Search results for: stress crack resistance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7055

Search results for: stress crack resistance

5735 Reducing Component Stress during Encapsulation of Electronics: A Simulative Examination of Thermoplastic Foam Injection Molding

Authors: Constantin Ott, Dietmar Drummer

Abstract:

The direct encapsulation of electronic components is an effective way of protecting components against external influences. In addition to achieving a sufficient protective effect, there are two other big challenges for satisfying the increasing demand for encapsulated circuit boards. The encapsulation process should be both suitable for mass production and offer a low component load. Injection molding is a method with good suitability for large series production but also with typically high component stress. In this article, two aims were pursued: first, the development of a calculation model that allows an estimation of the occurring forces based on process variables and material parameters. Second, the evaluation of a new approach for stress reduction by means of thermoplastic foam injection molding. For this purpose, simulation-based process data was generated with the Moldflow simulation tool. Based on this, component stresses were calculated with the calculation model. At the same time, this paper provided a model for estimating the forces occurring during overmolding and derived a solution method for reducing these forces. The suitability of this approach was clearly demonstrated and a significant reduction in shear forces during overmolding was achieved. It was possible to demonstrate a process development that makes it possible to meet the two main requirements of direct encapsulation in addition to a high protective effect.

Keywords: encapsulation, stress reduction, foam-injection-molding, simulation

Procedia PDF Downloads 124
5734 Stress Hyperglycemia: A Predictor of Major Adverse Cardiac Events in Non-Diabetic Patients With Acute Heart Failure

Authors: Fahad Raj Khan, Suleman Khan

Abstract:

There is a lack of consensus about the predictive value of raised blood glucose levels in terms of major adverse cardiac events (MACEs) in non-diabetic patients admitted for acute decompensated heart failure. The purpose of this research was to examine the long-term prognosis of acute decompensated heart failure (ADHF) in non-diabetic persons who had increased blood glucose levels, i.e., stress hyperglycemia, at the time of their ADHF hospitalization. The research involved 650 non-diabetic patients. Based on their admission stress hyperglycemia, they were divided into two groups.ie with and without (SHGL). The two groups' one-year outcomes for major adverse cardiac events (MACEs) were compared, and key predictors of MACEs were discovered. For statistical analysis, the two-tailed Mann-Whitney U test, Fisher's exact test, and binary logistic regression analysis were utilized. SHGL was found in 353 (54.3%) individuals. It was more frequent in men than in women. About 27% of patients with SHGL had previously been admitted for ADHF. Almost 62% were hypertensive, whereas 14 % had CKD. MACEs were significantly predicted by SHGL, HTN, prior hospitalization for ADHF, CKD, and cardiogenic shock upon admission. SHGL at the time of ADHF admission, independent of DM status, may be a predictive indication of MACEs.

Keywords: stress hyperglycemia, acute heart failure, major adverse cardiac events, MACEs

Procedia PDF Downloads 93
5733 The Relation between Coping Strategies with Stress and Mental Health Situation in Flying Addicted Family of Self Introducer and Private

Authors: Farnoush Haghanipour

Abstract:

Recent research studies relation between coping strategies with stress and mental health situation in flying addicted family of self-introducer and private, Units of Guilan province. For this purpose 251 family (parent, spouse), that referred to private and self-introducer centers to break out of drug are selected in random sampling form. Research method was cross sectional-descriptive and purpose of research was fixing of between kinds of coping strategies with stress and mental health condition with attention to demographic variables. Therefore to collection of information, coping strategies questionnaire (CSQ) and mental health questionnaire (GHQ) was used and finally data analyzed by descriptive statistical methods (average, standard deviation) and inferential statistical correlation coefficient and regression. Study of correlation coefficient between mental healths with problem focused emotional focused and detachment strategies in level more than %99 is confirmed. Also mental health with avoidant focused hasn't correlation in other words relation is between mental health with problem focused strategies (r= 0/34) and emotional focused with mental health (r=0.52) and detachment with mental health (r= 0.18) in meaningful level 0.05. And also relation is between emotional focused strategies and mental health (r= 0.034) that is meaningless in Alpha 0.05. Also relation between problem processed coping strategies and mental health situation with attention to demographic variable is meaningful and relation level verified in confidence level more than 0.99. And result of anticipation equation regression statistical test has most a have in problem focused coping strategy, mental health, but relation of the avoidant emotional, detachment strategy with mental health was meaningless with attention to demographic variables.

Keywords: stress, coping strategy with stress, mental health, self introducer and private

Procedia PDF Downloads 307
5732 Stress Analysis of Spider Gear Using Structural Steel on ANSYS

Authors: Roman Kalvin, Anam Nadeem, Shahab Khushnood

Abstract:

Differential is an integral part of four wheeled vehicle, and its main function is to transmit power from drive shaft to wheels. Differential assembly allows both rear wheels to turn at different speed along curved paths. It consists of four gears which are assembled together namely pinion, ring, spider and bevel gears. This research focused on the spider gear and its static structural analysis using ANSYS. The main aim was to evaluate the distribution of stresses on the teeth of the spider gear. This study also analyzed total deformation that may occur during its working along with bevel gear that is meshed with spider gear. Structural steel was chosen for spider gear in this research. Modeling and assembling were done on SolidWorks for both spider and bevel gear. They were assembled exactly same as in a differential assembly. This assembly was then imported to ANSYS. After observing results that maximum amount of stress and deformation was produced in the spider gear, it was concluded that structural steel material for spider gear possesses greater amount of strength to bear maximum stress.

Keywords: ANSYS, differential, spider gear, structural steel

Procedia PDF Downloads 181
5731 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 480
5730 Effects of Using Super-Absorbent Polymers on Physiological Indexes of Maize

Authors: Shoaei Shahram, Rafiei Felora

Abstract:

To study the effects of using superabsorbent polymers on physiological of maize in deficit Irrigation condition .an experiment carried out in split plot factorial based on completely Randomized Block design (RCBD) with three replication in 2012years. Deficit Irrigation was applied by three different Irrigation amount. Super absorbent polymers in 3 levels were and two veriety of maize allocated in sub plots. there was significant difference between Irrigation levels in all experimental Traits by increasing in deficit irrigation. Results of this research showed water stress significantly decreased relative water content (RWC) LAI,Ash percentage in both hybrids, and increased Cell membrane percentage and SPAD,ADF percent.whereas the application of super absorbent polymer compensated the negative effect of drought stress, especially in high rates of polymer application .These mentioned rates of polymer had the best effect to all of the studied traits. These findings can be suggested that the irrigation intervals of corn could be increased by application of super absorbent polymer.

Keywords: super absorbent, p hysiological, water stress, zea maize

Procedia PDF Downloads 317
5729 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel

Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti

Abstract:

With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.

Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra

Procedia PDF Downloads 424
5728 Fabrication and Characterization of Ceramic Matrix Composite

Authors: Yahya Asanoglu, Celaletdin Ergun

Abstract:

Ceramic-matrix composites (CMC) have significant prominence in various engineering applications because of their heat resistance associated with an ability to withstand the brittle type of catastrophic failure. In this study, specific raw materials have been chosen for the purpose of having suitable CMC material for high-temperature dielectric applications. CMC material will be manufactured through the polymer infiltration and pyrolysis (PIP) method. During the manufacturing process, vacuum infiltration and autoclave will be applied so as to decrease porosity and obtain higher mechanical properties, although this advantage leads to a decrease in the electrical performance of the material. Time and temperature adjustment in pyrolysis parameters provide a significant difference in the properties of the resulting material. The mechanical and thermal properties will be investigated in addition to the measurement of dielectric constant and tangent loss values within the spectrum of Ku-band (12 to 18 GHz). Also, XRD, TGA/PTA analyses will be employed to prove the transition of precursor to ceramic phases and to detect critical transition temperatures. Additionally, SEM analysis on the fracture surfaces will be performed to see failure mechanism whether there is fiber pull-out, crack deflection and others which lead to ductility and toughness in the material. In this research, the cost-effectiveness and applicability of the PIP method will be proven in the manufacture of CMC materials while optimization of pyrolysis time, temperature and cycle for specific materials is detected by experiment. Also, several resins will be shown to be a potential raw material for CMC radome and antenna applications. This research will be distinguished from previous related papers due to the fact that in this research, the combination of different precursors and fabrics will be experimented with to specify the unique cons and pros of each combination. In this way, this is an experimental sum of previous works with unique PIP parameters and a guide to the manufacture of CMC radome and antenna.

Keywords: CMC, PIP, precursor, quartz

Procedia PDF Downloads 157
5727 Beneficial Effects of Curcumin against Stress Oxidative and Mitochondrial Dysfunction Induced by Trinitrobenzene Sulphonic Acid in Colon

Authors: Souad Mouzaoui, Bahia Djerdjouri

Abstract:

Oxidative stress is one of the main factors involved in the onset and chronicity of inflammatory bowel disease (IBD). In this study, we investigated the beneficial effects of a potent natural antioxidant, curcumin (Cur) on colitis and mitochondrial dysfunction in trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Rectal instillation of the chemical irritant TNBS (30 mg kg-1) induced the disruption of distal colonic architecture and a massive inflammatory cells influx to the mucosa and submucosa layers. Under these conditions, daily administration of Cur (25 mg kg-1) efficiently decreased colitis scores in the inflamed distal colon by reducing leukocyte infiltrate as attested by reduced myeloperoxidase (MPO) activity. Moreover, the levels of nitrite, an end product of inducible NO synthase activity (iNOS) and malonyl dialdehyde (MDA), a marker of lipid peroxidation increased in a time depending manner in response to TNBS challenge. Conversely, the markers of the antioxidant pool, reduced glutathione (GSH) and catalase activity (CAT) were drastically reduced. Cur attenuated oxidative stress markers and partially restored CAT and GSH levels. Moreover, our results expanded the effect of Cur on TNBS-induced colonic mitochondrial dysfunction. In fact, TNBS induced mitochondrial swelling and lipids peroxidation. These events reflected in the opening of mitochondrial transition pore and could be an initial indication in the cascade process leading to cell death. TNBS inhibited also mitochondrial respiratory activity, caused overproduction of mitochondrial superoxide anion (O2-.) and reduced level of mitochondrial GSH. Nevertheless, Cur reduced the extent of mitochondrial oxidative stress induced by TNBS and restored colonic mitochondrial function. In conclusion, our results showed the critical role of oxidative stress in TNBS-induced colitis. They highlight the role of colonic mitochondrial dysfunction induced by TNBS, as a potential source of oxidative damages. Due to its potent antioxidant properties, Cur opens a promising therapeutic approach against oxidative inflammation in IBD.

Keywords: colitis, curcumin, mitochondria, oxidative stress, TNBS

Procedia PDF Downloads 252
5726 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 62
5725 Humanising the Employment Environment for Emergency Medical Personnel: A Case Study of Capricorn District in Limpopo Province: South Africa

Authors: Manganyi Patricia Siphiwe

Abstract:

Work environments are characterised by performance pressure and mechanisation, which lead to job stress and the dehumanisation of work spaces. The personnel’s competence to accomplish job responsibilities and high job demands lead to a substantial load of health. Therefore, providing employees with conducive working environments is essential. In order to attain it, the employer should ensure that responsive and institutional safe systems are in place. The employer’s responses to employees’ needs are of significance to a healthy and developmental work environment. Denying employees a developmental and flourishing workplace is to deprive a workplace of being humane. Stressors coming from various aspects in the workplace can yield undue pressure and undesired responses for the workforces. Against the profiled background, this paper examines the causes and consequences of workplace stress within the Emergency Medical sector. The paper utilised a qualitative methodology and in-depth interviews for data collection with the purposively sampled emergency medical personnel. The findings showed that workplace stress has been associated with high demands and lack of support which has an adverse effect on biopsychosocial wellbeing of employees. This paper, therefore, recommends an engaged involvement of social workers through work organisational initiatives, such as Employee Assistance Programmes (EAP) and related labour relations policy activities to promote positive and developmental working environments.

Keywords: stress, employee, workplace, wellbeing

Procedia PDF Downloads 88
5724 Residual Plastic Deformation Capacity in Reinforced Concrete Beams Subjected to Drop Weight Impact Test

Authors: Morgan Johansson, Joosef Leppanen, Mathias Flansbjer, Fabio Lozano, Josef Makdesi

Abstract:

Concrete is commonly used for protective structures and how impact loading affects different types of concrete structures is an important issue. Often the knowledge gained from static loading is also used in the design of impulse loaded structures. A large plastic deformation capacity is essential to obtain a large energy absorption in an impulse loaded structure. However, the structural response of an impact loaded concrete beam may be very different compared to a statically loaded beam. Consequently, the plastic deformation capacity and failure modes of the concrete structure can be different when subjected to dynamic loads; and hence it is not sure that the observations obtained from static loading are also valid for dynamic loading. The aim of this paper is to investigate the residual plastic deformation capacity in reinforced concrete beams subjected to drop weight impact tests. A test-series consisting of 18 simply supported beams (0.1 x 0.1 x 1.18 m, ρs = 0.7%) with a span length of 1.0 m and subjected to a point load in the beam mid-point, was carried out. 2x6 beams were first subjected to drop weight impact tests, and thereafter statically tested until failure. The drop in weight had a mass of 10 kg and was dropped from 2.5 m or 5.0 m. During the impact tests, a high-speed camera was used with 5 000 fps and for the static tests, a camera was used with 0.5 fps. Digital image correlation (DIC) analyses were conducted and from these the velocities of the beam and the drop weight, as well as the deformations and crack propagation of the beam, were effectively measured. Additionally, for the static tests, the applied load and midspan deformation were measured. The load-deformation relations for the beams subjected to an impact load were compared with 6 reference beams that were subjected to static loading only. The crack pattern obtained were compared using DIC, and it was concluded that the resulting crack formation depended much on the test method used. For the static tests, only bending cracks occurred. For the impact loaded beams, though, distinctive diagonal shear cracks also formed below the zone of impact and less wide shear cracks were observed in the region half-way to the support. Furthermore, due to wave propagation effects, bending cracks developed in the upper part of the beam during initial loading. The results showed that the plastic deformation capacity increased for beams subjected to drop weight impact tests from a high drop height of 5.0 m. For beams subjected to an impact from a low drop height of 2.5 m, though, the plastic deformation capacity was in the same order of magnitude as for the statically loaded reference beams. The beams tested were designed to fail due to bending when subjected to a static load. However, for the impact tested beams, one beam exhibited a shear failure at a significantly reduced load level when it was tested statically; indicating that there might be a risk of reduced residual load capacity for impact loaded structures.

Keywords: digital image correlation (DIC), drop weight impact, experiments, plastic deformation capacity, reinforced concrete

Procedia PDF Downloads 141
5723 Is Presence of Psychotic Features Themselves Carry a Risk for Metabolic Syndrome?

Authors: Rady A., Elsheshai A., Elsawy M., Nagui R.

Abstract:

Background and Aim: Metabolic syndrome affect around 20% of general population , authors have incriminated antipsychotics as serious risk factor that may provoke such derangement. The aim of our study is to assess metabolic syndrome in patients presenting psychotic features (delusions and hallucinations) whether schizophrenia or mood disorder and compare results in terms of drug naïf, on medication and healthy control. Subjects and Methods: The study recruited 40 schizophrenic patients, half of them drug naïf and the other half on antipsychotics, 40 patients with mood disorder with psychotic features, half of them drug naïf and the other half on medication, 20 healthy control. Exclusion criteria were put in order to exclude patients having already endocrine or metabolic disorders that my interfere with results obtain to minimize confusion bias. Metabolic syndrome assessed by measuring parameters including weight, body mass index, waist circumference, triglyceride level, HDL, fasting glucose, fasting insulin and insulin resistance Results: No difference was found when comparing drug naïf to those on medication in both schizophrenic and psychotic mood disorder arms, schizophrenic patients whether on medication or drug naïf should difference with control group for fasting glucose, schizophrenic patients on medication also showed difference in insulin resistance compared to control group. On the other hand, patients with psychotic mood disorder whether drug naïf or on medication showed difference from control group for fasting insulin level. Those on medication also differed from control for insulin resistance Conclusion: Our study didn’t reveal difference in metabolic syndrome among patients with psychotic features whether on medication or drug naïf. Only patients with Psychotic features on medication showed insulin resistance. Schizophrenic patients drug naïf or on medication tend to show higher fasting glucose while psychotic mood disorder whether drug naïf or on medication tend to show higher fasting insulin. This study suggest that presence of psychotic features themselves regardless being on medication or not carries a risk for insulin resistance and metabolic syndrome. Limitation: This study is limited by number of participants and larger numbers in future studies should be included in order to extrapolate results. Cohort longitudinal studies are needed in order to evaluate such hypothesis.

Keywords: schizophrenia, metabolic syndrome, psychosis, insulin, resistance

Procedia PDF Downloads 529
5722 Photo-Enhanced Catalytic Dry Reforming of Methane on Ni@SiO2 with High Resistance to Carbon

Authors: Jinrui Zhang, Tianlong Yang, Ying Pan

Abstract:

Methane and carbon dioxide are major greenhouse gases contributor. CO₂ dry reforming of methane (DRM) for syngas production is a promising approach to reducing global CO₂ emission and extensive utilization of natural gas. However, the reported catalysts endured rapid deactivation due to severe carbon deposition at high temperature. Here, CO₂ reduction by CH4 on hexagonal nano-nickel flakes packed by porous SiO₂ (Ni@SiO₂) catalysts driven by thermal and solar light are tested. High resistance to carbon deposition and higher reactive activity are demonstrated under focused solar light at moderate temperature (400-500 ℃). Furthermore, the photocatalytic DRM under different wavelength is investigated, and even IR irradiation can enhance the catalytic activity. The mechanism of light-enhanced reaction reactivity and equilibrium is investigated by Infrared and Raman spectroscopy, and the unique reaction pathway with light is depicted. The photo-enhanced DRM provides a promising method of renewable solar energy conversion and CO₂ emission reduction due to the excellent activity and durability.

Keywords: CO₂ emission reduction, methane, photocatalytic DRM, resistance to carbon deposition, syngas

Procedia PDF Downloads 111
5721 Computational Homogenization of Thin Walled Structures: On the Influence of the Global vs Local Applied Plane Stress Condition

Authors: M. Beusink, E. W. C. Coenen

Abstract:

The increased application of novel structural materials, such as high grade asphalt, concrete and laminated composites, has sparked the need for a better understanding of the often complex, non-linear mechanical behavior of such materials. The effective macroscopic mechanical response is generally dependent on the applied load path. Moreover, it is also significantly influenced by the microstructure of the material, e.g. embedded fibers, voids and/or grain morphology. At present, multiscale techniques are widely adopted to assess micro-macro interactions in a numerically efficient way. Computational homogenization techniques have been successfully applied over a wide range of engineering cases, e.g. cases involving first order and second order continua, thin shells and cohesive zone models. Most of these homogenization methods rely on Representative Volume Elements (RVE), which model the relevant microstructural details in a confined volume. Imposed through kinematical constraints or boundary conditions, a RVE can be subjected to a microscopic load sequence. This provides the RVE's effective stress-strain response, which can serve as constitutive input for macroscale analyses. Simultaneously, such a study of a RVE gives insight into fine scale phenomena such as microstructural damage and its evolution. It has been reported by several authors that the type of boundary conditions applied to the RVE affect the resulting homogenized stress-strain response. As a consequence, dedicated boundary conditions have been proposed to appropriately deal with this concern. For the specific case of a planar assumption for the analyzed structure, e.g. plane strain, axisymmetric or plane stress, this assumption needs to be addressed consistently in all considered scales. Although in many multiscale studies a planar condition has been employed, the related impact on the multiscale solution has not been explicitly investigated. This work therefore focuses on the influence of the planar assumption for multiscale modeling. In particular the plane stress case is highlighted, by proposing three different implementation strategies which are compatible with a first-order computational homogenization framework. The first method consists of applying classical plane stress theory at the microscale, whereas with the second method a generalized plane stress condition is assumed at the RVE level. For the third method, the plane stress condition is applied at the macroscale by requiring that the resulting macroscopic out-of-plane forces are equal to zero. These strategies are assessed through a numerical study of a thin walled structure and the resulting effective macroscale stress-strain response is compared. It is shown that there is a clear influence of the length scale at which the planar condition is applied.

Keywords: first-order computational homogenization, planar analysis, multiscale, microstrucutures

Procedia PDF Downloads 232
5720 Relations among Coping with Stress, Anxiety and the Achievement Motive of Athletes and Non-Athletes

Authors: Dragana Tomic

Abstract:

This research deals with relations among strategies and styles of coping with stress, social interaction anxiety and the achievement motive of young athletes and non-athletes. The research was conducted on the sample of 402 examinees (197 female and 205 male participants) of the average age of 20.76, divided into three groups: athletes, recreationists, and non-athletes. The COPE-S questionnaire, the Social Interaction Anxiety Scale (SIAS) and the Achievement Motivation Questionnaire (MOP 2002) were used for conducting this research and they had satisfactory reliability. The results of the research indicate that athletes, recreationists and non-athletes are not different when it comes to strategies and styles of coping with stress. Non- athletes have more noticeable social interaction anxiety when compared to athletes (U=5281.5, p=.000) and also when compared to recreationists (U=7573, p=.000). There was a difference among these three groups in the achievement motive (χ2(2)=23,544, p=.000) and the three components of this motive (Competing with others, χ2(2)=31,718, p=.000, Perseverance, χ2(2)=9,415, p=.009 and Planning orientation, χ2(2)=8,171, p=.017). The research also indicates a significant difference in the relation between social interaction anxiety and the achievement motive of examinee subgroups, where the most significant difference is between athletes and non- athletes (q=-.45). Moreover, women more frequently use emotion-focused coping (U=16718, p=.003), while men more frequently use avoidance (U=14895.5, p=.000). Women have a lead when it comes to expressing social anxiety (U=17750.5, p=.036) and the achievement motive (U=17395.5, p=.020). The discussion of the results includes findings of similar previous research and theoretical concepts of the variables which were examined. Future research should be oriented towards examining the background of the differences which were (not) gained as well as towards the influence of personality dimensions on the variables which were examined in order to apply the results in practice in the best way.

Keywords: achievement motivation, athletes, coping with stress, non-athletes, recreationists, social interaction anxiety

Procedia PDF Downloads 157
5719 The Influence of Cage versus Floor Pen Management of Broilers

Authors: Hanan Al-Khalifa

Abstract:

There has been an interest in raising poultry in environmentally controlled cages rather than on floor, because poultry raised on floor are more susceptible to environmental stress including pathogens and heat stress. A study was conducted to investigate the effect of managerial environmental conditions on body weight gain of Cobb 500 broiler breed. Broilers were raised in cages and on floor in two separate rooms. Body weight at different ages of the broilers was monitored. It was found that body weight at slaughter age (5weeks) for boilers raised in batteries were significantly higher than those raised on the floor.

Keywords: broilers, cages, floor, poultry

Procedia PDF Downloads 410
5718 Mechanical Study Material on Low Environmental Impact

Authors: Fetta Ait Ahsene-Aissat, Messaoud Hachemi, Yacine Moussaoui, Yacine Kerchiche

Abstract:

Our study focuses on two important aspects, environmental by using a sub industrial product (FAD), by economic incorporation as an addition to Portland cement, thus improving resistance to compression and bending with different proportions ADF % up to 40 additions. We studied the effect of different substitutions 0%, 10%, 20%, and 40% of additions to the mechanical effect of the mortar. We obtained a compressive strength of 61 MPa at 90 days for the cement mixture porthland FAD-40% against a resistance of 58MPa for porthland cement without addition. The flexural strength also showed a marked increase in the cement substitution. We also monitored the behavior of the mixed ash-cement by XRD analysis and scanning electron microscopy (SEM).

Keywords: FAD, porthland, flexural strength, compressive strength, DRX

Procedia PDF Downloads 348
5717 Germination and Seed Vigor Response of Five Wheat Cultivars to Stress of Premature Aging Effects

Authors: Mehdi Soltani Howyzeh, Neda Kardoni, Mani Mojadam

Abstract:

To evaluate the vigor of wheat seeds and stress of premature aging effects on germination percentage, root length and shoot length of five wheat cultivars that include Vynak, Karkheh, Chamran, Star and Kavir which underwent a period of zero, two, three, four days in terms of premature aging with 41 °C temperature and 100% relative humidity. Seed germination percentage, root length and shoot length in these conditions were measured. This experiment was conducted as a factorial completely randomized design with four replications in laboratory conditions. The results showed that each of aging treatments used in this experiment can be used to detect differences in vigor of wheat varieties. Wheat cultivars illustrated significant differences in germination percentage, root length and shoot length in terms of premature aging. The wheat cultivars; Astar and Vynak had maximum germination percentage and Karkheh, respectively Kavir and Chamran had lowest percentage of seed germination. Reactions of root and shoot length of wheat cultivars was also different. The results showed that the seeds with a stronger vigor affected less in premature aging condition and the difference between the percentage of seed germination under normal conditions and stress was significant and the seeds with the weaker vigor were more sensitive to the premature aging stress and the premature aging had more severe negative impact on seed vigor.

Keywords: wheat cultivars, seed vigor, premature aging effects, germination

Procedia PDF Downloads 331
5716 Amelioration of Lipopolysaccharide Induced Murine Colitis by Cell Wall Contents of Probiotic Lactobacillus Casei: Targeting Immuno-Inflammation and Oxidative Stress

Authors: Vishvas N. Patel, Mehul Chorawala

Abstract:

Currently, according to the authors best knowledge there are less effective therapeutic agents to limit intestinal mucosa damage associated with inflammatory bowel disease (IBD). Clinical studies have shown beneficial effects of several probiotics in patients of IBD. Probiotics are live organisms; confer a health benefit to the host by modulating immunoinflammation and oxidative stress. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the ameliorative potential of cell wall contents of Lactobacillus casei (LC) in lipopolysaccharide (LPS)-induced murine colitis. Methods: Colitis was induced in LPS-sensitized rats by intracolonic instillation of LPS (50 µg/rat) for consecutive 14 days. Concurrently, cell wall contents isolated from 103, 106 and 109 CFU of LC was given subcutaneously to each rat for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight and histological analysis. Colonic inflammatory markers (myeloperoxidase (MPO) activity, C-reactive protein and proinflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione and nitric oxide) were also assayed. Results: Cell wall contents of isolated from 106 and 109 CFU of LC significantly improved the severity of colitis by reducing body weight loss and diarrhea & bleeding incidence, improving food intake, colon weight/length, spleen weight and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted antioxidant molecule. However, cell wall contents of isolated from 103 were ineffective. Conclusion: In conclusion, cell wall contents of LC attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress.

Keywords: probiotics, Lactobacillus casei, immuno-inflammation, oxidative stress, lipopolysaccharide, colitis

Procedia PDF Downloads 85
5715 Rapid and Cheap Test for Detection of Streptococcus pyogenes and Streptococcus pneumoniae with Antibiotic Resistance Identification

Authors: Marta Skwarecka, Patrycja Bloch, Rafal Walkusz, Oliwia Urbanowicz, Grzegorz Zielinski, Sabina Zoledowska, Dawid Nidzworski

Abstract:

Upper respiratory tract infections are one of the most common reasons for visiting a general doctor. Streptococci are the most common bacterial etiological factors in these infections. There are many different types of Streptococci and infections vary in severity from mild throat infections to pneumonia. For example, S. pyogenes mainly contributes to acute pharyngitis, palatine tonsils and scarlet fever, whereas S. Streptococcus pneumoniae is responsible for several invasive diseases like sepsis, meningitis or pneumonia with high mortality and dangerous complications. There are only a few diagnostic tests designed for detection Streptococci from the infected throat of patients. However, they are mostly based on lateral flow techniques, and they are not used as a standard due to their low sensitivity. The diagnostic standard is to culture patients throat swab on semi selective media in order to multiply pure etiological agent of infection and subsequently to perform antibiogram, which takes several days from the patients visit in the clinic. Therefore, the aim of our studies is to develop and implement to the market a Point of Care device for the rapid identification of Streptococcus pyogenes and Streptococcus pneumoniae with simultaneous identification of antibiotic resistance genes. In the course of our research, we successfully selected genes for to-species identification of Streptococci and genes encoding antibiotic resistance proteins. We have developed a reaction to amplify these genes, which allows detecting the presence of S. pyogenes or S. pneumoniae followed by testing their resistance to erythromycin, chloramphenicol and tetracycline. What is more, the detection of β-lactamase-encoding genes that could protect Streptococci against antibiotics from the ampicillin group, which are widely used in the treatment of this type of infection is also developed. The test is carried out directly from the patients' swab, and the results are available after 20 to 30 minutes after sample subjection, which could be performed during the medical visit.

Keywords: antibiotic resistance, Streptococci, respiratory infections, diagnostic test

Procedia PDF Downloads 124
5714 Towards Development of Superior Brassica juncea by Pyramiding of Genes of Diverse Pathways for Value Addition, Stress Alleviation and Human Health

Authors: Deepak Kumar, Ravi Rajwanshi, Mohd. Aslam Yusuf, Nisha Kant Pandey, Preeti Singh, Mukesh Saxena, Neera Bhalla Sarin

Abstract:

Global issues are leading to concerns over food security. These include climate change, urbanization, increase in population subsequently leading to greater energy and water demand. Futuristic approach for crop improvement involves gene pyramiding for agronomic traits that empower the plants to withstand multiple stresses. In an earlier study from the laboratory, the efficacy of overexpressing γ-tocopherol methyl transferase (γ-TMT) gene from the vitamin E biosynthetic pathway has been shown to result in six-fold increase of the most biologically active form, the α-tocopherol in Brassica juncea which resulted in alleviation of salt, heavy metal and osmoticum induced stress by the transgenic plants. The glyoxalase I (gly I) gene from the glyoxalase pathway has also been earlier shown by us to impart tolerance against multiple abioitc stresses by detoxification of the cytotoxic compound methylglyoxal in Brassica juncea. Recently, both the transgenes were pyramided in Brassica juncea lines through sexual crosses involving two stable Brassica juncea lines overexpressing γ-TMT and gly I genes respectively. The transgene integration was confirmed by PCR analysis and their mRNA expression was evident by RT-PCR analysis. Preliminary physiological investigations showed ~55% increased seed germination under 200 mM NaCl stress in the pyramided line and 81% higher seed germination under 200 mM mannitol stress as compared to the WT control plants. The pyramided lines also retained more chlorophyll content when the leaf discs were floated on NaCl (200, 400 and 600 mM) or mannitol (200, 400 and 600 mM) compared to the WT control plants. These plants had higher Relative Water Content and greater solute accumulation under stress compared to the parental plants having γ-TMT or the glyI gene respectively. The studies revealed the synergy of two components from different metabolic pathways in enhancing stress hardiness of the transgenic B. juncea plants. It was concluded that pyramiding of genes (γ-TMT and glyI) from diverse pathways can lead to enhanced tolerance to salt and mannitol stress (simulating drought conditions). This strategy can prove useful in enhancing the crop yields under various abiotic stresses.

Keywords: abiotic stress, brassica juncea, glyoxalase I, α-tocopherol

Procedia PDF Downloads 543
5713 Productivity Improvement in the Propeller Shaft Manufacturing Process

Authors: Won Jung

Abstract:

In automotive, propeller shaft is the device for transferring power from engine to axle via transmission, and the slip yoke is one of the main parts in the component. Since the propeller shafts are subject to torsion and shear stress, they need to be strong enough to bear the stress. The purpose of this research is to improve the productivity of slip yoke for automotive propeller shaft. We present how to redesign the component that currently manufactured as a forged single body type. The research was focused on not only reducing processing time but insuring durability of the component simultaneously.

Keywords: automotive, propeller shaft, productivity, durability, slip yoke

Procedia PDF Downloads 375
5712 Relative Importance of Different Mitochondrial Components in Maintaining the Barrier Integrity of Retinal Endothelial Cells: Implications for Vascular-associated Retinal Diseases

Authors: Shaimaa Eltanani, Thangal Yumnamcha, Ahmed S. Ibrahim

Abstract:

Purpose: Mitochondria dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to dissect the role of different mitochondrial components, specifically, those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. Methods: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real-time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components; the capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: Rotenone for complex I; Oligomycin for ATP synthase; and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). Results: Rotenone (1 µM) produced the greatest reduction in the Z, followed by FCCP (1 µM), whereas no reduction in the Z was observed after the treatment with Oligomycin (1 µM). Following this further, we deconvoluted the effect of these inhibitors on Rb, α, and Cm. Firstly, rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 hours and increased Cm without considerable effect on α. Lastly, Oligomycin had the lowest impact among these inhibitors on Rb, which became similar to the control group at the end of the experiment without noticeable effects on Cm or α. Conclusion: These results demonstrate differential roles for complex I, complex V, and coupling of OxPhos in maintaining the barrier functionality of HRECs, in which complex I being the most important component in regulating the barrier functionality and the spreading behavior of HRECs. Such differences can be used in investigating gene expression as well as for screening selective agents that improve the functionality of complex I to be used in the therapeutic approach for treating REC-related retinal diseases.

Keywords: human retinal endothelial cells (hrecs), rotenone, oligomycin, fccp, oxidative phosphorylation, oxphos, capacitance, impedance, ecis modeling, rb resistance, α resistance, and barrier integrity

Procedia PDF Downloads 98
5711 Resistance of African States Against the African Court on Human and People Rights (ACPHR)

Authors: Ayyoub Jamali

Abstract:

At the first glance, it seems that the African Court on Human and People’s Rights has achieved a tremendous development in the protection of human rights in Africa. Since its first judgement in 2009, the court has taken a robust approach/ assertive stance, showing its strength by finding states to be in violation of the Africana Charter and other human rights treaties. This paper seeks to discuss various challenges and resistance that the Court has faced since the adoption of the Founding Protocol to the Establishment of the African Court on Human and People’s Rights. The outcome of the paper casts shadow on the legitimacy and effectiveness of the African Court as the guarantor of human rights within the African continent.

Keywords: African Court on Human and People’s Rights, African Union, African regional human rights system, compliance

Procedia PDF Downloads 150
5710 Investigation into the Possibility of Using Recycled Polyethelene to Replace Natural Rubber in the Production of Different Products

Authors: Otokiti Mojeed Jimoh

Abstract:

This work investigates the possibility of using recycled polyethylene LDPE as a base polymer in production of different products (shoe sole, foot mat, and many more) using carbon black as a filler to improve its mechanical properties, like hardness, tensile stress properties and elongation at break properties, from the result so far gotten there is a possibility that there is an increase in the mechanical properties of the sample compare to natural rubber sample.

Keywords: recycled polyethylene, base polymer, hardness, stress properties

Procedia PDF Downloads 413
5709 The Multiaxial Load Proportionality Effect on the Fracture Surface Topography of Forged Magnesium Alloys

Authors: Andrew Gryguć, Seyed Behzad Behravesh, Hamid Jahed, Mary Wells, Wojciech Macek, Bruce Williams

Abstract:

This extended abstract investigates the influence of the multiaxial loading on the fatigue behavior of forged magnesium through quantitative analysis of its fracture surface topography and mesoscopic cracking orientation. Fatigue tests were performed on hollow tubular sample geometries extracted from closed-die forged AZ80 Mg components, with three different multiaxial strain paths (axial/shear), proportional, 45° out of phase, and 90° out of phase. Regardless of the strain path, fatigue cracks are initiated at the outer surface of the specimen where the combined stress state is largest. Depending on the salient mode of deformation, distinctive features in the fracture surface manifested themselves with different topographic amplitudes, surface roughness, and mesoscopic cracking orientation in the vicinity of the initiation site. The dominant crack propagation path was in the circumferential direction of the hollow tubular specimen (i.e., cracking transverse to the sample axis, with little to no branching), which is congruent with previous findings of low to moderate shear strain energy density (SED) multiaxial loading. For proportional loading, the initiation zone surface morphology was largely flat and striated, whereas, at phase angles of 45° and 90°, the initiation surface became more faceted and inclined. Overall, both a qualitative and quantitative link was developed between the fracture surface morphology and the level of non-proportionality in the loading providing useful insight into the fracture mechanics of forged magnesium as a relevant focus for future study.

Keywords: fatigue, fracture, magnesium, forging, fractography, anisotropy, strain energy density, asymmetry, multiaxial fatigue

Procedia PDF Downloads 78
5708 Prevalence of Pretreatment Drug HIV-1 Mutations in Moscow, Russia

Authors: Daria Zabolotnaya, Svetlana Degtyareva, Veronika Kanestri, Danila Konnov

Abstract:

An adequate choice of the initial antiretroviral treatment determines the treatment efficacy. In the clinical guidelines in Russia non-nucleoside reverse transcriptase inhibitors (NNRTIs) are still considered to be an option for first-line treatment while pretreatment drug resistance (PDR) testing is not routinely performed. We conducted a cohort retrospective study in HIV-positive treatment naïve patients of the H-clinic (Moscow, Russia) who performed PDR testing from July 2017 to November 2021. All the information was obtained from the medical records anonymously. We analyzed the mutations in reverse transcriptase and protease genes. RT-sequences were obtained by AmpliSens HIV-Resist-Seq kit. Drug resistance was defined using the HIVdb Program v. 8.9-1. PDR was estimated using the Stanford algorithm. Descriptive statistics were performed in Excel (Microsoft Office, 2019). A total of 261 HIV-1 infected patients were enrolled in the study including 197 (75.5%) male and 64 (24.5%) female. The mean age was 34.6±8.3 years. The median CD4 count – 521 cells/µl (IQR 367-687 cells/µl). Data on risk factors of HIV-infection were scarce. The total quantity of strains containing mutations in the reverse transcriptase gene was 75 (28.7%). From these 5 (1.9%) mutations were associated with PDR to nucleoside reverse transcriptase inhibitors (NRTIs) and 30 (11.5%) – with PDR to NNRTIs. The number of strains with mutations in protease gene was 43 (16.5%), from these only 3 (1.1%) mutations were associated with resistance to protease inhibitors. For NNRTIs the most prevalent PDR mutations were E138A, V106I. Most of the HIV variants exhibited a single PDR mutation, 2 were found in 3 samples. Most of HIV variants with PDR mutation displayed a single drug class resistance mutation. 2/37 (5.4%) strains had both NRTIs and NNRTIs mutations. There were no strains identified with PDR mutations to all three drug classes. Though earlier data demonstrated a lower level of PDR in HIV treatment naïve population in Russia and our cohort can be not fully representative as it is taken from the private clinic, it reflects the trend of increasing PDR especially to NNRTIs. Therefore, we consider either pretreatment testing or giving the priority to other drugs as first-line treatment necessary.

Keywords: HIV, resistance, mutations, treatment

Procedia PDF Downloads 89
5707 Structural Behavior of Lightweight Concrete Made With Scoria Aggregates and Mineral Admixtures

Authors: M. Shannag, A. Charif, S. Naser, F. Faisal, A. Karim

Abstract:

Structural lightweight concrete is used primarily to reduce the dead-load weight in concrete members such as floors in high-rise buildings and bridge decks. With given materials, it is generally desired to have the highest possible strength/unit weight ratio with the lowest cost of concrete. The work presented herein is part of an ongoing research project that investigates the properties of concrete mixes containing locally available Scoria lightweight aggregates and mineral admixtures. Properties considered included: workability, unit weight, compressive strength, and splitting tensile strength. Test results indicated that developing structural lightweight concretes (SLWC) using locally available Scoria lightweight aggregates and specific blends of silica fume and fly ash seems to be feasible. The stress-strain diagrams plotted for the structural LWC mixes developed in this investigation were comparable to a typical stress-strain diagram for normal weight concrete with relatively larger strain capacity at failure in case of LWC.

Keywords: lightweight concrete, scoria, stress, strain, silica fume, fly ash

Procedia PDF Downloads 507
5706 Evaluation of Teaching Team Stress Factors in Two Engineering Education Programs

Authors: Kari Bjorn

Abstract:

Team learning has been studied and modeled as double loop model and its variations. Also, metacognition has been suggested as a concept to describe the nature of team learning to be more than a simple sum of individual learning of the team members. Team learning has a positive correlation with both individual motivation of its members, as well as the collective factors within the team. Team learning of previously very independent members of two teaching teams is analyzed. Applied Science Universities are training future professionals with ever more diversified and multidisciplinary skills. The size of the units of teaching and learning are increasingly larger for several reasons. First, multi-disciplinary skill development requires more active learning and richer learning environments and learning experiences. This occurs on students teams. Secondly, teaching of multidisciplinary skills requires a multidisciplinary and team-based teaching from the teachers as well. Team formation phases have been identifies and widely accepted. Team role stress has been analyzed in project teams. Projects typically have a well-defined goal and organization. This paper explores team stress of two teacher teams in a parallel running two course units in engineering education. The first is an Industrial Automation Technology and the second is Development of Medical Devices. The courses have a separate student group, and they are in different campuses. Both are run in parallel within 8 week time. Both of them are taught by a group of four teachers with several years of teaching experience, but individually. The team role stress scale items - the survey is done to both teaching groups at the beginning of the course and at the end of the course. The inventory of questions covers the factors of ambiguity, conflict, quantitative role overload and qualitative role overload. Some comparison to the study on project teams can be drawn. Team development stage of the two teaching groups is different. Relating the team role stress factors to the development stage of the group can reveal the potential of management actions to promote team building and to understand the maturity of functional and well-established teams. Mature teams indicate higher job satisfaction and deliver higher performance. Especially, teaching teams who deliver highly intangible results of learning outcome are sensitive to issues in the job satisfaction and team conflicts. Because team teaching is increasing, the paper provides a review of the relevant theories and initial comparative and longitudinal results of the team role stress factors applied to teaching teams.

Keywords: engineering education, stress, team role, team teaching

Procedia PDF Downloads 221