Search results for: reforming process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14833

Search results for: reforming process

14833 Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System

Authors: Krittiya Pornmai, Sumaeth Chavadej

Abstract:

The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes.

Keywords: natural gas, reforming process, gliding arc discharge, plasma technology

Procedia PDF Downloads 140
14832 Simulation of the Performance of the Reforming of Methane in a Primary Reformer

Authors: A. Alkattib, M. Boumaza

Abstract:

Steam reforming is industrially important as it is incorporated in several major chemical processes including the production of ammonia, methanol, hydrogen and ox alcohols. Due to the strongly endothermic nature of the process, a large amount of heat is supplied by fuel burning (commonly natural gas) in the furnace chamber. Reaction conversions, tube catalyst life, energy consumption and CO2 emission represent the principal factors affecting the performance of this unit and are directly influenced by the high operating temperatures and pressures. This study presents a simulation of the performance of the reforming of methane in a primary reformer, through a developed empirical relation which enables to investigate the effects of operating parameters such as the pressure, temperature, steam to carbon ratio on the production of hydrogen, as well as the fraction of non-converted methane. It appears from this analysis that the exit temperature Te, the operating pressure as well the steam to carbon ratio has an important effect on the reforming of methane.

Keywords: reforming, methane, performance, hydrogen, parameters

Procedia PDF Downloads 185
14831 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 145
14830 Iridium-Based Bimetallic Catalysts for Hydrogen Production through Glycerol Aqueous-Phase Reforming

Authors: Francisco Espinosa, Juan Chavarría

Abstract:

Glycerol is a byproduct of biodiesel production that can be used for aqueous-phase reforming to obtain hydrogen. Iridium is a material that has high activity and hydrogen selectivity for steam phase reforming. Nevertheless, a drawback for the use of iridium in aqueous-phase reforming is the low activity in water-gas shift reaction. Therefore, in this work, it is proposed the use of nickel and copper as a second metal in the catalyst to reach a synergetic effect. Iridium, iridium-nickel and iridium-copper catalysts were prepared by incipient wetness impregnation and evaluated in the aqueous-phase reforming of glycerol using CeO₂ or La₂O₃ as support. The catalysts were characterized by XRD, XPS, and EDX. The reactions were carried out in a fixed bed reactor feeding a solution of glycerol 10 wt% in water at 270°C, and reaction products were analyzed by gas chromatography. It was found that IrNi/CeO₂ reached highest glycerol conversion and hydrogen production, slightly above 70% and 43 vol% respectively. In terms of conversion, iridium is a promising metal, and its activity for hydrogen production can be enhanced when adding a second metal.

Keywords: aqueous-phase reforming, glycerol, hydrogen production, iridium

Procedia PDF Downloads 285
14829 Development of Membrane Reactor for Auto Thermal Reforming of Dimethyl Ether for Hydrogen Production

Authors: Tie-Qing Zhang, Seunghun Jung, Young-Bae Kim

Abstract:

This research is devoted to developing a membrane reactor to flexibly meet the hydrogen demand of onboard fuel cells, which is an important part of green energy development. Among many renewable chemical products, dimethyl ether (DME) has the advantages of low reaction temperature (400 °C in this study), high hydrogen atom content, low toxicity, and easy preparation. Autothermal reforming, on the other hand, has a high hydrogen recovery rate and exhibits thermal neutrality during the reaction process, so the additional heat source in the hydrogen production process can be omitted. Therefore, the DME auto thermal reforming process was adopted in this study. To control the temperature of the reaction catalyst bed and hydrogen production rate, a Model Predictive Control (MPC) scheme was designed. Taking the above two variables as the control objectives, stable operation of the reformer can be achieved by controlling the flow rates of DME, steam, and high-purity air in real-time. To prevent catalyst poisoning in the fuel cell, the hydrogen needs to be purified to reduce the carbon monoxide content to below 50 ppm. Therefore, a Pd-Ag hydrogen semi-permeable membrane with a thickness of 3-5 μm was inserted into the auto thermal reactor, and the permeation efficiency of hydrogen was improved by steam purging on the permeation side. Finally, hydrogen with a purity of 99.99 was obtained.

Keywords: hydrogen production, auto thermal reforming, membrane, fuel cell

Procedia PDF Downloads 58
14828 Produced Gas Conversion of Microwave Carbon Receptor Reforming

Authors: Young Nam Chun, Mun Sup Lim

Abstract:

Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used. 

Keywords: microwave, gas reforming, greenhouse gas, microwave receptor, catalyst

Procedia PDF Downloads 338
14827 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts

Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo

Abstract:

Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.

Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia

Procedia PDF Downloads 149
14826 Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell

Authors: Kwangho Lee, Joongmyeon Bae

Abstract:

Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application.

Keywords: hydrogen, diesel, reforming, ATR, WGS, PROX, membrane, pressure

Procedia PDF Downloads 380
14825 Intensification of Process Kinetics for Conversion of Organic Volatiles into Syngas Using Non-Thermal Plasma

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Manomita Mollick, Gartzen Lopez, Martin Olazar

Abstract:

The entire world is skeptical towards a silver line technology of converting plastic waste into valuable synthetic gas. At this junction, besides an adequately studied conventional catalytic process for steam reforming, a non-thermal plasma is being introduced. Organic volatiles are produced in the first step, pyrolysing the plastic materials. Resultant lightweight olefins and carbon monoxide are the major components that undergo a steam reforming process to achieve syngas. A non-thermal plasma consists of ionized gases and free electrons with an electronic temperature as high as 10³ K. Organic volatiles are, in general, endorganics inactive and thus demand huge bond-breaking energy. Conventional catalyst is incapable of providing the required activation energy, leading to poor thermodynamic equilibrium, whereas a non-thermal plasma can actively collide with reactants to produce a rich mix of reactive species, including vibrationally or electronically excited molecules, radicals, atoms, and ions. In addition, non-thermal plasma provides nonequilibrium conditions leading to electric discharge only in certain degrees of freedom without affecting the intrinsic chemical conditions of the participating reactants and products. In this work, we report thermodynamic and kinetic aspects of the conversion of organic volatiles into syngas using a non-thermal plasma. Detailed characteristics of plasma and its effect on the overall yield of the process will be presented.

Keywords: non thermal plasma, plasma catalysis, steam reforming, syngas, plastic waste, green energy

Procedia PDF Downloads 25
14824 The Feasibility of Glycerol Steam Reforming in an Industrial Sized Fixed Bed Reactor Using Computational Fluid Dynamic (CFD) Simulations

Authors: Mahendra Singh, Narasimhareddy Ravuru

Abstract:

For the past decade, the production of biodiesel has significantly increased along with its by-product, glycerol. Biodiesel-derived glycerol massive entry into the glycerol market has caused its value to plummet. Newer ways to utilize the glycerol by-product must be implemented or the biodiesel industry will face serious economic problems. The biodiesel industry should consider steam reforming glycerol to produce hydrogen gas. Steam reforming is the most efficient way of producing hydrogen and there is a lot of demand for it in the petroleum and chemical industries. This study investigates the feasibility of glycerol steam reforming in an industrial sized fixed bed reactor. In this paper, using computational fluid dynamic (CFD) simulations, the extent of the transport resistances that would occur in an industrial sized reactor can be visualized. An important parameter in reactor design is the size of the catalyst particle. The size of the catalyst cannot be too large where transport resistances are too high, but also not too small where an extraordinary amount of pressure drop occurs. The goal of this paper is to find the best catalyst size under various flow rates that will result in the highest conversion. Computational fluid dynamics simulated the transport resistances and a pseudo-homogenous reactor model was used to evaluate the pressure drop and conversion. CFD simulations showed that glycerol steam reforming has strong internal diffusion resistances resulting in extremely low effectiveness factors. In the pseudo-homogenous reactor model, the highest conversion obtained with a Reynolds number of 100 (29.5 kg/h) was 9.14% using a 1/6 inch catalyst diameter. Due to the low effectiveness factors and high carbon deposition rates, a fluidized bed is recommended as the appropriate reactor to carry out glycerol steam reforming.

Keywords: computational fluid dynamic, fixed bed reactor, glycerol, steam reforming, biodiesel

Procedia PDF Downloads 276
14823 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene

Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell

Abstract:

A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.

Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO

Procedia PDF Downloads 118
14822 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation

Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang

Abstract:

Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.

Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method

Procedia PDF Downloads 178
14821 Nickel Catalyst Promoted with Lanthanum- Alumina for Dry Reforming of Methane

Authors: Radia Imane Fertout

Abstract:

In recent years, the reaction of dry reforming of methane (DRM) has attracted much attention due to its environmental and industrial importance. Various catalysts, including Ni-based catalysts, have been investigated for the DRM. Doping Ni/Al₂O₃ by lanthanum and alkaline earth element may strongly influence solid-state reaction and increases the stability of catalysts due to the lower density and high basicity of these oxides. The effect of SrO on the activity and stability of Ni/Al₂O₃-La₂O₃ in dry reforming of methane was investigated. These catalysts have been prepared with the impregnation method, calcined in air at 450 and 650°C, then characterized by BET surface area, X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques and tested in DRM. The results showed that the addition of strontium to Ni/Al2O₃-La₂O₃ decreased the specific surface area. XRD results revealed the presence of different phases of Al₂O₃, La(OH)₃, La₂O₂CO₃, and SrCO₃. The catalytic evaluation results showed that adding SrO increased the catalytic activity and stability, that explained by the strong basicity of strontium. SEM analysis after the reaction indicates the formation of carbon over the spent catalyst and that the addition of strontium stabilized the surface of the catalyst.

Keywords: dry reforming of methane, Ni/Al₂O₃-La₂O₃ catalyst, strontium, nickel

Procedia PDF Downloads 42
14820 Parametric Analysis of Syn-gas Fueled SOFC with Internal Reforming

Authors: Sanjay Tushar Choudhary

Abstract:

This paper focuses on the thermodynamic analysis of Solid Oxide Fuel Cell (SOFC). In the present work the SOFC has been modeled to work with internal reforming of fuel which takes place at high temperature and direct energy conversion from chemical energy to electrical energy takes place. The fuel-cell effluent is a high-temperature steam which can be used for co-generation purposes. Syn-gas has been used here as fuel which is essentially produced by steam reforming of methane in the internal reformer of the SOFC. A thermodynamic model of SOFC has been developed for planar cell configuration to evaluate various losses in the energy conversion process within the fuel cell. Cycle parameters like fuel utilization ratio and the air-recirculation ratio have been varied to evaluate the thermodynamic performance of the fuel cell. Output performance parameters like terminal voltage, cell-efficiency and power output have been evaluated for various values of current densities. It has been observed that a combination of a lower value of air-circulation ratio and higher values of fuel utilization efficiency gives a better overall thermodynamic performance.

Keywords: current density, SOFC, suel utilization factor, recirculation ratio

Procedia PDF Downloads 471
14819 Microwave Plasma Dry Reforming of Methane at High CO2/CH4 Feed Ratio

Authors: Nabil Majd Alawi, Gia Hung Pham, Ahmed Barifcani

Abstract:

Dry reforming of methane that converts two greenhouses gases (CH4 and CO2) to synthesis gas (a mixture of H2 and CO) was studied in a commercial bench scale microwave (MW) plasma reactor system at atmospheric pressure. The CO2, CH4 and N2 conversions; H2, CO selectivities and yields, and syngas ratio (H2/CO) were investigated in a wide range of total feed flow rate (0.45 – 2.1 L/min), MW power (700 – 1200 watt) and CO2/CH4 molar ratio (2 – 5). At the feed flow rates of CH4, CO2 and N2 of 0.2, 0.4 and 1.5 L/min respectively, and the MWs input power of 700 W, the highest conversions of CH4 and CO2, selectivity and yield of H2, CO and H2/CO ratio of 79.35%, 44.82%, 50.12, 58.42, 39.77%, 32.89%, and 0.86, respectively, were achieved. The results of this work show that the product ratio increases slightly with the increasing total feed flow rate, but it decreases significantly with the increasing MW power and feeds CO2/CH4 ratio.

Keywords: dry reforming of methane, microwave discharge, plasma technology, synthesis gas production

Procedia PDF Downloads 234
14818 Bio-Oil Compounds Sorption Enhanced Steam Reforming

Authors: Esther Acha, Jose Cambra, De Chen

Abstract:

Hydrogen is considered an important energy vector for the 21st century. Nowadays there are some difficulties for hydrogen economy implantation, and one of them is the high purity required for hydrogen. This energy vector is still being mainly produced from fuels, from wich hydrogen is produced as a component of a mixture containing other gases, such as CO, CO2 and H2O. A forthcoming sustainable pathway for hydrogen is steam-reforming of bio-oils derived from biomass, e.g. via fast pyrolysis. Bio-oils are a mixture of acids, alcohols, aldehydes, esters, ketones, sugars phenols, guaiacols, syringols, furans, multi-functional compounds and also up to a 30 wt% of water. The sorption enhanced steam reforming (SESR) process is attracting a great deal of attention due to the fact that it combines both hydrogen production and CO2 separation. In the SESR process, carbon dioxide is captured by an in situ sorbent, which shifts the reversible reforming and water gas shift reactions to the product side, beyond their conventional thermodynamic limits, giving rise to a higher hydrogen production and lower cost. The hydrogen containing mixture has been obtained from the SESR of bio-oil type compounds. Different types of catalysts have been tested. All of them contain Ni at around a 30 wt %. Two samples have been prepared with the wet impregnation technique over conventional (gamma alumina) and non-conventional (olivine) supports. And a third catalysts has been prepared over a hydrotalcite-like material (HT). The employed sorbent is a commercial dolomite. The activity tests were performed in a bench-scale plant (PID Eng&Tech), using a stainless steel fixed bed reactor. The catalysts were reduced in situ in the reactor, before the activity tests. The effluent stream was cooled down, thus condensed liquid was collected and weighed, and the gas phase was analysed online by a microGC. The hydrogen yield, and process behavior was analysed without the sorbent (the traditional SR where a second purification step will be needed but that operates in steady state) and the SESR (where the purification step could be avoided but that operates in batch state). The influence of the support type and preparation method will be observed in the produced hydrogen yield. Additionally, the stability of the catalysts is critical, due to the fact that in SESR process sorption-desorption steps are required. The produced hydrogen yield and hydrogen purity has to be high and also stable, even after several sorption-desorption cycles. The prepared catalysts were characterized employing different techniques to determine the physicochemical properties of the fresh-reduced and used (after the activity tests) materials. The characterization results, together with the activity results show the influence of the catalysts preparation method, calcination temperature, or can even explain the observed yield and conversion.

Keywords: CO2 sorbent, enhanced steam reforming, hydrogen

Procedia PDF Downloads 544
14817 Preparation and Characterization of a Nickel-Based Catalyst Supported by Silica Promoted by Cerium for the Methane Steam Reforming Reaction

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

Natural gas currently represents a raw material of choice for the manufacture of a wide range of chemical products via synthesis gas, among the routes of transformation of methane into synthesis gas The reaction of the oxidation of methane by gas vapor 'water. This work focuses on the study of the effect of cerieum on the nickel-based catalyst supported by silica for the methane vapor reforming reaction, with a variation of certain parameters of the reaction. The reaction temperature, the H₂O / CH₄ ratio and the flow rate of the reaction mixture (CH₄-H₂O). Two catalysts were prepared by impregnation of Degussa silica with a solution of nickel nitrates and a solution of cerium nitrates [Ni (NO₃) 2 6H₂O and Ce (NO₃) 3 6H₂O] so as to obtain the 1.5% nickel concentrations. For both catalysts and plus 1% cerium for the second catalyst. These Catalysts have been characterized by physical and chemical analysis techniques: BET technique, Atomic Absorption, IR Spectroscopy, X-ray diffraction. These characterizations indicated that the nitrates had impregnated the silica. And that the NiO and Ce₂O3 phases are present and Ni°(after reaction). The BET surface of the silica decreases without being affected. The catalytic tests carried out on the two catalysts for the steam reforming reactions show that the addition of cerium to the nickel improves the catalytic performances of the nickel. And that these performances also depend on the parameters of the reaction, namely the temperature, the rate of the reaction mixture, and the ratio (H₂O / CH₄).

Keywords: heterogeneous catalysis, steam reforming, Methane, Nickel, Cerium, synthesis gas, hydrogen

Procedia PDF Downloads 128
14816 The Relevance of PISA Tests in the Decentralization of the Educational System in Romania

Authors: Nitu Marilena Cristina

Abstract:

Decentralization of the education system is an educational policy option necessary from the perspective of democratizing internal life and streamlining service administration public. The experience of recent years has shown that decisions taken at central level do not to take into account all situations and especially all the specific needs and interests of the various institutions and individuals. A democratic society implies that the decision-making process is brought closer to the place of application, allowing citizens to take part in the decision-making that affects them directly or indirectly. Essentially decentralization of pre-university education is the transfer of authority, responsibility and resources in decision-making and general management, and financially to the educational units and the local community. This creates a frame of an effective collaboration between school and community. Modern theories on the leadership of education advocate the adoption of decentralization measures and participatory strategies. Numerous countries confronted with the educational impasse has appealed to these strategies. Reforming projects have begun application diversified and nuanced social decentralization models according to the specific social and educational situation. Analysis of legal provisions and measures adopted in the framework of the reform process indicates that, at least formally, decentralization is the solution chosen.

Keywords: decentralization, educational, management, reforming

Procedia PDF Downloads 132
14815 Effect of Catalyst Preparation Method on Dry Reforming of Methane with Supported and Promoted Catalysts

Authors: Sanjay P. Gandhi, Sanjay S. Patel

Abstract:

Dry (CO2) reforming of methane (DRM) is both scientific and industrial importance. In recent decades, CO2 utilization has become increasingly important in view of the escalating global warming phenomenon. This reaction produces syngas that can be used to produce a wide range of products, such as higher alkanes and oxygenates by means of Fischer–Tropsch synthesis. DRM is inevitably accompanied by deactivation due to carbon deposition. DRM is also a highly endothermic reaction and requires operating temperatures of 800–1000 °C to attain high equilibrium conversion of CH4 and CO2 to H2 and CO and to minimize the thermodynamic driving force for carbon deposition. The catalysts used are often composed of transition Methods like Nickel, supported on metallic and non-metallic oxides such as alumina and silica. However, many of these catalysts undergo severe deactivation due to carbon deposition. Noble metals have also been studied and are typically found to be much more resistant to carbon deposition than Ni catalysts, but are generally uneconomical. Noble metals can also be used to promote the Ni catalysts in order to increase their resistance to deactivation. In order to design catalysts that minimize deactivation, it is necessary to understand the elementary steps involved in the activation and conversion of CH4 and CO2. CO2 reforming methane over promoted catalyst was studied. The influence of ZrO2, CeO2 and the behavior of Ni-Al2O3 Catalyst, prepare by wet-impregnation and Co-precipitated method was studied. XRD, BET Analysis for different promoted and unprompted Catalyst was studied.

Keywords: CO2 reforming of methane, Ni catalyst, promoted and unprompted catalyst, effect of catalyst preparation

Procedia PDF Downloads 425
14814 Comparative Study of Ni Catalysts Supported by Silica and Modified by Metal Additions Co and Ce for The Steam Reforming of Methane

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

The Catalysts materials Ni-SiO₂, Ni-Co-SiO₂ and Ni-Ce-SiO₂ were synthetized by classical method impregnation and supported by silica. This involves combing the silica with an adequate rate of the solution of nickel nitrates, or nickel nitrate and cobalt nitrate, or nickel nitrate and cerium nitrate, mixed, dried and calcined at 700 ° c. These catalysts have been characterized by different physicochemical analysis techniques. The atomic absorption spectrometry indicates that the real contents of nickel, cerium and cobalt are close to the theoretical contents previously assumed, which let's say that the nitrate solutions have impregnated well the silica support. The BET results show that the surface area of the specific surfaces decreases slightly after impregnation with nickel nitrates or Co and Ce metals and a further slight decrease after the reaction. This is likely due to coke deposition. X-ray diffraction shows the presence of the different SiO₂ and NiO phases for all catalysts—theCoO phase for that promoted by Co and the Ce₂O₂ phase for that promoted by Ce. The methane steam reforming reaction was carried out on a quartz reactor in a fixed bed. Reactants and products of the reaction were analyzed by a gas chromatograph. This study shows that the metal addition of Cerium or Cobalt improves the majority of the catalytic performance of Ni for the steam reforming reaction of methane. And we conclude the classification of our Catalysts in order of decreasing activity and catalytic performances as follows: Ni-Ce / SiO₂ >Ni-Co / SiO₂> Ni / SiO₂ .

Keywords: cerium, cobalt, heterogeneous catalysis, hydrogen, methane, steam reforming, synthesis gas

Procedia PDF Downloads 150
14813 Numerical Model of Crude Glycerol Autothermal Reforming to Hydrogen-Rich Syngas

Authors: A. Odoom, A. Salama, H. Ibrahim

Abstract:

Hydrogen is a clean source of energy for power production and transportation. The main source of hydrogen in this research is biodiesel. Glycerol also called glycerine is a by-product of biodiesel production by transesterification of vegetable oils and methanol. This is a reliable and environmentally-friendly source of hydrogen production than fossil fuels. A typical composition of crude glycerol comprises of glycerol, water, organic and inorganic salts, soap, methanol and small amounts of glycerides. Crude glycerol has limited industrial application due to its low purity thus, the usage of crude glycerol can significantly enhance the sustainability and production of biodiesel. Reforming techniques is an approach for hydrogen production mainly Steam Reforming (SR), Autothermal Reforming (ATR) and Partial Oxidation Reforming (POR). SR produces high hydrogen conversions and yield but is highly endothermic whereas POR is exothermic. On the downside, PO yields lower hydrogen as well as large amount of side reactions. ATR which is a fusion of partial oxidation reforming and steam reforming is thermally neutral because net reactor heat duty is zero. It has relatively high hydrogen yield, selectivity as well as limits coke formation. The complex chemical processes that take place during the production phases makes it relatively difficult to construct a reliable and robust numerical model. Numerical model is a tool to mimic reality and provide insight into the influence of the parameters. In this work, we introduce a finite volume numerical study for an 'in-house' lab-scale experiment of ATR. Previous numerical studies on this process have considered either using Comsol or nodal finite difference analysis. Since Comsol is a commercial package which is not readily available everywhere and lab-scale experiment can be considered well mixed in the radial direction. One spatial dimension suffices to capture the essential feature of ATR, in this work, we consider developing our own numerical approach using MATLAB. A continuum fixed bed reactor is modelled using MATLAB with both pseudo homogeneous and heterogeneous models. The drawback of nodal finite difference formulation is that it is not locally conservative which means that materials and momenta can be generated inside the domain as an artifact of the discretization. Control volume, on the other hand, is locally conservative and suites very well problems where materials are generated and consumed inside the domain. In this work, species mass balance, Darcy’s equation and energy equations are solved using operator splitting technique. Therefore, diffusion-like terms are discretized implicitly while advection-like terms are discretized explicitly. An upwind scheme is adapted for the advection term to ensure accuracy and positivity. Comparisons with the experimental data show very good agreements which build confidence in our modeling approach. The models obtained were validated and optimized for better results.

Keywords: autothermal reforming, crude glycerol, hydrogen, numerical model

Procedia PDF Downloads 111
14812 Dry Reforming of Methane Using Metal Supported and Core Shell Based Catalyst

Authors: Vinu Viswanath, Lawrence Dsouza, Ugo Ravon

Abstract:

Syngas typically and intermediary gas product has a wide range of application of producing various chemical products, such as mixed alcohols, hydrogen, ammonia, Fischer-Tropsch products methanol, ethanol, aldehydes, alcohols, etc. There are several technologies available for the syngas production. An alternative to the conventional processes an attractive route of utilizing carbon dioxide and methane in equimolar ratio to generate syngas of ratio close to one has been developed which is also termed as Dry Reforming of Methane technology. It also gives the privilege to utilize the greenhouse gases like CO2 and CH4. The dry reforming process is highly endothermic, and indeed, ΔG becomes negative if the temperature is higher than 900K and practically, the reaction occurs at 1000-1100K. At this temperature, the sintering of the metal particle is happening that deactivate the catalyst. However, by using this strategy, the methane is just partially oxidized, and some cokes deposition occurs that causing the catalyst deactivation. The current research work was focused to mitigate the main challenges of dry reforming process such coke deposition, and metal sintering at high temperature.To achieve these objectives, we employed three different strategies of catalyst development. 1) Use of bulk catalysts such as olivine and pyrochlore type materials. 2) Use of metal doped support materials, like spinel and clay type material. 3) Use of core-shell model catalyst. In this approach, a thin layer (shell) of redox metal oxide is deposited over the MgAl2O4 /Al2O3 based support material (core). For the core-shell approach, an active metal is been deposited on the surface of the shell. The shell structure formed is a doped metal oxide that can undergo reduction and oxidation reactions (redox), and the core is an alkaline earth aluminate having a high affinity towards carbon dioxide. In the case of metal-doped support catalyst, the enhanced redox properties of doped CeO2 oxide and CO2 affinity property of alkaline earth aluminates collectively helps to overcome coke formation. For all of the mentioned three strategies, a systematic screening of the metals is carried out to optimize the efficiency of the catalyst. To evaluate the performance of them, the activity and stability test were carried out under reaction conditions of temperature ranging from 650 to 850 ̊C and an operating pressure ranging from 1 to 20 bar. The result generated infers that the core-shell model catalyst showed high activity and better stable DR catalysts under atmospheric as well as high-pressure conditions. In this presentation, we will show the results related to the strategy.

Keywords: carbon dioxide, dry reforming, supports, core shell catalyst

Procedia PDF Downloads 133
14811 Implementation of Maqasid Syari'ah in the Concept of Reforming the Indonesian Marriage Law Based on Gender Equality: Study of the Counter Legal Draft Compilation of Islamic Law

Authors: Nirmalasanti Pramesi

Abstract:

In 2004 the CLD KHI Team offered several new ideas in the field of Islamic family law, such as marriage, inheritance (waris), and waqf. The new idea is based on six main principles; pluralism, nationality, human rights, democracy, maslahah, and gender equality. However, the existence of this has actually caused various criticisms, appreciations, and controversies. For this reason, CLD-KHI, as the idea of reforming family law, especially in the field of marriage, really needs to be studied academically with a comprehensive method as an unfinished problem. The main issues examined in this study are what are the ideas for reforming the law of marriage that have been formulated by the CLD KHI team, as well as how to implement Maqasid Sharia in legal reform. The methodology used in this research is a qualitative method with a normative-empirical-sociological approach. The results of this research show every substance of the idea considers aspects of locality, nationality, and global ethics. The Maqasid approach used in most of the legal provisions is moderate (wasati). Meanwhile, in matters of wali niqah and inheritance, it is adjusted to the context of Indonesian society.

Keywords: Maqasid syari'ah, CLD KHI, marriage law reform, moderate

Procedia PDF Downloads 152
14810 H2 Permeation Properties of a Catalytic Membrane Reactor in Methane Steam Reforming Reaction

Authors: M. Amanipour, J. Towfighi, E. Ganji Babakhani, M. Heidari

Abstract:

Cylindrical alumina microfiltration membrane (GMITM Corporation, inside diameter=9 mm, outside diameter=13 mm, length= 50 mm) with an average pore size of 0.5 micrometer and porosity of about 0.35 was used as the support for membrane reactor. This support was soaked in boehmite sols, and the mean particle size was adjusted in the range of 50 to 500 nm by carefully controlling hydrolysis time, and calcined at 650 °C for two hours. This process was repeated with different boehmite solutions in order to achieve an intermediate layer with an average pore size of about 50 nm. The resulting substrate was then coated with a thin and dense layer of silica by counter current chemical vapour deposition (CVD) method. A boehmite sol with 10 wt.% of nickel which was prepared by a standard procedure was used to make the catalytic layer. BET, SEM, and XRD analysis were used to characterize this layer. The catalytic membrane reactor was placed in an experimental setup to evaluate the permeation and hydrogen separation performance for a steam reforming reaction. The setup consisted of a tubular module in which the membrane was fixed, and the reforming reaction occurred at the inner side of the membrane. Methane stream, diluted with nitrogen, and deionized water with a steam to carbon (S/C) ratio of 3.0 entered the reactor after the reactor was heated up to 500 °C with a specified rate of 2 °C/ min and the catalytic layer was reduced at presence of hydrogen for 2.5 hours. Nitrogen flow was used as sweep gas through the outer side of the reactor. Any liquid produced was trapped and separated at reactor exit by a cold trap, and the produced gases were analyzed by an on-line gas chromatograph (Agilent 7890A) to measure total CH4 conversion and H2 permeation. BET analysis indicated uniform size distribution for catalyst with average pore size of 280 nm and average surface area of 275 m2.g-1. Single-component permeation tests were carried out for hydrogen, methane, and carbon dioxide at temperature range of 500-800 °C, and the results showed almost the same permeance and hydrogen selectivity values for hydrogen as the composite membrane without catalytic layer. Performance of the catalytic membrane was evaluated by applying membranes as a membrane reactor for methane steam reforming reaction at gas hourly space velocity (GHSV) of 10,000 h−1 and 2 bar. CH4 conversion increased from 50% to 85% with increasing reaction temperature from 600 °C to 750 °C, which is sufficiently above equilibrium curve at reaction conditions, but slightly lower than membrane reactor with packed nickel catalytic bed because of its higher surface area compared to the catalytic layer.

Keywords: catalytic membrane, hydrogen, methane steam reforming, permeance

Procedia PDF Downloads 224
14809 Energy Analysis and Integration of the H₂ Production from Biomass Fast Pyrolysis and in Line Sorption Enhanced Steam Reforming

Authors: P. Comendador, M. Suarez, L. Olazar, M. Cortazar, M. Artetxe, G. Lopez, M. Olazar

Abstract:

H₂ production from fast biomass pyrolysis and line Steam Reforming (SR) has been extensively studied in the last years. However, Sorption Enhanced Steam Reforming (SESR) is gaining attention as an alternative to the conventional SR since it allows obtaining higher H₂ yields and a purity near 100 % in the product stream. In this work, both alternatives were compared through an energy analysis. The processes were modeled with PRO II v.2021 software. First, general energy balances were carried out in order to identify the total energy requirements in a wide range of operating conditions. At H₂ yield optimum conditions for both processes (steam to biomass ratio of 2 and temperature of 600 ºC), the total energy requirement for the SR alternative is 936 kJ/kgH₂, whereas for the SESR alternative is 1134 kJ/kgH₂. Then, the energy needs were grouped into operation stages, aiming at identifying the energy sinks and sources of the processes. It was determined that the SESR alternative is more energy intensive due to the need for a calcination stage for regenerating the sorbent. Finally, a configuration of the SESR alternative with energy integration was developed in order to compensate for the energy demand.

Keywords: Biomass valorization, CO₂ capture, Energy analysis, H₂ production

Procedia PDF Downloads 56
14808 Restored CO₂ from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift and Hydrogenation

Authors: Rujira Jitrwung, Kuntima Krekkeitsakul, Weerawat Patthaveekongka, Chiraphat Kumpidet, Jarukit Tepkeaw, Krissana Jaikengdee, Anantachai Wannajampa

Abstract:

Flue gas discharging from coal fired or gas combustion power plant contains around 12% Carbon dioxide (CO₂), 6% Oxygen (O₂), and 82% Nitrogen (N₂).CO₂ is a greenhouse gas which has been concerned to the global warming. Carbon Capture, Utilization, and Storage (CCUS) is a topic which is a tool to deal with this CO₂ realization. Flue gas is drawn down from the chimney and filtered, then it is compressed to build up the pressure until 8 bar. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA), which is filled with activated carbon. Experiments were showed the optimum adsorption pressure at 7bar, which CO₂ can be adsorbed step by step in 1st, 2nd, and 3rd stage, obtaining CO₂ concentration 29.8, 66.4, and 96.7 %, respectively. The mixed gas concentration from the last step is composed of 96.7% CO₂,2.7% N₂, and 0.6%O₂. This mixed CO₂product gas obtained from 3 stages PSA contained high concentration CO₂, which is ready to use for methanol synthesis. The mixed CO₂ was experimented in 5 Liter/Day of methanol synthesis reactor skid by 3 step processes as followed steam reforming, reverse water gas shift, and then hydrogenation. The result showed that proportional of mixed CO₂ and CH₄ 70/30, 50/50, 30/70 % (v/v), and 10/90 yielded methanol 2.4, 4.3, 5.6, and 6.0 Liter/day and save CO₂ 40, 30, 20, and 5 % respectively. The optimum condition resulted both methanol yield and CO₂ consumption using CO₂/CH₄ ratio 43/57 % (v/v), which yielded 4.8 Liter/day methanol and save CO₂ 27% comparing with traditional methanol production from methane steam reforming (5 Liter/day)and absent CO₂ consumption.

Keywords: carbon capture utilization and storage, pressure swing adsorption, reforming, reverse water gas shift, methanol

Procedia PDF Downloads 143
14807 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: reactor, modeling, methanol, steam reforming

Procedia PDF Downloads 264
14806 Design and Performance Evaluation of Plasma Spouted Bed Reactor for Converting Waste Plastic into Green Hydrogen

Authors: Palash Kumar Mollick, Leire Olazar, Laura Santamaria, Pablo Comendador, Gartzen Lopez, Martin Olazar

Abstract:

Average calorific value of a mixure of waste plastic is approximately 38 MJ/kg. Present work aims to extract maximum possible energy from a mixure of waste plastic using a DC thermal plasma in a spouted bed reactor. Plasma pyrolysis and steam reforming process has shown a potential to generate hydrogen from plastic with much below of legal limit of producing dioxins and furans as the carcinogenic gases. A spouted bed pyrolysis rector can continuously process plastic beads to produce organic volatiles, which later react with steam in presence of catalyst to results in syngas. lasma being the fourth state of matter, can carry high impact electrons to favour the activation energy of any chemical reactions. Computational Fluid Dynamic (CFD) simulation using COMSOL Multiphysics software has been performed to evaluate performance of a plasma spouted bed reactor in producing contamination free hydrogen as a green energy from waste plastic beads. The simulation results will showcase a design of a plasma spouted bed reactor for converting plastic waste into green hydrogen in a single step process. The high temperature hydrodynamics of spouted bed with plastic beads and the corresponding temperature distribution inside the reaction chamber will be critically examined for it’s near future installation of demonstration plant.

Keywords: green hydrogen, plastic waste, synthetic gas, pyrolysis, steam reforming, spouted bed, reactor design, plasma, dc palsma, cfd simulation

Procedia PDF Downloads 55
14805 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations

Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain

Abstract:

Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.

Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers

Procedia PDF Downloads 69
14804 The Onus of Human to Society in Accordance with Constitution and Traditions

Authors: Qamar Raza

Abstract:

This paper deals with the human concern and onus which every person should provide to his/her society. Especially the rules and regulations described in constitution or traditions which we have inherited from ancestors should be followed, and also our lives should be led in accordance with them. The main concern of paper would be personal behavior with others in a good manner especially what he/she should exercise for society’s welfare. As human beings are the fundamental organ of society, who play a crucial role in reforming the society, they should try their best to develop it as well as maintain harmony, peace, we-feeling and mutual contact in the society. Focusing on how the modern society and its elements keep society successful. Regulations of our constitution and tradition are essential for reforming the society. In a nutshell, a human has to mingle in his society and keep mutual respect and understand the value of others as well as for himself.

Keywords: constitution, human beings, society, traditions

Procedia PDF Downloads 186