Search results for: machine and plant engineering
7714 Modelling Affordable Waste Management Solutions for India
Authors: Pradip Baishya, D. K. Mahanta
Abstract:
Rapid and unplanned urbanisation in most cities of India has progressively increased the problem of managing municipal waste in the past few years. With insufficient infrastructure and funds, Municipalities in most cities are struggling to cope with the pace of waste generated. Open dumping is widely in practice as a cheaper option. Scientific disposal of waste in such a large scale with the elements of segregation, recycling, landfill, and incineration involves sophisticated and expensive plants. In an effort to finding affordable and simple solutions to address this burning issue of waste disposal, a semi-mechanized plant has been designed underlying the concept of a zero waste community. The fabrication work of the waste management unit is carried out by local skills from locally available materials. A resident colony in the city of Guwahati has been chosen, which is seen as a typical representative of most cities in India in terms of size and key issues surrounding waste management. Scientific management and disposal of waste on site is carried out on the principle of reduce, reuse and recycle from segregation to compositing. It is a local community participatory model, which involves all stakeholders in the process namely rag pickers, residents, municipality and local industry. Studies were conducted to testify the plant as revenue earning self-sustaining model in the long term. Current working efficiency of plant for segregation was found to be 1kg per minute. Identifying bottlenecks in the success of the model, data on efficiency of the plant, economics of its fabrication were part of the study. Similar satellite waste management plants could potentially be a solution to supplement the waste management system of municipalities of similar sized cities in India or South East Asia with similar issues surrounding waste disposal.Keywords: affordable, rag pickers, recycle, reduce, reuse, segregation, zero waste
Procedia PDF Downloads 3057713 Designing of Oat Drink with Phytonutrients Assigned for Pro-Health Oriented Consumers
Authors: Gramza-Michalowska Anna, Skrety Joanna, Anna Zywica, Kobus-Cisowska Joanna, Kmiecik Dominik, Korczak Jozef
Abstract:
Background: Modern consumer highly appreciates the positive influence of consumed products on well-being and overall health. High acceptance of new food is a result of intensified research showing many proofs confirming that food offers significant prophylactic and therapeutic potential, next to its basic nutritional function. Objective: Proposition of the technology of unsweetened oat drinks enriched with plant extracts for pro-health oriented individuals. We investigated the effects of selected plant extracts addition on antioxidative capacity and consumer’s acceptance of drinks as representative of all day diet product. Methods: The analysis of the basic composition and antioxidant properties of the drinking product was conducted. Basic composition included protein, lipids and fiber content. Antioxidant capacity of drink was evaluated with use radical scavenging methods (DPPH, ABTS), ORAC value and FRAP. Proposed drink as new product was also characterized with sensory analysis, which included color, aroma, taste, consistency and overall acceptance. Results: Results showed that addition of plant extracts into a oat drink allowed to enhance its antioxidant potential and influenced significantly its sensory values. The preferred composition and properties of designed beverage permit claim that it can have a positive impact on the health of the consumers. Conclusion: Designed oat drink would be an answer for pro-healthy life style of the consumers. Results showed that product with plant extracts addition would be accepted by the consumers and because of its antioxidative potential could be an important factor in prevention of free radicals influence on human organism.Keywords: phytonutrients, pro-health, well-being, antioxidant potential, sensory value
Procedia PDF Downloads 3447712 Vitamin C Enhances Growth and Productivity of Sunflower Plants Grown under Newly-Reclaimed Saline Soil Conditions
Authors: Saad M. Howladar, Mostafa M. Rady, Wael M. Semida
Abstract:
A field experiment was conducted during the two successive seasons of 2012 and 2013 in the Experimental Farm (newly-reclaimed saline soil; EC = 7.8 dS m-1), Faculty of Agriculture, Fayoum University, Fayoum, Egypt to investigate the effect of vitamin C foliar application at the rates of 1, 2, 3 and 4 mM on the possibility of improving growth, seed and oil yields, and some chemical constituents of Helianthus annuus L. plants under the adverse conditions of the selected soil. Significant positive influences of all vitamin C treatments were observed on growth, seed and oil yields and some chemical constituents in both seasons. Compared to unsprayed plants (control), spraying plants with various rates of vitamin C significantly increased vegetative growth traits (i.e. plant height, No. of leaves plant-1, leaf area leaf-1, total leaves area plant-1, and dry weights of leaves and shoot plant-1) and seed and oil yields and their components (i.e. head diameter, seed weight head-1, 100-seed weight, seed yield feddan-1 and oil yield feddan-1). In addition, the concentrations of chlorophyll a, chlorophyll b, total chlorophylls, total carotenoids and total phenols in fresh leaves, and total carbohydrates, total soluble sugars, free proline and some nutrients (i.e. N, P, K, Fe, Mn, and Zn) in dry leaves were also increased significantly with all vitamin C applications. Vitamin C treatment at the rate of 3 mM was generated the best results. These results are important as the potential of vitamin C to alleviate the harmful effects of salt stress offer an opportunity to increase the resistance of sunflower plants to grow under saline conditions of the newly-reclaimed soils.Keywords: sunflower, Helianthus annuus L., ascorbic acid, salinity, growth, seed yield, oil content, chemical composition
Procedia PDF Downloads 4577711 Pharmacognostical and Phytochemical Investigation of the Endemic Medicinal Plant Tekchebilium arvensis Linn
Authors: K. Bengango, H. Mesahsah, F. Haseb-Reho, J. M. Tafrate
Abstract:
This present work was conducted to explore the micro-morphology and phytochemical characterization of the endemic medicinal plant Tekchebilium arvensis Linn (Asteraceae). Macroscopy, microscopy, physicochemical analysis and WHO recommended parameters for standardizations were performed. Microscopic evaluation revealed the presence of abaxial epidermis with paracytic stomata. Petiole showed epidermis, vascular strands, ground tissue and secretary cavities. Physico-chemical tests like ash values, loss on drying, extractive values were determined. Preliminary phytochemical screening showed the presence of sterols, tannins, flavonoids, glycosides, volatile oil, terpenoids, saponin and alkaloids.Keywords: Tekchebilium arvensis Linn, Asteraceae, microscopical evaluation, phytochemical, powder microscopy, standardization
Procedia PDF Downloads 4387710 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques
Authors: Kishor T. Zingre, Seshadhri Srinivasan
Abstract:
Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates
Procedia PDF Downloads 1147709 Green Synthesis of Silver Nanoparticles Mediated by Plant by-Product Extracts
Authors: Cristian Moisa, Andreea Lupitu, Adriana Csakvari, Dana G. Radu, Leonard Marian Olariu, Georgeta Pop, Dorina Chambre, Lucian Copolovici, Dana Copolovici
Abstract:
Green synthesis of nanoparticles (NPs) represents a promising, accessible, eco-friendly, and safe process with significant applications in biotechnology, pharmaceutical sciences, and farming. The aim of our study was to obtain silver nanoparticles, using plant wastes extracts resulted in the essential oils extraction process: Thymus vulgaris L., Origanum vulgare L., Lavandula angustifolia L., and in hemp processing for seed and fibre, Cannabis sativa. Firstly, we obtained aqueous extracts of thyme, oregano, lavender, and hemp (two monoicous and one dioicous varieties), all harvested in western part of Romania. Then, we determined the chemical composition of the extracts by liquid-chromatography coupled with diode array and mass spectrometer detectors. The compounds identified in the extracts were in agreement with earlier published data, and the determination of the antioxidant activity of the obtained extracts by DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays confirmed their antioxidant activity due to their total polyphenolic content evaluated by Folin-Ciocalteu assay. Then, the silver nanoparticles (AgNPs) were successfully biosynthesised, as was demonstrated by UV-VIS, FT-IR spectroscopies, and SEM, by reacting AgNO₃ solution and plant extracts. AgNPs were spherical in shape, with less than 30 nm in diameter, and had a good bactericidal activity against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens).Keywords: plant wastes extracts, chemical composition, high performance liquid chromatography mass spectrometer, HPLC-MS, scanning electron microscopy, SEM, silver nanoparticles
Procedia PDF Downloads 1807708 An Automated R-Peak Detection Method Using Common Vector Approach
Authors: Ali Kirkbas
Abstract:
R peaks in an electrocardiogram (ECG) are signs of cardiac activity in individuals that reveal valuable information about cardiac abnormalities, which can lead to mortalities in some cases. This paper examines the problem of detecting R-peaks in ECG signals, which is a two-class pattern classification problem in fact. To handle this problem with a reliable high accuracy, we propose to use the common vector approach which is a successful machine learning algorithm. The dataset used in the proposed method is obtained from MIT-BIH, which is publicly available. The results are compared with the other popular methods under the performance metrics. The obtained results show that the proposed method shows good performance than that of the other. methods compared in the meaning of diagnosis accuracy and simplicity which can be operated on wearable devices.Keywords: ECG, R-peak classification, common vector approach, machine learning
Procedia PDF Downloads 647707 Acute Antihyperglycemic Activity of a Selected Medicinal Plant Extract Mixture in Streptozotocin Induced Diabetic Rats
Authors: D. S. N. K. Liyanagamage, V. Karunaratne, A. P. Attanayake, S. Jayasinghe
Abstract:
Diabetes mellitus is an ever increasing global health problem which causes disability and untimely death. Current treatments using synthetic drugs have caused numerous adverse effects as well as complications, leading research efforts in search of safe and effective alternative treatments for diabetes mellitus. Even though there are traditional Ayurvedic remedies which are effective, due to a lack of scientific exploration, they have not been proven to be beneficial for common use. Hence the aim of this study is to evaluate the traditional remedy made of mixture of plant components, namely leaves of Murraya koenigii L. Spreng (Rutaceae), cloves of Allium sativum L. (Amaryllidaceae), fruits of Garcinia queasita Pierre (Clusiaceae) and seeds of Piper nigrum L. (Piperaceae) used for the treatment of diabetes. We report herein the preliminary results for the in vivo study of the anti-hyperglycaemic activity of the extracts of the above plant mixture in Wistar rats. A mixture made out of equal weights (100 g) of the above mentioned medicinal plant parts were extracted into cold water, hot water (3 h reflux) and water: acetone mixture (1:1) separately. Male wistar rats were divided into six groups that received different treatments. Diabetes mellitus was induced by intraperitoneal administration of streptozotocin at a dose of 70 mg/ kg in male Wistar rats in group two, three, four, five and six. Group one (N=6) served as the healthy untreated and group two (N=6) served as diabetic untreated control and both groups received distilled water. Cold water, hot water, and water: acetone plant extracts were orally administered in diabetic rats in groups three, four and five, respectively at different doses of 0.5 g/kg (n=6), 1.0 g/kg(n=6) and 1.5 g/kg(n=6) for each group. Glibenclamide (0.5 mg/kg) was administered to diabetic rats in group six (N=6) served as the positive control. The acute anti-hyperglycemic effect was evaluated over a four hour period using the total area under the curve (TAUC) method. The results of the test group of rats were compared with the diabetic untreated control. The TAUC of healthy and diabetic rats were 23.16 ±2.5 mmol/L.h and 58.31±3.0 mmol/L.h, respectively. A significant dose dependent improvement in acute anti-hyperglycaemic activity was observed in water: acetone extract (25%), hot water extract ( 20 %), and cold water extract (15 %) compared to the diabetic untreated control rats in terms of glucose tolerance (P < 0.05). Therefore, the results suggest that the plant mixture has a potent antihyperglycemic effect and thus validating their used in Ayurvedic medicine for the management of diabetes mellitus. Future studies will be focused on the determination of the long term in vivo anti-diabetic mechanisms and isolation of bioactive compounds responsible for the anti-diabetic activity.Keywords: acute antihyperglycemic activity, herbal mixture, oral glucose tolerance test, Sri Lankan medicinal plant extracts
Procedia PDF Downloads 1797706 Short-Term Effects of Seed Dressing With Azorhizobium Caulinodans on Establishment, Development and Yield of Early Maturing Maize ( Zea Mays L.) In Zimbabwe
Authors: Gabriel Vusanimuzi Nkomo
Abstract:
The majority of soils in communal areas of Zimbabwe are sandy and inherently infertile and sustainable cultivation is not feasible without addition of plant nutrients. Most farmers find it difficult to raise the capital required for investments in mineral fertilizer and find it cheaper to use low nutrition animal manure. An experiment was conducted to determine the effects of nitrokara biofertiliser on early growth, development and maize yield while also comparing nitrokara biofertiliser on availability of nitrogen and phosphorous in soil. The experiment was conducted at Africa University Farm. The experiment had six treatments (nitrokara +300kg/ha Compound D, nitrokara+ 300kg/ha Compound D(7N;14P;7K) + 75kg/ha Ammonium Nitrate(AN), nitrokara +300kg/ha Compound D +150kg AN, nitrokara +300kg/ha Compound D +225kg/ha AN, nitrokara +300kg/ha Compound D + 300 kg/ha AN and 0 nitrokara+300kg/ha Compound D +0 AN). Early maturing SC 403 maize (Zea mays) was inoculated with nitrokara and a compound mineral fertilizer at 300 kg/ha at planting while ammonium nitrate was applied at 45 days after planting. There were no significant differences (P > 0.05) on emergence % from 5days up to 10 days after planting using maize seed inoculated with nitrokara. Emergence percentage varied with the number of days. At 5 days the emergence % was 62% to a high of 97 % at 10 days after emergence among treatments. There were no significant differences (P > 0.05) on plant biomass on treatments 1 to 6 at 4 weeks after planting as well as at 8 weeks after planting. There were no significant differences among the treatments on the availability of nitrogen after 6 weeks (P > 0.05). However at 8 and 10 weeks after planting there were significant differences among treatments on nitrogen availability (P < 0.05). There were no significant differences among the treatments at week 6 after planting on soil pH (p > 0.05). However there were significant differences among treatments pH at weeks 9 and 12 (p < 0.05). There were significant differences among treatments on phosphorous availability at 6, 8 and 10 weeks after planting (p < 0.05). There were no significant differences among treatments on stem diameter at 3 and 6 weeks after planting (p > 0.05).However at 9 and 12 weeks after planting there were significant differences among treatments on stem diameter (p < 0.05).There were no significant differences among treatments on plant height from week 3 up to week 6 on plant height (P > 0.05).However there were significant differences among treatments at week 9 and 12 (p < 0.05). There were significant differences among treatments on days to early, 50% and 100% anthesis (P < 0.05). There were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).Also there were significant differences during early, 50% and 100% days to silking among the treatments (P < 0.05).The study revealed that inoculation of nitrokara biofertiliser at planting with subsequent addition of ammonium nitrate has a positive effect on maize crop development and yield.Keywords: nitrokara, biofertiliser, symbiotic, plant biomass, inoculated
Procedia PDF Downloads 5517705 Finite Dynamic Programming to Decision Making in the Use of Industrial Residual Water Treatment Plants
Authors: Oscar Vega Camacho, Andrea Vargas, Ellery Ariza
Abstract:
This paper presents the application of finite dynamic programming, specifically the "Markov Chain" model, as part of the decision making process of a company in the cosmetics sector located in the vicinity of Bogota DC. The objective of this process was to decide whether the company should completely reconstruct its waste water treatment plant or instead optimize the plant through the addition of equipment. The goal of both of these options was to make the required improvements in order to comply with parameters established by national legislation regarding the treatment of waste before it is released into the environment. This technique will allow the company to select the best option and implement a solution for the processing of waste to minimize environmental damage and the acquisition and implementation costs.Keywords: decision making, markov chain, optimization, waste water
Procedia PDF Downloads 4137704 Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant
Authors: W. S. Hsu, S. W. Chen, Y. T. Ku, Y. Chiang, J. R. Wang , J. H. Yang, C. Shih
Abstract:
ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.Keywords: PWR, ALOHA, habitability, Maanshan
Procedia PDF Downloads 1987703 Dependence of Autoignition Delay Period on Equivalence Ratio for i-Octane, Primary Reference Fuel
Authors: Sunil Verma
Abstract:
In today’s world non-renewable sources are depleting quickly, so there is a need to produce efficient and unconventional engines to minimize the use of fuel. Also, there are many fatal accidents happening every year during extraction, distillation, transportation and storage of fuel. Reason for explosions of gaseous fuel is unwanted autoignition. Autoignition characterstics of fuel are mandatory to study to build efficient engines and to avoid accidents. This report is concerned with study of autoignition delay characteristics of iso-octane by using rapid compression machine. The paper clearly explains the dependence of ignition delay characteristics on variation of equivalence ratios from lean to rich mixtures. The equivalence ratio is varied from 0.3 to 1.2.Keywords: autoignition, iso-octane, combustion, rapid compression machine, equivalence ratio, ignition delay
Procedia PDF Downloads 4467702 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains
Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh
Abstract:
The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.Keywords: machine vision, fuzzy logic, rice, quality
Procedia PDF Downloads 4197701 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 387700 Direct Drive Double Fed Wind Generator
Authors: Vlado Ostovic
Abstract:
An electric machine topology characterized by single tooth winding in both stator and rotor is presented. The proposed machine is capable of operating as a direct drive double fed wind generator (DDDF, D3F) because it requires no gearbox and only a reduced-size converter. A wind turbine drive built around a D3F generator is cheaper to manufacture, requires less maintenance, and has a higher energy yield than its conventional counterparts. The single tooth wound generator of a D3F turbine has superb volume utilization and lower stator I2R losses due to its extremely short-end windings. Both stator and rotor of a D3F generator can be manufactured in segments, which simplifies its assembly and transportation to the site, and makes production cheaper.Keywords: direct drive, double fed generator, gearbox, permanent magnet generators, single tooth winding, wind power
Procedia PDF Downloads 1907699 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios
Authors: Revoti Prasad Bora, Nikita Katyal
Abstract:
Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.Keywords: Halo, Cannibalization, promotion, Baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression
Procedia PDF Downloads 1777698 Automatic Detection of Suicidal Behaviors Using an RGB-D Camera: Azure Kinect
Authors: Maha Jazouli
Abstract:
Suicide is one of the most important causes of death in the prison environment, both in Canada and internationally. Rates of attempts of suicide and self-harm have been on the rise in recent years, with hangings being the most frequent method resorted to. The objective of this article is to propose a method to automatically detect in real time suicidal behaviors. We present a gesture recognition system that consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using machine learning algorithms (MLA). Our proposed system gives us satisfactory results. This smart video surveillance system can help assist staff responsible for the safety and health of inmates by alerting them when suicidal behavior is detected, which helps reduce mortality rates and save lives.Keywords: suicide detection, Kinect azure, RGB-D camera, SVM, machine learning, gesture recognition
Procedia PDF Downloads 1887697 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management
Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide
Abstract:
This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis
Procedia PDF Downloads 117696 A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation
Authors: Georgios Charizanos, Haydar Demirhan, Duygu Icen
Abstract:
Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted.Keywords: fuzzy logistic regression, fuzzy, logistic, machine learning
Procedia PDF Downloads 747695 Determining the City Development Based on the Modeling of the Pollutant Emission from Power Plant by Using AERMOD Software
Authors: Abbasi Fakhrossadat, Moharreri Mohammadamir, Shadmanmahani Mohammadjavad
Abstract:
The development of cities can be influenced by various factors, including air pollution. In this study, the focus is on the city of Mashhad, which has four large power plants operating. The emission of pollutants from these power plants can have a significant impact on the quality of life and health of the city's residents. Therefore, modeling and analyzing the emission pattern of pollutants can provide useful information for urban decision-makers and help in estimating the urban development model. The aim of this research is to determine the direction of city development based on the modeling of pollutant emissions (NOX, CO, and PM10) from power plants in Mashhad. By using the AERMOD software, the release of these pollutants will be modeled and analyzed.Keywords: emission of air pollution, thermal power plant, urban development, AERMOD
Procedia PDF Downloads 797694 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa
Authors: Olumuyiwa Ojo, Masengo Ilunga
Abstract:
Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.Keywords: ANN, artificial neural network, wastewater treatment, model, development
Procedia PDF Downloads 1497693 Dynamics of Plant Communities with Chamaerops humilis in the Region of Tlemcen
Authors: O. Hasnaoui, A. Bekkouche, A. Mostefai, M. Bouazza
Abstract:
The region of Tlemcen (west Algeria) is known by their very important floral diversity bound to the conjugation of the multiple factors. Chamaerops humilis covers a big surface in this region, which appears in the majority of the cases in the form of more or less degraded matorral. Our work is dedicated to the comparative analysis of the groupings in chamaeropaie of the mounts of Tlemcen and mounts of traras, based on a phytoécologique approach. Four representative stations of chamaeropaies were retained to make this work. 120 floristic surveys were realized by using a minimal area of 100 m2. The obtained results show that the Mounts of Tlemcen present a wealth more important than those met at the level of the Mounts of Traras. More we go away from the coast towards the Mounts of Tlemcen, we notice a regressive evolution and a transformation of the plant carpet towards a thérophytisation, as well as an accentuation of the aridity.Keywords: Tlemcen, west Algeria, Chamaerops humilis L., phytoécological, floristic survey, thérophytisation
Procedia PDF Downloads 2837692 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering
Authors: R. Nandhini, Gaurab Mudbhari
Abstract:
Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.Keywords: machine learning, deep learning, image classification, image clustering
Procedia PDF Downloads 107691 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents
Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić
Abstract:
Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.Keywords: biotechnology, process model, xanthan, waste effluents
Procedia PDF Downloads 3487690 Analysis of Possible Equipment in the Reduction Unit of a Low Tonnage Liquefied Natural Gas Production Plant
Authors: Pavel E. Mikriukov
Abstract:
The demand for natural gas (NG) is increasing every year around the world, so it is necessary to produce and transport NG in large quantities. To solve this problem, liquefied natural gas (LNG) plants are used, using different equipment and different technologies to achieve the required LNG quality. To determine the best efficiency of the LNG liquefaction plant, it is necessary to analyze the equipment used in this process and identify other technological solutions for LNG production using more productive and energy-efficient equipment. Based on this, mathematical models of the technological process of the LNG plant were created, which are based on a two-circuit system of heat exchange equipment and a nitrogen isolated cycle for NG cooling. The final liquefaction of natural gas is performed on the construction of the basic principle of the Joule-Thompson effect. The pressure and temperature drop are considered on different types of equipment such as throttle valve, which was used in the basic scheme; turbo expander and supersonic separator, which act as new equipment, to be compared with the efficiency of the basic scheme of the unit. New configurations of LNG plants are suggested, which can be used in almost all LNG facilities. As a result of the analysis, it turned out that the turbo expander and the supersonic separator have comparatively equal potential in comparison with the baseline scheme execution on the throttle valve. A more rational method of selecting the technology and the equipment used for natural gas liquefaction can improve the efficiency of low-tonnage plants and reduce the cost of gas for own needs.Keywords: gas liquefaction, gas, Joule-Thompson effect, LNG, low-tonnage LNG, supersonic separator, Throttle valve, turbo expander
Procedia PDF Downloads 1117689 Literature Review of the Antibacterial Effects of Salvia Officinalis L.
Authors: Benguerine Zohra, Merzak Siham, Bouziane Cheimaa, Si Tayeb Fatima, Jou Siham, Belkessam
Abstract:
Introduction: Antibiotics, widely produced and consumed in large quantities, have proven problematic due to various types of side effects. The development of bacterial resistance to currently available antibiotics has made the search for new antibacterial agents necessary. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. The objective of this study is to provide an overview of the antibacterial effects of a plant native to the Middle East and Mediterranean regions, Salvia officinalis (sage). Materials and Methods: This review article was conducted by searching studies in the PubMed, Scopus, JSTOR, and SpringerLink databases. The search terms were "Salvia officinalis L." and "antibacterial effects." Only studies that met our inclusion criteria (in English, antibacterial effects of Salvia officinalis L., and primarily dating from 2012 to 2023) were accepted for further review. Results and Discussion: The initial search strategy identified approximately 78 references, with only 13 articles included in this review. The synthesis of the articles revealed that several data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis calls for further studies on the other useful and unknown properties of this multi-purpose plant.Keywords: salvia officinalis, literature review, antibacterial, effects
Procedia PDF Downloads 387688 Comparative Analysis of Chemical Composition and Biological Activities of Ajuga genevensis L. in in vitro Culture and Intact Plants
Authors: Naira Sahakyan, Margarit Petrosyan, Armen Trchounian
Abstract:
One of the tasks in contemporary biotechnology, pharmacology and other fields of human activities is to obtain biologically active substances from plants. They are very essential in the treatment of many diseases due to their actually high therapeutic value without visible side effects. However, sometimes the possibility of obtaining the metabolites is limited due to the reduction of wild-growing plants. That is why the plant cell cultures are of great interest as alternative sources of biologically active substances. Besides, during the monitored cultivation, it is possible to obtain substances that are not synthesized by plants in nature. Isolated culture of Ajuga genevensis with high growth activity and ability of regeneration was obtained using MS nutrient medium. The agar-diffusion method showed that aqueous extracts of callus culture revealed high antimicrobial activity towards various gram-positive (Bacillus subtilis A1WT; B. mesentericus WDCM 1873; Staphylococcus aureus WDCM 5233; Staph. citreus WT) and gram-negative (Escherichia coli WKPM M-17; Salmonella typhimurium TA 100) microorganisms. The broth dilution method revealed that the minimal and half maximal inhibitory concentration values against E. coli corresponded to the 70 μg/mL and 140 μg/mL concentration of the extract respectively. According to the photochemiluminescent analysis, callus tissue extracts of leaf and root origin showed higher antioxidant activity than the same quantity of A. genevensis intact plant extract. A. genevensis intact plant and callus culture extracts showed no cytotoxic effect on K-562 suspension cell line of human chronic myeloid leukemia. The GC-MS analysis showed deep differences between the qualitative and quantitative composition of callus culture and intact plant extracts. Hexacosane (11.17%); n-hexadecanoic acid (9.33%); and 2-methoxy-4-vinylphenol (4.28%) were the main components of intact plant extracts. 10-Methylnonadecane (57.0%); methoxyacetic acid, 2-tetradecyl ester (17.75%) and 1-Bromopentadecane (14.55%) were the main components of A. genevensis callus culture extracts. Obtained data indicate that callus culture of A. genevensis can be used as an alternative source of biologically active substances.Keywords: Ajuga genevensis, antibacterial activity, antioxidant activity, callus cultures
Procedia PDF Downloads 2987687 In Vitro Antibacterial Activity of Some Medicinal Plants Against Biofilm-Forming Methicillin-Resistant Staphylococcus aureus
Authors: Tesleem Adewale Ibrahim
Abstract:
Introduction: The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) has been slowly rising in Nigeria for the past few decades. Therefore, novel classes of antibiotics are indispensable to combat the increased incidence of newly emerging multidrug-resistant bacteria like MRSA. Plants have been commonly used in popular medicine of most cultures for the treatment of disease. The in vitro antibacterial activity of some Nigerian common medicinal plants used in traditional medicine has been reported. The aim of this study was to investigate the antibacterial and anti-biofilm of these native plants (Entada abysinnica (leaves), Croton macrostachyus (leaves), Bridelia speciosa (seeds, bark), and Aframomum melegueta (leaves, seeds, and stem) collected in Southwestern Nigeria against a panel of seven biofilm-forming MRSA. Methods: Minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the plant extracts against MRSA were determined by the broth dilution method, and the anti-biofilm assay of the most potent plant extract was performed. Result: The results revealed that, of the four plants, water extracts of leaves of Entada abysinnica, leaves of Croton macrostachyus, seeds and bark Bridelia speciosa, and seeds of Aframomum melegueta exhibited significant antibacterial activity. Based on the MIC/MBC ratio, the extracts of these plants were determined to be bacteriostatic in nature. Anti-biofilm assay showed that the extract of seeds of Aframomum melegueta and leaves of Croton macrostachyus fairly inhibited the growth of MRSA in the preformed biofilm matrix. Conclusion: These four medicinal plant species may represent a source of alternative drugs derived from plant extracts based on folklore use and ethnobotanical knowledge from southwest Nigeria.Keywords: extract, MRSA, antibacterial, biofilm, medicinal plants
Procedia PDF Downloads 1257686 Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs
Authors: Sara Taghdisi, M. Mirmohammadi, M. Mokhtarian
Abstract:
In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs.Keywords: cottonseed oil, crystallization, gossypol, green-leaf
Procedia PDF Downloads 1097685 In vitro Anti-Gonococcal, Anti-Inflammatory and HIV-1 Reverse Transcriptase Activities of the Herbal Mixture
Authors: T. E. Tshikalange, B. C. Mophuting
Abstract:
Traditional medicine often consists of complex ingredients prepared from a mixture of plant species. These herbal mixtures are used in the treatment of various ailments such as sexually transmitted diseases including HIV. The present study was carried out to determine the biological activities of the herbal mixture used traditionally in the treatment of sexually transmitted diseases. This herbal mixture consists of four plant species from families Asteraceae, Bignoniaceae, Fabaceae, and Myrtaceae. Five crude extracts (hexane, dichloromethane, methanol, water and boiled) of the herbal mixture were investigated for anti-gonococcal, anti-inflammatory, and reverse transcriptase activities. The anti-inflammatory activity of the plant extracts was determined by measuring the extract inhibitory effect on the pro-inflammatory enzyme lipoxygenase. The extracts were also tested for anti-HIV activity against recombinant HIV-1 enzyme using non-radioactive HIV-RT colorimetric assay. The boiled extract exhibited good anti-inflammatory activity with an IC₅₀ of 87 µg/ml compared to that of the positive control quercetin (IC₅₀= 92 µg/ml). All the other extracts showed little or no activity. Hexane extract was the only extract that showed reverse transcriptase extract inhibitory effect with an IC₅₀ of 74 µg/ml. Anti-gonococcal and cytotoxicity investigations are underway. The preliminary results support the use of herbal mixture by traditional healers.Keywords: sexually transmitted diseases, lipoxygenase, anti-inflammatory, herbal mixture
Procedia PDF Downloads 281