Search results for: advanced nurse practitioner
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2754

Search results for: advanced nurse practitioner

1404 A Unified Approach for Naval Telecommunication Architectures

Authors: Y. Lacroix, J.-F. Malbranque

Abstract:

We present a chronological evolution for naval telecommunication networks. We distinguish periods: with or without multiplexers, with switch systems, with federative systems, with medium switching, and with medium switching with wireless networks. This highlights the introduction of new layers and technology in the architecture. These architectures are presented using layer models of transmission, in a unified way, which enables us to integrate pre-existing models. A ship of a naval fleet has internal communications (i.e. applications' networks of the edge) and external communications (i.e. the use of the means of transmission between edges). We propose architectures, deduced from the layer model, which are the point of convergence between the networks on board and the HF, UHF radio, and satellite resources. This modelling allows to consider end-to-end naval communications, and in a more global way, that is from the user on board towards the user on shore, including transmission and networks on the shore side. The new architectures need take care of quality of services for end-to-end communications, the more remote control develops a lot and will do so in the future. Naval telecommunications will be more and more complex and will use more and more advanced technologies, it will thus be necessary to establish clear global communication schemes to grant consistency of the architectures. Our latest model has been implemented in a military naval situation, and serves as the basic architecture for the RIFAN2 network.

Keywords: equilibrium beach profile, eastern tombolo of Giens, potential function, erosion

Procedia PDF Downloads 291
1403 Study of Behavior Tribological Cutting Tools Based on Coating

Authors: A. Achour L. Chekour, A. Mekroud

Abstract:

Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam.

Keywords: friction, wear, tool, cutting

Procedia PDF Downloads 331
1402 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 186
1401 Deep Learning Approaches for Accurate Detection of Epileptic Seizures from Electroencephalogram Data

Authors: Ramzi Rihane, Yassine Benayed

Abstract:

Epilepsy is a chronic neurological disorder characterized by recurrent, unprovoked seizures resulting from abnormal electrical activity in the brain. Timely and accurate detection of these seizures is essential for improving patient care. In this study, we leverage the UK Bonn University open-source EEG dataset and employ advanced deep-learning techniques to automate the detection of epileptic seizures. By extracting key features from both time and frequency domains, as well as Spectrogram features, we enhance the performance of various deep learning models. Our investigation includes architectures such as Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), 1D Convolutional Neural Networks (1D-CNN), and hybrid CNN-LSTM and CNN-BiLSTM models. The models achieved impressive accuracies: LSTM (98.52%), Bi-LSTM (98.61%), CNN-LSTM (98.91%), CNN-BiLSTM (98.83%), and CNN (98.73%). Additionally, we utilized a data augmentation technique called SMOTE, which yielded the following results: CNN (97.36%), LSTM (97.01%), Bi-LSTM (97.23%), CNN-LSTM (97.45%), and CNN-BiLSTM (97.34%). These findings demonstrate the effectiveness of deep learning in capturing complex patterns in EEG signals, providing a reliable and scalable solution for real-time seizure detection in clinical environments.

Keywords: electroencephalogram, epileptic seizure, deep learning, LSTM, CNN, BI-LSTM, seizure detection

Procedia PDF Downloads 12
1400 Socio-Cultural Factors to Support Knowledge Management and Organizational Innovation: A Study of Small and Medium-Sized Enterprises in Latvia

Authors: Madara Apsalone

Abstract:

Knowledge management and innovation is key to competitive advantage and sustainable business development in advanced economies. Small and medium-sized enterprises (SMEs) have lower capacity and more constrained resources for long-term and high-uncertainty research and development investments. At the same time, SMEs can implement organizational innovation to improve their performance and further foster other types of innovation. The purpose of this study is to analyze, how socio-cultural factors such as shared values, organizational behaviors, work organization and decision making processes can influence knowledge management and help to develop organizational innovation via an empirical study. Surveying 600 SMEs in Latvia, the author explores the contribution of different socio-cultural factors to organizational innovation and the role of knowledge management and organizational learning in this process. A conceptual model, explaining the impact of organizational team, development, result-orientation and structure is created. The study also proposes insights that contribute to theoretical and practical discussions on fostering innovation of small businesses in small economies.

Keywords: knowledge management, organizational innovation, small and medium-sized enterprises, socio-cultural factors

Procedia PDF Downloads 391
1399 Analysis of Performance of 3T1D Dynamic Random-Access Memory Cell

Authors: Nawang Chhunid, Gagnesh Kumar

Abstract:

On-chip memories consume a significant portion of the overall die space and power in modern microprocessors. On-chip caches depend on Static Random-Access Memory (SRAM) cells and scaling of technology occurring as per Moore’s law. Unfortunately, the scaling is affecting stability, performance, and leakage power which will become major problems for future SRAMs in aggressive nanoscale technologies due to increasing device mismatch and variations. 3T1D Dynamic Random-Access Memory (DRAM) cell is a non-destructive read DRAM cell with three transistors and a gated diode. In 3T1D DRAM cell gated diode (D1) acts as a storage device and also as an amplifier, which leads to fast read access. Due to its high tolerance to process variation, high density, and low cost of memory as compared to 6T SRAM cell, it is universally used by the advanced microprocessor for on chip data and program memory. In the present paper, it has been shown that 3T1D DRAM cell can perform better in terms of fast read access as compared to 6T, 4T, 3T SRAM cells, respectively.

Keywords: DRAM Cell, Read Access Time, Retention Time, Average Power dissipation

Procedia PDF Downloads 313
1398 Moving Object Detection Using Histogram of Uniformly Oriented Gradient

Authors: Wei-Jong Yang, Yu-Siang Su, Pau-Choo Chung, Jar-Ferr Yang

Abstract:

Moving object detection (MOD) is an important issue in advanced driver assistance systems (ADAS). There are two important moving objects, pedestrians and scooters in ADAS. In real-world systems, there exist two important challenges for MOD, including the computational complexity and the detection accuracy. The histogram of oriented gradient (HOG) features can easily detect the edge of object without invariance to changes in illumination and shadowing. However, to reduce the execution time for real-time systems, the image size should be down sampled which would lead the outlier influence to increase. For this reason, we propose the histogram of uniformly-oriented gradient (HUG) features to get better accurate description of the contour of human body. In the testing phase, the support vector machine (SVM) with linear kernel function is involved. Experimental results show the correctness and effectiveness of the proposed method. With SVM classifiers, the real testing results show the proposed HUG features achieve better than classification performance than the HOG ones.

Keywords: moving object detection, histogram of oriented gradient, histogram of uniformly-oriented gradient, linear support vector machine

Procedia PDF Downloads 594
1397 Statistical Manufacturing Cell/Process Qualification Sample Size Optimization

Authors: Angad Arora

Abstract:

In production operations/manufacturing, a cell or line is typically a bunch of similar machines (computer numerical control (CNCs), advanced cutting, 3D printing or special purpose machines. For qualifying a typical manufacturing line /cell / new process, Ideally, we need a sample of parts that can be flown through the process and then we make a judgment on the health of the line/cell. However, with huge volumes and mass production scope, such as in the mobile phone industry, for example, the actual cells or lines can go in thousands and to qualify each one of them with statistical confidence means utilizing samples that are very large and eventually add to product /manufacturing cost + huge waste if the parts are not intended to be customer shipped. To solve this, we come up with 2 steps statistical approach. We start with a small sample size and then objectively evaluate whether the process needs additional samples or not. For example, if a process is producing bad parts and we saw those samples early, then there is a high chance that the process will not meet the desired yield and there is no point in keeping adding more samples. We used this hypothesis and came up with 2 steps binomial testing approach. Further, we also prove through results that we can achieve an 18-25% reduction in samples while keeping the same statistical confidence.

Keywords: statistics, data science, manufacturing process qualification, production planning

Procedia PDF Downloads 96
1396 An Integrative Review on Effects of Educational Interventions for Children with Eczema

Authors: Nam Sze Cheng, P. C. Janita Chau

Abstract:

Background: Eczema is a chronic inflammatory disease with high global prevalence rates in many childhood populations. It is also the most common paediatric skin problem. Although eczema education and proper skin care were effective in controlling eczema symptoms, the lack of both sufficient time for patient consultation and structured eczema education programme hindered the transferability of knowledge to patients and their parents. As a result, these young patients and their families suffer from a significant physical disability and psychological distress, which can substantially impair their quality of life. Objectives: This integrative review is to examine the effects of educational interventions for children with eczema and identify the core elements associated with an effective intervention. Methods: This integrative review targeted all articles published in 10 databases between May 2016 and February 2017 that reported the outcomes of disease interventions of any format for children and adolescents with the clinical diagnosis of eczema who were under 18 years of age. Five randomized controlled trials (RCT) and one systematic review of 10 RCTs were identified for review. All these publications had high methodological quality, except one study of web-based eczema education that was limited by selection bias and poor subject blinding. Findings: This review found that most studies adopted nurse-led or multi-disciplinary parental eczema education programme at the outpatient clinic setting. The format of these programmes included individual lectures, demonstration and group sharing, and the educational materials covered basic eczema knowledge and management as well as methods to interrupt itch-scratch cycle. The main outcome measures of these studies included severity of eczema symptoms, treatment adherence and quality of life of both patients and their families. Nine included studies reported statistically significant improvement in the primary outcome of symptom severity of these eczematous children. On the other hand, all these reviews failed to identify an effective dosage of intervention under these educational programmes that was attributed to the heterogeneity of the interventions. One study that was designed based on the social cognitive theory to guide the interventional content yielded statistically significant results. The systematic review recommended the importance of measuring parental self-efficacy. Implication: This integrative review concludes that structured educational programme can help nurses understand the theories behind different health interventions. They can then deliver eczema education to their patients in a consistent manner. These interventions also result in behavioral changes through patient education. Due to the lack of validated educational programmes in Chinese, it is imperative to conduct an RCT of eczema educational programme to investigate its effects on eczema severity, quality of life and treatment adherence in Hong Kong children as well as to promote the importance of parental self-efficacy.

Keywords: children, eczema, education, intervention

Procedia PDF Downloads 116
1395 Expanding Behavioral Crisis Care: Expansion of Psychiatric and Addiction-Care Services through a 23/7 Behavioral Crisis Center

Authors: Garima Singh

Abstract:

Objectives: Behavioral Crisis Center (BCC) is a community solution to a community problem. There has been an exponential increase in the incidence and prevalence of mental health crises around the world. The effects of the crisis negatively impact our patients and their families and strain the law enforcement and emergency room. The goal of the multi-disciplinary care model is to break the crisis cycle and provide 24-7 rapid access to an acre and crisis stabilization. We initiated our first BCC care center in 2020 in the midst of the COVID pandemic and have seen a remarkable improvement in patient ‘care and positive financial outcome. Background: Mental illnesses are common in the United States. Nearly one in five U.S. adults live with a mental illness (52.9 million in 2020). This number represented 21.0% of all U.S. adults. To address some of these challenges and help our community, In May 2020, we opened our first Behavioral crisis center (BCC). Since then, we have served more than 2500 patients and is the first southwest Missouri’s first 24/7 facility for crisis–level behavioral health and substance use needs. It has been proven to be a more effective place than emergency departments, jails, or local law enforcement. Methods: BCC was started in 2020 to serve the unmet need of the community and provide access to behavioral health and substance use services identified in the community. Funding was possible with significant investment from the county and Missouri Foundation for Health, with contributions from medical partners. It is a multi-disciplinary care center consisting of Physicians, nurse practitioners, nurses, behavioral technicians, peer support specialists, clinical intake specialists, and clinical coordinators and hospitality specialists. The center provides services including psychiatry care, outpatient therapy, community support services, primary care, peer support and engagement. It is connected to a residential treatment facility for substance use treatment for continuity of care and bridging the gap, which has resulted in the completion of treatment and better outcomes. Results: BCC has proven to be a great resource to the community and the Missouri Health Coalition is providing funding to replicate the model in other regions and work on a similar model for children and adolescents. Overall, 29% of the patients seen at BCC are stabilized and discharged with outpatient care. 50% needed acute stabilization in a hospital setting and 21% required long-term admission, mostly for substance use treatment. The local emergency room had a 42% reduction in behavioral health encounters compared to the previous 3 years. Also, by a quick transfer to BCC, the average stay in ER was reduced by 10 hours and time to follow up behavioral health assessment decreased by an average of 4 hours. Uninsured patients are also provided Medicaid application assistance which has benefited 55% of individuals receiving care at BCC. Conclusions: BCC is impacting community health and improving access to quality care and substance use treatment. It is a great investment for our patients and families.

Keywords: BCC, behvaioral health, community health care, addiction treatment

Procedia PDF Downloads 76
1394 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 224
1393 A Training Perspective for Sustainability and Partnership to Achieve Sustainable Development Goals in Sub-Saharan Africa

Authors: Nwachukwu M. A., Nwachukwu J. I., Anyanwu J., Emeka U., Okorondu J., Acholonu C.

Abstract:

Actualization of the 17 sustainable development goals (SDGs) conceived by the United Nations in 2015 is a global challenge that may not be feasible in sub-Saharan Africa by the year 2030, except universities play a committed role. This is because; there is a need to educate the people about the concepts of sustainability and sustainable development in the region to make the desired change. Here is a sensitization paper with a model of intervention and curricular planning to allow advancement in understanding and knowledge of SDGs. This Model Center for Sustainability Studies (MCSS) will enable partnerships with institutions in Africa and in advanced nations, thereby creating a global network for sustainability studies not found in sub-Saharan Africa. MCSS will train and certify public servants, government agencies, policymakers, entrepreneurs and personnel from organizations, and students on aspects of the SDGs and sustainability science. There is a need to add sustainability knowledge into environmental education and make environmental education a compulsory course in higher institutions and a secondary school certificate exam subject in sub-Saharan Africa. MCSS has 11 training modules that can be replicated anywhere in the world.

Keywords: sustainability, higher institutions, training, SDGs, collaboration, sub-Saharan Africa

Procedia PDF Downloads 99
1392 An Efficient Hybrid Approach Based on Multi-Agent System and Emergence Method for the Integration of Systematic Preventive Maintenance Policies

Authors: Abdelhadi Adel, Kadri Ouahab

Abstract:

This paper proposes a hybrid algorithm for the integration of systematic preventive maintenance policies in hybrid flow shop scheduling to minimize makespan. We have implemented a problem-solving approach for optimizing the processing time, methods based on metaheuristics. The proposed approach is inspired by the behavior of the human body. This hybridization is between a multi-agent system and inspirations of the human body, especially genetics. The effectiveness of our approach has been demonstrated repeatedly in this paper. To solve such a complex problem, we proposed an approach which we have used advanced operators such as uniform crossover set and single point mutation. The proposed approach is applied to three preventive maintenance policies. These policies are intended to maximize the availability or to maintain a minimum level of reliability during the production chain. The results show that our algorithm outperforms existing algorithms. We assumed that the machines might be unavailable periodically during the production scheduling.

Keywords: multi-agent systems, emergence, genetic algorithm, makespan, systematic maintenance, scheduling, hybrid flow shop scheduling

Procedia PDF Downloads 336
1391 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: contex-sensitive, CFI, binary analysis, code reuse attack

Procedia PDF Downloads 323
1390 Monitoring Co-Creation: A Survey of Lithuanian Urban Communities

Authors: Aelita Skarzauskiene, Monika Maciuliene

Abstract:

In this paper, we conduct a systematic survey of urban communities in Lithuania to evaluate their potential to co-create collective intelligence or “civic intelligence” applying Digital Co-creation Index methodology that includes different socio-technological indicators. Civic intelligence is a form of collective intelligence that refers to the group’s capacity to perceive societal problems and to address them effectively. The research focuses on evaluation of diverse organizational designs that increase efficient collective performance. The current scientific project advanced the state of the art by evaluating the basic preconditions in the urban communities through which the collective intelligence is being co-created under the systemic manner. The research subject is the “bottom up” digital enabled urban platforms, initiated by Lithuanian public organizations, civic movements or business entities. The web-based monitoring results obtained by applying a social indices calculation methodology and Pearson correlation analysis provided the information about the potential and limits of the urban communities and what possible changes need to be implemented to overcome the limitations.

Keywords: computer supported collaboration, socio-technological system, collective intelligence, networked society

Procedia PDF Downloads 203
1389 Enhanced COVID-19 Pharmaceuticals and Microplastics Removal from Wastewater Using Hybrid Reactor System

Authors: Reda Dzingelevičienė, Vytautas Abromaitis, Nerijus Dzingelevičius, Kęstutis Baranauskis, Saulius Raugelė, Malgorzata Mlynska-Szultka, Sergej Suzdalev, Reza Pashaei, Sajjad Abbasi, Boguslaw Buszewski

Abstract:

A unique hybrid technology was developed for the removal of COVID-19 specific contaminants from wastewater. Reactor testing was performed using model water samples contaminated with COVID-19 pharmaceuticals and microplastics. Different hydraulic retention times, concentrations of pollutants and dissolved ozone were tested. Liquid Chromatography-Mass Spectrometry, solid phase extraction, surface area and porosity, analytical tools were used to monitor the treatment efficiency and remaining sorption capacity of the spent adsorbent. The combination of advanced oxidation and adsorption processes was found to be the most effective, with the highest 90-99% and 89-95% molnupiravir and microplastics contaminants removal efficiency from the model wastewater. The research has received funding from the European Regional Development Fund (project No 13.1.1-LMT-K-718-05-0014) under a grant agreement with the Research Council of Lithuania (LMTLT), and it was funded as part of the European Union’s measure in response to the COVID-19 pandemic.

Keywords: adsorption, hybrid reactor system, pharmaceuticals-microplastics, wastewater

Procedia PDF Downloads 85
1388 In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy

Authors: Loredana G. Marcu, David Marcu, Sanda M. Filip

Abstract:

Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment.

Keywords: radiation, tumour repopulation, squamous cell carcinoma, stem cell

Procedia PDF Downloads 267
1387 Evaluation of Settlement of Coastal Embankments Using Finite Elements Method

Authors: Sina Fadaie, Seyed Abolhassan Naeini

Abstract:

Coastal embankments play an important role in coastal structures by reducing the effect of the wave forces and controlling the movement of sediments. Many coastal areas are underlain by weak and compressible soils. Estimation of during construction settlement of coastal embankments is highly important in design and safety control of embankments and appurtenant structures. Accordingly, selecting and establishing of an appropriate model with a reasonable level of complication is one of the challenges for engineers. Although there are advanced models in the literature regarding design of embankments, there is not enough information on the prediction of their associated settlement, particularly in coastal areas having considerable soft soils. Marine engineering study in Iran is important due to the existence of two important coastal areas located in the northern and southern parts of the country. In the present study, the validity of Terzaghi’s consolidation theory has been investigated. In addition, the settlement of these coastal embankments during construction is predicted by using special methods in PLAXIS software by the help of appropriate boundary conditions and soil layers. The results indicate that, for the existing soil condition at the site, some parameters are important to be considered in analysis. Consequently, a model is introduced to estimate the settlement of the embankments in such geotechnical conditions.

Keywords: consolidation, settlement, coastal embankments, numerical methods, finite elements method

Procedia PDF Downloads 157
1386 Toxicity Depletion Rates of Water Lettuce (Pistia stratoites) in an Aquaculture Effluent Hydroponic System

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

The control of ammonia build-up and its by-product is a limiting factor for a successful commercial aquaculture in a developing country like Nigeria. The technology for an advanced treatment of fish tank effluent is uneconomical to local fish farmers which have led to indiscriminate disposal of aquaculture wastewater, thereby increasing the concentrations of these nitrogenous compound and other contaminants in surface and groundwater above the permissible level. Phytoremediation using water lettuce could offer cheaper and sustainable alternative. On the first day of experimentation, approximately 100 g of water lettuce were replicated in four hydroponic units containing aquaculture effluents. The water quality parameters measured were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), and phosphate–phosphorus (PO43--P). Others were total suspended solids (TSS), pH, electrical conductivity (EC), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 361.2 g, 498.7 g, 561.2 g, and 623.7 g. Water lettuce was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 3.9% to 14.4%, EC from 49.8% to 96.2%, TDS from 50.4% to 96.2%, TSS from 38.3% to 81.7%, NH4+-N from 38.9% to 90.7%, NO2--N from 0% to 74.9%, NO3--N from 63.2% to 95.9% and PO43--P from 0% to 76.3%. At 95% confidence level, the analysis of variance shows that F(critical) is less than F(cal) and p < 0.05; therefore, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests the potency of water lettuce for remediation of aquaculture effluent.

Keywords: aquaculture effluent, nitrification, phytoremediation, water lettuce

Procedia PDF Downloads 211
1385 Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification

Authors: Abd Al-Salam Al-Masgari, Haylay Tsegab, Ismailalwali Babikir, Monera A. Shoieb

Abstract:

We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics.

Keywords: karst, central Luconia, seismic attributes, Miocene carbonate build-ups

Procedia PDF Downloads 71
1384 Study of the Mega–Landslide at the Community of Ropoto, Central Greece, and of the Design of Mitigation and Early Warning System Using the Fiber Bragg Grating Technology

Authors: Michael Bellas, George Voulgaridis

Abstract:

This paper refers to the world known mega - landslide induced at the community of Ropoto, belonging to the Municipality of Trikala, in the Central part of Greece. The landslide affected the debris as well as the colluvium mantle of the flysch, and makes up a special case of study in engineering geology and geotechnical engineering not only because of the size of the domain affected by the landslide (approximately 750m long), but also because of the geostructure’s global behavior. Due to the landslide, the whole community’s infrastructure massively collapsed and human lives were put in danger. After the complete simulation of the coupled Seepage - Deformation phenomenon due to the extreme rainfall, and by closely examining the slope’s global behavior, both the mitigation of the landslide, as well as, an advanced surveillance method (Fiber Bragg Grating) using fiber optics were further studied, in order both to retain the geostructure and to monitor its health by creating an early warning system, which would serve as a complete safety net for saving both the community’s infrastructure as well as the lives of its habitats.

Keywords: landslide, remediation measures, the finite element method (FEM), Fiber Bragg Grating (FBG) sensing method

Procedia PDF Downloads 329
1383 Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation

Authors: Mahnoor Khan, Bashir Ahmad, Khizar Hayat, Saad Ahmad Khan, Laiba Ahmad, Shumaila Bashir, Abid Ali Khan

Abstract:

The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT.

Keywords: ZnO, hemolysis, cytotoxiciy assay, photodynamic therapy, antibacterial

Procedia PDF Downloads 140
1382 AI-Based Autonomous Plant Health Monitoring and Control System with Visual Health-Scoring Models

Authors: Uvais Qidwai, Amor Moursi, Mohamed Tahar, Malek Hamad, Hamad Alansi

Abstract:

This paper focuses on the development and implementation of an advanced plant health monitoring system with an AI backbone and IoT sensory network. Our approach involves addressing the critical environmental factors essential for preserving a plant’s well-being, including air temperature, soil moisture, soil temperature, soil conductivity, pH, water levels, and humidity, as well as the presence of essential nutrients like nitrogen, phosphorus, and potassium. Central to our methodology is the utilization of computer vision technology, particularly a night vision camera. The captured data is then compared against a reference database containing different health statuses. This comparative analysis is implemented using an AI deep learning model, which enables us to generate accurate assessments of plant health status. By combining the AI-based decision-making approach, our system aims to provide precise and timely insights into the overall health and well-being of plants, offering a valuable tool for effective plant care and management.

Keywords: deep learning image model, IoT sensing, cloud-based analysis, remote monitoring app, computer vision, fuzzy control

Procedia PDF Downloads 54
1381 Modelling of Structures by Advanced Finites Elements Based on the Strain Approach

Authors: Sifeddine Abderrahmani, Sonia Bouafia

Abstract:

The finite element method is the most practical tool for the analysis of structures, whatever the geometrical shape and behavior. It is extensively used in many high-tech industries, such as civil or military engineering, for the modeling of bridges, motor bodies, fuselages, and airplane wings. Additionally, experience demonstrates that engineers like modeling their structures using the most basic finite elements. Numerous models of finite elements may be utilized in the numerical analysis depending on the interpolation field that is selected, and it is generally known that convergence to the proper value will occur considerably more quickly with a good displacement pattern than with a poor pattern, saving computation time. The method for creating finite elements using the strain approach (S.B.A.) is presented in this presentation. When the results are compared with those provided by equivalent displacement-based elements, having the same total number of degrees of freedom, an excellent convergence can be obtained through some application and validation tests using recently developed membrane elements, plate bending elements, and flat shell elements. The effectiveness and performance of the strain-based finite elements in modeling structures are proven by the findings for deflections and stresses.

Keywords: finite elements, plate bending, strain approach, displacement formulation, shell element

Procedia PDF Downloads 99
1380 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 136
1379 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 101
1378 The Clarification of Palm Oil Wastewater Treatment by Coagulant Composite from Palm Oil Ash

Authors: Rewadee Anuwattana, Narumol Soparatana, Pattamaphorn Phuangngamphan, Worapong Pattayawan, Atiporn Jinprayoon, Saroj Klangkongsap, Supinya Sutthima

Abstract:

In this work focus on clarification in palm oil wastewater treatment by using coagulant composite from palm oil ash. The design of this study was carried out by two steps; first, synthesis of new coagulant composite from palm oil ash which was fused by using Al source combined with Fe source and form to the crystal by the hydrothermal crystallization process. The characterization of coagulant composite from palm oil ash was analyzed by advanced instruments, and The pattern was analyzed by X-ray Diffraction (XRD), chemical composition by X-Ray Fluorescence (XRFS) and morphology characterized by SEM. The second step, the clarification wastewater treatment efficiency of synthetic coagulant composite, was evaluated by coagulation/flocculation process based on the COD, turbidity, phosphate and color removal of wastewater from palm oil factory by varying the coagulant dosage (1-8 %w/v) with no adjusted pH and commercial coagulants (Alum, Ferric Chloride and poly aluminum chloride) which adjusted the pH (6). The results found that the maximum removal of 6% w/v of synthetic coagulant from palm oil ash can remove COD, turbidity, phosphate and color was 88.44%, 93.32%, 93.32% and 93.32%, respectively. The experiments were compared using 6% w/v of commercial coagulants (Alum, Ferric Chloride and Polyaluminum Chloride) can remove COD of 74.29%, 71.43% and 57.14%, respectively.

Keywords: coagulation, coagulant, wastewater treatment, waste utilization, palm oil ash

Procedia PDF Downloads 191
1377 Second Language Acquisition in a Study Abroad Context: International Students’ Perspectives of the Evolution of Their ‘Second Language Self’

Authors: Dianah Kitiabi

Abstract:

This study examines the experiences of graduate international students in Study Abroad (SA) in order to understand the evolution of their second language (L2) skills during the period of their sojourn abroad. The study documents students’ perspectives through analysis of interview data situated within the context of their overall SA experience. Based on a phenomenological approach, the study focuses on a sample of nine graduate students with at least one year of SA experience. Gass & Mackey’s (2007) interaction approach and Vygotsky’s (1962) sociocultural theory help frame the study within the discourse of second language acquisition (SLA) in SA, such as to highlight the effects of SA on L2 skills of advanced-level learners. The findings of the study are first presented as individual case vignettes where students’ interpretations of their personal experiences are described in entirety, followed by an analysis across the cases that highlight emergent themes. The results of this study show that the linguistic outcomes of international students studying abroad are highly individualized. Although students reported to have improved some of their L2 skills, they also reported a lack of improvement in other L2 skills, most of which differed by case. What emerges is that besides contextual factors, students’ pre-program exposure to L2, interactions with NSs, frequency of L2 use in context, and personal beliefs contribute to their linguistic gains in SA.

Keywords: context, interaction, second language acquisition, study abroad

Procedia PDF Downloads 79
1376 A Two-Stage Airport Ground Movement Speed Profile Design Methodology Using Particle Swarm Optimization

Authors: Zhang Tianci, Ding Meng, Zuo Hongfu, Zeng Lina, Sun Zejun

Abstract:

Automation of airport operations can greatly improve ground movement efficiency. In this paper, we study the speed profile design problem for advanced airport ground movement control and guidance. The problem is constrained by the surface four-dimensional trajectory generated in taxi planning. A decomposed approach of two stages is presented to solve this problem efficiently. In the first stage, speeds are allocated at control points which ensure smooth speed profiles can be found later. In the second stage, detailed speed profiles of each taxi interval are generated according to the allocated control point speeds with the objective of minimizing the overall fuel consumption. We present a swarm intelligence based algorithm for the first-stage problem and a discrete variable driven enumeration method for the second-stage problem since it only has a small set of discrete variables. Experimental results demonstrate the presented methodology performs well on real world speed profile design problems.

Keywords: airport ground movement, fuel consumption, particle swarm optimization, smoothness, speed profile design

Procedia PDF Downloads 582
1375 Psychiatric Symptoms in Keratoconus: Analyzing Anxiety and Depression in Affected Patients

Authors: Nida Amin, Fahad Tanveer, Hina Shabbir, Ayesha Saeed, Attiqa Riaz

Abstract:

The gradual progression of corneal disorder keratoconus significantly impairs eyesight and quality of life, increasing the likelihood of depression. Using the Hospital Anxiety and Depression Scale (HADS) at the AL-Ibrahim Eye Hospital in Karachi, this study aimed to evaluate the occurrence of depression and anxiety symptoms in patients with keratoconus and to suggest better treatment. A descriptive-analytical study was conducted at Al-Ibrahim Eye Hospital Karachi from March to April 2022, and patients diagnosed with symptomatic keratoconus were recruited using a non-probability convenient sampling technique. After obtaining written informed consent from patients, keratoconus severity was assessed using visual acuity and corneal topography. Symptoms of anxiety and depression were assessed using the Hospital Anxiety and Depression (HADS) Scale. The data were analyzed using SPSS version 20.0. Spearman correlation coefficient. Of the 108 participants, 60 (56%) were female and 48 (44%) were male. Using the HADS scale, 44 (40.7%) patients were classified as normal with a HADS score of (0-7), 23 (21.3%) as borderline with a HADS score of (8-10) and 41 (38%) patients were diagnosed with anxiety and depression with a HADS score of (11-21). Depression and anxiety are highly prevalent among patients in advanced stages of the disease.

Keywords: cornea, keratoconus, anxiety, depression, corneal topography, mental health

Procedia PDF Downloads 35