity Study of an Electrochemical System with Biosensing Applications

Authors: Giulio Rosati, Luciano Sappia, Rossana Madrid, Noemi Rozlòsnik

Abstract:

The addition of PEG of different molecular weights has important effects on the physical, electrical and electrochemical properties of iron(III)-tosylate doped PEDOT. This particular polymer can be easily spin coated over plastic discs, optimizing thickness and uniformity of the PEDOT-PEG films. The conductivity and morphological analysis of the hybrid PEDOT-PEG polymer by 4-point probe (4PP), 12-point probe (12PP), and conductive AFM (C-AFM) show strong effects of the PEG doping. Moreover, the conductive films kinetics at the nanoscale, in response to different bias voltages, change radically depending on the PEG molecular weight. The hybrid conductive films show also interesting electrochemical properties, making the PEDOT PEG doping appealing for biosensing applications both for EIS-based and amperometric affinity/catalytic biosensors.

Keywords: atomic force microscopy, biosensors, four-point probe, nano-films, PEDOT

Procedia PDF Downloads 341
1683 Nanocomposite Metal Material: Study of Antimicrobial and Catalytic Properties

Authors: Roman J. Jedrzejczyk, Damian K. Chlebda, Anna Dziedzicka, Rafal Wazny, Agnieszka Domka, Maciej Sitarz, Przemyslaw J. Jodlowski

Abstract:

The aim of this study was to obtain antimicrobial material based on thin zirconium dioxide coatings on structured reactors doped with metal nanoparticles using the sonochemical sol-gel method. As a result, dense, uniform zirconium dioxide films were obtained on the kanthal sheets which can be used as support materials in antimicrobial converters with sophisticated shapes. The material was characterised by physicochemical methods, such as AFM, SEM, EDX, XRF, XRD, XPS and in situ Raman and DRIFT spectroscopy. In terms of antimicrobial activity, the material was tested by ATP/AMP method using model microbes isolated from the real systems. The results show that the material can be potentially used in the market as a good candidate for active package and as active bulkheads of climatic systems. The mechanical tests showed that the developed method is an efficient way to obtain durable converters with high antimicrobial activity against fungi and bacteria.

Keywords: antimicrobial properties, kanthal steel, nanocomposite, zirconium oxide

Procedia PDF Downloads 198
1682 Reactivity of Clay Minerals of the Hydrocarbon Reservoir Rocks and the Effect of Zeolites on Operation and Production Costs That the Oil Industry in the World Assumes

Authors: Carlos Alberto Ríos Reyes

Abstract:

Traditionally, clays have been considered as one of the main problems in the flow of fluids in hydrocarbon reservoirs. However, there is not known the significance of zeolites formed from the reactivity of clays and their effect not only on the costs of operations carried out by the oil industry in the world but also on production. The present work focused on understanding the interaction between clay minerals with brines and alkaline solutions used in the oil industry. For this, a comparative study was conducted where the reaction of sedimentary rocks under laboratory conditions was examined. Original and treated rocks were examined by X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM) to determine the changes that these rocks underwent upon contact with fluids of variable chemical composition. As a result, zeolite Linde Type A (LTA), sodalite (SOD), and cancrinite (CAN) can be formed after experimental work, which coincided with the dissolution of kaolinite and smectite. Results reveal that the Oil Industry should invest efforts and focus its gaze to understand at the pore scale the problem that could arise as a consequence of the clay-fluid interaction in hydrocarbon reservoir rocks due to the presence of clays in their porous system, as well as the formation of zeolites, which are better hydrocarbon absorbents. These issues could be generating losses in world production. We conclude that there is a critical situation that may be occurring in the stimulation of hydrocarbon reservoirs, where real solutions are necessary not only for the formulation of more efficient and effective injection fluids but also to contribute to the improvement of production and avoid considerable losses in operating costs.

Keywords: clay minerals, zeolites, rock-fluid interaction, experimental work, reactivity

Procedia PDF Downloads 83
1681 Experimental Behavior of Composite Shear Walls Having L Shape Steel Sections in Boundary Regions

Authors: S. Bahadır Yüksel, Alptuğ Ünal

Abstract:

The composite shear walls (CSW) with steel encased profiles can be used as lateral-load resisting systems for buildings that require considerable large lateral-load capacity. The aim of this work is to propose the experimental work conducted on CSW having L section folded plate (L shape steel made-up sections) as longitudinal reinforcement in boundary regions. The study in this paper present the experimental test conducted on CSW having L section folded plate as longitudinal reinforcement in boundary regions. The tested 1/3 geometric scaled CSW has aspect ratio of 3.2. L-shape structural steel materials with 2L-19x57x7mm dimensions were placed in shear wall boundary zones. The seismic behavior of CSW test specimen was investigated by evaluating and interpreting the hysteresis curves, envelope curves, rigidity and consumed energy graphs of this tested element. In addition to this, the experimental results, deformation and cracking patterns were evaluated, interpreted and suggestions of the design recommendations were proposed.

Keywords: shear wall, composite shear wall, boundary reinforcement, earthquake resistant structural design, L section

Procedia PDF Downloads 328
1680 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 234
1679 Modeling and Optimal Control of Acetylene Catalytic Hydrogenation Reactor in Olefin Plant by Artificial Neural Network

Authors: Faezeh Aghazadeh, Mohammad Javad Sharifi

Abstract:

The application of neural networks to model a full-scale industrial acetylene hydrogenation in olefin plant has been studied. The operating variables studied are the, input-temperature of the reactor, output-temperature of the reactor, hydrogen ratio of the reactor, [C₂H₂]input, and [C₂H₆]input. The studied operating variables were used as the input to the constructed neural network to predict the [C₂H₆]output at any time as the output or the target. The constructed neural network was found to be highly precise in predicting the quantity of [C₂H₆]output for the new input data, which are kept unaware of the trained neural network showing its applicability to determine the [C₂H₆]output for any operating conditions. The enhancement of [C₂H₆]output as compared with [C₂H₆]input was a consequence of low selective acetylene hydrogenation to ethylene.

Keywords: acetylene hydrogenation, Pd-Ag/Al₂O₃, artificial neural network, modeling, optimal design

Procedia PDF Downloads 274
1678 Effect of Modifiers (Sr/Sb) and Heat Treatment on the Microstructures and Wear Properties of Al-11Si-3Cu-0.5Mg Alloys

Authors: Sheng-Long Lee, Tse-An Pan

Abstract:

In this study, an optical microscope (OM), electron microscope (SEM), electrical conductivity meter (% IACS), hardness test, and wear test were subjected to analyze the microstructure of the wrought Al-11Si-3Cu-0.5Mg alloys. The effect of eutectic silicon morphology and alloy hardness on wear properties was investigated. The results showed that in the cast state, the morphology of eutectic silicon modified by strontium and antimony is lamellar and finer fibrous structure. After homogenization, the eutectic Si modified by Sr coarsened, and the eutectic Si modified by Sb refined due to fragmentation. The addition of modifiers, hot rolling, and solution aging treatment can control eutectic silicon morphology and hardness. The finer eutectic silicon and higher hardness have better wear resistance. During the wearing process, a protective oxide layer, also known as Mechanical Mixed Layer (MML), is formed on the surface of the alloy. The MML has higher stability and cracking resistance in Sr-modified alloys than in Sb-modified alloys. The study found that the wearing behavior of Al-11Si-3Cu-0.5Mg alloy was enhanced by the combination of adding Sr with lower solution time and T6 peak aging.

Keywords: Al-Si-Cu-Mg alloy, eutectic silicon, heat treatment, wear property

Procedia PDF Downloads 78
1677 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application

Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal

Abstract:

This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.

Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism

Procedia PDF Downloads 135
1676 Modelling and Simulation Efforts in Scale-Up and Characterization of Semi-Solid Dosage Forms

Authors: Saurav S. Rath, Birendra K. David

Abstract:

Generic pharmaceutical industry has to operate in strict timelines of product development and scale-up from lab to plant. Hence, detailed product & process understanding and implementation of appropriate mechanistic modelling and Quality-by-design (QbD) approaches are imperative in the product life cycle. This work provides example cases of such efforts in topical dosage products. Topical products are typically in the form of emulsions, gels, thick suspensions or even simple solutions. The efficacy of such products is determined by characteristics like rheology and morphology. Defining, and scaling up the right manufacturing process with a given set of ingredients, to achieve the right product characteristics presents as a challenge to the process engineer. For example, the non-Newtonian rheology varies not only with CPPs and CMAs but also is an implicit function of globule size (CQA). Hence, this calls for various mechanistic models, to help predict the product behaviour. This paper focusses on such models obtained from computational fluid dynamics (CFD) coupled with population balance modelling (PBM) and constitutive models (like shear, energy density). In a special case of the use of high shear homogenisers (HSHs) for the manufacture of thick emulsions/gels, this work presents some findings on (i) scale-up algorithm for HSH using shear strain, a novel scale-up parameter for estimating mixing parameters, (ii) non-linear relationship between viscosity and shear imparted into the system, (iii) effect of hold time on rheology of product. Specific examples of how this approach enabled scale-up across 1L, 10L, 200L, 500L and 1000L scales will be discussed.

Keywords: computational fluid dynamics, morphology, quality-by-design, rheology

Procedia PDF Downloads 268
1675 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 152
1674 Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System

Authors: Krittiya Pornmai, Sumaeth Chavadej

Abstract:

The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes.

Keywords: natural gas, reforming process, gliding arc discharge, plasma technology

Procedia PDF Downloads 173
1673 The Use of PD and Tanδ Characteristics as Diagnostic Technique for the Insulation Integrity of XLPE Insulated Cable Joints

Authors: Mazen Al-Bulaihed, Nissar Wani, Abdulrahman Al-Arainy, Yasin Khan

Abstract:

Partial Discharge (PD) measurements are widely used for diagnostic purposes in electrical equipment used in power systems. The main cause of these measurements is to prevent large power failures as cables are prone to aging, which usually results in embrittlement, cracking and eventual failure of the insulating and sheathing materials, exposing the conductor and risking a potential short circuit, a likely cause of the electrical fire. Many distribution networks rely heavily on medium voltage (MV) power cables. The presence of joints in these networks is a vital part of serving the consumer demand for electricity continuously. Such measurements become even more important when the extent of dependence increases. Moreover, it is known that the partial discharge in joints and termination are difficult to track and are the most crucial point of failures in large power systems. This paper discusses the diagnostic techniques of four samples of XLPE insulated cable joints, each included with a different type of defect. Experiments were carried out by measuring PD and tanδ at very low frequency applied high voltage. The results show the importance of combining PD and tanδ for effective cable assessment.

Keywords: partial discharge, tan delta, very low frequency, XLPE cable

Procedia PDF Downloads 162
1672 An Experimental Study of Bolt Inclination in a Composite Single Bolted Joint

Authors: Youcef Faci, Djillali Allou, Ahmed Mebtouche, Badredine Maalem

Abstract:

The inclination of the bolt in a fastened joint of composite material during a tensile test can be influenced by several parameters, including material properties, bolt diameter and length, the type of composite material being used, the size and dimensions of the bolt, bolt preload, surface preparation, the design and configuration of the joint, and finally testing conditions. These parameters should be carefully considered and controlled to ensure accurate and reliable results during tensile testing of composite materials with fastened joints. Our work focuses on the effect of the stacking sequence and the geometry of specimens. An experimental test is carried out to obtain the inclination of a bolt during a tensile test of a composite material using acoustic emission and digital image correlation. Several types of damage were obtained during load. Digital image correlation techniques permit to obtain the inclination of bolt angle value during tensile test. We concluded that the inclination of the bolt during a tensile test of a composite material can be related to the damage that occurs in the material. It can cause stress concentrations and localized deformation in the material, leading to damage such as delamination, fiber breakage, matrix cracking, and other forms of failure.

Keywords: damage, digital image correlation, bolt inclination angle, joint

Procedia PDF Downloads 67
1671 In Situ Laser-Induced Synthesis of Copper Microstructures with High Catalytic Properties and Sensory Characteristics

Authors: Maxim Panov, Evgenia Khairullina, Sergey Ermakov, Oleg Gundobin, Vladimir Kochemirovsky

Abstract:

The continuous in situ laser-induced catalysis proceeding via generation and growth of nano-sized copper particles was discussed. Also, the simple and lost-cost method for manufacturing of microstructural copper electrodes was proposed. The electrochemical properties of these electrodes were studied by cyclic voltammetry and impedance spectroscopy. The surface of the deposited copper structures (electrodes) was investigated by X-ray photoelectron spectroscopy and atomic force microscopy. These microstructures are highly conductive and porous with a dispersion of pore size ranging from 50 nm to 50 μm. An analytical response of the fabricated copper electrode is 30 times higher than those observed for a pure bulk copper with similar geometric parameters. A study of sensory characteristics for hydrogen peroxide determination showed that the value of Faraday current at the fabricated copper electrode is 2-2.5 orders of magnitude higher than for etalon one.

Keywords: laser-induced deposition, electrochemical electrodes, non-enzymatic sensors, copper

Procedia PDF Downloads 243
1670 Orientia Tsutsugamushi an Emerging Etiology of Acute Encephalitis Syndrome in Northern Part of India

Authors: Amita Jain, Shantanu Prakash, Suruchi Shukla

Abstract:

Introduction: Acute encephalitis syndrome (AES) is a complex multi etiology syndrome posing a great public health problem in the northern part of India. Japanese encephalitis (JE) virus is an established etiology of AES in this region. Recently, Scrub typhus (ST) is being recognized as an emerging aetiology of AES in JE endemic belt. This study was conducted to establish the direct evidence of Central nervous system invasion by Orientia tsutsugamushi leading to AES. Methodology: A total of 849 cases with clinical diagnosis of AES were enrolled from six districts (Deoria and its adjoining area) of the traditional north Indian Japanese encephalitis (JE) belt. Serum and Cerebrospinal fluid samples were collected and tested for major agent causing acute encephalitis. AES cases either positive for anti-ST IgM antibodies or negative for all tested etiologies were investigated for ST-DNA by real-time PCR. Results: Of these 505 cases, 250 patients were laboratory confirmed for O. tsutsugamushi infection either by anti-ST IgM antibodies positivity (n=206) on serum sample or by ST-DNA detection by real-time PCR assay on CSF sample (n=2) or by both (n=42).Total 29 isolate could be sequenced for 56KDa gene. Conclusion: All the strains were found to cluster with Gilliam strains. The majority of the isolates showed a 97–99% sequence similarity with Thailand and Cambodian strains. Gilliam strain of O.tsusugamushi is an emerging as one of the major aetiologies leading to AES in northern part of India.

Keywords: acute encephalitis syndrome, O. tsutsugamushi, Gilliam strain, North India, cerebrospinal fluid

Procedia PDF Downloads 249
1669 Fire and Explosion Consequence Modeling Using Fire Dynamic Simulator: A Case Study

Authors: Iftekhar Hassan, Sayedil Morsalin, Easir A Khan

Abstract:

Accidents involving fire occur frequently in recent times and their causes showing a great deal of variety which require intervention methods and risk assessment strategies are unique in each case. On September 4, 2020, a fire and explosion occurred in a confined space caused by a methane gas leak from an underground pipeline in Baitus Salat Jame mosque during Night (Esha) prayer in Narayanganj District, Bangladesh that killed 34 people. In this research, this incident is simulated using Fire Dynamics Simulator (FDS) software to analyze and understand the nature of the accident and associated consequences. FDS is an advanced computational fluid dynamics (CFD) system of fire-driven fluid flow which solves numerically a large eddy simulation form of the Navier–Stokes’s equations for simulation of the fire and smoke spread and prediction of thermal radiation, toxic substances concentrations and other relevant parameters of fire. This study focuses on understanding the nature of the fire and consequence evaluation due to thermal radiation caused by vapor cloud explosion. An evacuation modeling was constructed to visualize the effect of evacuation time and fractional effective dose (FED) for different types of agents. The results were presented by 3D animation, sliced pictures and graphical representation to understand fire hazards caused by thermal radiation or smoke due to vapor cloud explosion. This study will help to design and develop appropriate respond strategy for preventing similar accidents.

Keywords: consequence modeling, fire and explosion, fire dynamics simulation (FDS), thermal radiation

Procedia PDF Downloads 223
1668 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS

Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong

Abstract:

With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.

Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition

Procedia PDF Downloads 366
1667 Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading

Authors: Osama Amer, Yaser Abdel-Aty, Mohamed Abd El Hady

Abstract:

The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models.

Keywords: masonry, three-leaf walls, mechanical behavior, testing, architectural heritage

Procedia PDF Downloads 289