Search results for: hydrogen iodide decomposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1616

Search results for: hydrogen iodide decomposition

326 Review of Sulfur Unit Capacity Expansion Options

Authors: Avinashkumar Karre

Abstract:

Sulfur recovery unit, most commonly called as Claus process, is very significant gas desulfurization process unit in refinery and gas industries. Explorations of new natural gas fields, refining of high-sulfur crude oils, and recent crude expansion projects are needing capacity expansion of Claus unit for many companies around the world. In refineries, the sulphur recovery units take acid gas from amine regeneration units and sour water strippers, converting hydrogen sulfide to elemental sulfur using the Claus process. The Claus process is hydraulically limited by mass flow rate. Reducing the pressure drop across control valves, flow meters, lines, knock-out drums, and packing improves the capacity. Oxygen enrichment helps improve the capacity by removing nitrogen, this is more commonly done on all capacity expansion projects. Typical upgrades required due to oxygen enrichment are new burners, new refractory in thermal reactor, resizing of 1st condenser, instrumentation changes, and steam/condensate heat integration. Some other capacity expansion options typically considered are tail gas compressor, replacing air blower with higher head, hydrocarbon minimization in the feed, water removal, and ammonia removal. Increased capacity related upgrades in sulfur recovery unit also need changes in the tail gas treatment unit, typical changes include improvement to quench tower duty, packing area upgrades in quench and absorber towers and increased amine circulation flow rates.

Keywords: Claus process, oxygen enrichment, sulfur recovery unit, tail gas treatment unit

Procedia PDF Downloads 125
325 A Comparative Study: Influences of Polymerization Temperature on Phosphoric Acid Doped Polybenzimidazole Membranes

Authors: Cagla Gul Guldiken, Levent Akyalcin, Hasan Ferdi Gercel

Abstract:

Fuel cells are electrochemical devices which convert the chemical energy of hydrogen into the electricity. Among the types of fuel cells, polymer electrolyte membrane fuel cells (PEMFCs) are attracting considerable attention as non-polluting power generators with high energy conversion efficiencies in mobile applications. Polymer electrolyte membrane (PEM) is one of the essential components of PEMFCs. Perfluorosulfonic acid based membranes known as Nafion® is widely used as PEMs. Nafion® membranes water dependent proton conductivity which limits the operating temperature below 100ᵒC. At higher temperatures, proton conductivity and mechanical stability of these membranes decrease because of dehydration. Polybenzimidazole (PBI), which has good anhydrous proton conductivity after doped with acids, as well as excellent thermal stability, shows great potential in the application of high temperature PEMFCs. In the present study, PBI polymers were synthesized by solution polycondensation at 190 and 210ᵒC. The synthesized polymers were characterized by FTIR, 1H NMR, and TGA. Phosphoric acid doped PBI membranes were prepared and tested in a PEMFC. The influences of reaction temperature on structural properties of synthesized polymers were investigated. Mechanical properties, acid-doping level, proton conductivity, and fuel cell performances of prepared phosphoric acid doped PBI membranes were evaluated. The maximum power density was found as 32.5 mW/cm² at 120ᵒC.

Keywords: fuel cell, high temperature polymer electrolyte membrane, polybenzimidazole, proton exchange membrane fuel cell

Procedia PDF Downloads 185
324 Decomposition of Solidification Carbides during Cyclic Thermal Treatments in a Co-Based Alloy Deposit Applied to Stainless Steel

Authors: Sellidj Abdelaziz, Lebaili Soltane

Abstract:

A cobalt-based alloy type Co-Cr-Ni-WC was deposited by plasma transferred arc projection (PTA) on a stainless steel valve. The alloy is characterized at the equilibrium by a solid solution Co (γ) mainly dendritic, and eutectic carbides M₇C₃ and ηM₆C. At the deposit/substrate interface, this microstructure is modified by the fast cooling mode of the alloy when applied in the liquid state on the relatively cold steel substrate. The structure formed in this case is heterogeneous and metastable phases can occur and evolve over temperature service. Coating properties and reliability are directly related to microstructures formed during deposition. We were interested more particularly in this microstructure formed during the solidification of the deposit in the region of the interface joining the soldered couple and its evolution during cyclic heat treatments at temperatures similar to those of the thermal environment of the valve. The characterization was carried out by SEM-EDS microprobe CAMECA, XRD, and micro hardness profiles. The deposit obtained has a linear and regular appearance that is free of cracks and with little porosity. The morphology of the microstructure represents solidification stages that are relatively fast with a temperature gradient high at the beginning of the interface by forming a plane front solid solution Co (γ). It gradually changes with the decreasing temperature gradient by getting farther from the junction towards the outer limit of the deposit. The matrix takes the forms: cellular, mixed (cells and dendrites) and dendritic. Dendritic growth is done according to primary ramifications in the direction of the heat removal which takes place in the direction perpendicular to the interface, towards the external surface of the deposit, following secondary and tertiary undeveloped arms. The eutectic carbides M₇C₃ and ηM₆C formed are very thin and are located in the intercellular and interdendritic spaces of the solid solution Co (γ).

Keywords: Co-Ni-Cr-W-C alloy, solid deposit, microstructure, carbides, cyclic heat treatment

Procedia PDF Downloads 116
323 Preparation of Magnetic Hydroxyapatite Composite by Wet Chemical Process for Phycobiliproteins Adsorption

Authors: Shu-Jen Chen, Yi-Chien Wan, Ruey-Chi Wang

Abstract:

Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) can be applied to the fabrication of bone replacement materials, the composite of dental filling, and the adsorption of biomolecules and dyes. The integration of HAp and magnetic materials would offer several advantages for bio-separation process because the magnetic adsorbents is capable of recovered by applied magnetic field. C-phycocyanin (C-PC) and Allophycocyanin (APC), isolated from Spirulina platensis, can be used in fluorescent labeling probes, health care foods and clinical diagnostic reagents. Although the purification of C-PC and APC are reported by HAp adsorption, the adsorption of C-PC and APC by magnetic HAp composites was not reported yet. Therefore, the fabrication of HAp with magnetic silica nanoparticles for proteins adsorption was investigated in this work. First, the magnetic silica particles were prepared by covering silica layer on Fe3O4 nanoparticles with a reverse micelle method. Then, the Fe3O4@SiO2 nanoparticles were mixed with calcium carbonate to obtain magnetic silica/calcium carbonate composites (Fe3O4@SiO2/CaCO3). The Fe3O4@SiO2/CaCO3 was further reacted with K2HPO4 for preparing the magnetic silica/hydroxyapatite composites (Fe3O4@SiO2/HAp). The adsorption experiments indicated that the adsorption capacity of Fe3O4@SiO2/HAp toward C-PC and APC were highest at pH 6. The adsorption of C-PC and APC by Fe3O4@SiO2/HAp could be correlated by the pseudo-second-order model, indicating chemical adsorption dominating the adsorption process. Furthermore, the adsorption data showed that the adsorption of Fe3O4@SiO2/HAp toward C-PC and APC followed the Langmuir isotherm. The isoelectric points of C-PC and APC were around 5.0. Additionally, the zeta potential data showed the Fe3O4@SiO2/HAp composite was negative charged at pH 6. Accordingly, the adsorption mechanism of Fe3O4@SiO2/HAp toward C-PC and APC should be governed by hydrogen bonding rather than electrostatic interaction. On the other hand, as compared to C-PC, the Fe3O4@SiO2/HAp shows higher adsorption affinity toward APC. Although the Fe3O4@SiO2/HAp cannot recover C-PC and APC from Spirulina platensis homogenate, the Fe3O4@SiO2/HAp can be applied to separate C-PC and APC.

Keywords: hydroxyapatite, magnetic, C-phycocyanin, allophycocyanin

Procedia PDF Downloads 152
322 Production of Hydrophilic PVC Surfaces with Microwave Treatment for its Separation from Mixed Plastics by Froth Floatation

Authors: Srinivasa Reddy Mallampati, Chi-Hyeon Lee, Nguyen Thanh Truc, Byeong-Kyu Lee

Abstract:

Organic polymeric materials (plastics) are widely used in our daily life and various industrial fields. The separation of waste plastics is important for its feedstock and mechanical recycling. One of the major problems in incineration for thermal recycling or heat melting for material recycling is the polyvinyl chloride (PVC) contained in waste plastics. This is due to the production of hydrogen chloride, chlorine gas, dioxins, and furans originated from PVC. Therefore, the separation of PVC from waste plastics is necessary before recycling. The separation of heavy polymers (PVC 1.42, PMMA 1.12, PC 1.22 and PET 1.27 g/cm3 ) from light ones (PE and PP 0.99 g/cm3) can be achieved on the basis of their density. However it is difficult to separate PVC from other heavy polymers basis of density. There are no simple and inexpensive techniques to separate PVC from others. If hydrophobic the PVC surface is selectively changed into hydrophilic, where other polymers still have hydrophobic surface, flotation process can separate PVC from others. In the present study, the selective surface hydrophilization of polyvinyl chloride (PVC) by microwave treatment after alkaline/acid washing and with activated carbon was studied as the pre-treatment of its separation by the following froth flotation. In presence of activated carbon as absorbent, the microwave treatment could selectively increase the hydrophilicity of the PVC surface (i.e. PVC contact angle decreased about 19o) among other plastics mixture. At this stage, 100% PVC separation from other plastics could be achieved by the combination of the pre- microwave treatment with activated carbon and the following froth floatation. The hydrophilization of PVC by surface analysis would be due to the hydrophilic groups produced by microwave treatment with activated carbon. The effect of optimum condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated.

Keywords: Hydrophilic, PVC, contact angle, additive, microwave, froth floatation, waste plastics

Procedia PDF Downloads 623
321 Neuroprotective Effects of Dehydroepiandrosterone (DHEA) in Rat Model of Alzheimer’s Disease

Authors: Hanan F. Aly, Fateheya M. Metwally, Hanaa H. Ahmed

Abstract:

The current study is undertaken to elucidate a possible neuroprotective role of dehydroepiandrosterone (DHEA) against the development of Alzheimer’s disease in experimental rat model. Alzheimer’s disease was produced in young female ovariectomized rats by intraperitoneal administration of AlCl3 (4.2 mg/kg body weight) daily for 12 weeks. Half of these animals also received orally DHEA (250 mg/kg body weight, three times weekly) for 18 weeks. Control groups of animals received either DHAE alone, or no DHEA, or were not ovariectomized. After such treatment the animals were analyzed for oxidative stress biomarkers such as hydrogen peroxide, nitric oxide and malondialdehyde, total antioxidant capacity, reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase activities, antiapoptotic marker Bcl-2 and brain derived neurotrophic factor. Also, brain cholinergic markers (acetylcholinesterase and acetylcholine) were determined. The results revealed significant increase in oxidative stress parameters associated with significant decrease in the antioxidant enzyme activities in Al-intoxicated ovariectomized rats. Significant depletion in brain Bcl-2 and brain-derived neurotrophic factor levels were also detected. Moreover, significant elevations in brain acetylcholinesterase activity accompanied with significant reduction in acetylcholine level were recorded. Significant amelioration in all investigated parameters was detected as a result of treatment of Al-intoxicated ovariectomized rats with DHEA. These results were confirmed by histological examination of brain sections. These results clearly indicate a neuroprotective effect of DHEA against Alzheimer’s disease.

Keywords: Alzheimer’s disease, oxidative stress, apoptosis, dehydroepiandrosterone

Procedia PDF Downloads 323
320 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification

Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran

Abstract:

The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.

Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM

Procedia PDF Downloads 249
319 Catalytic Synthesis and Characterization of N-(4-(Tert-Butyl) Benzyl)-1-(4-Tert-Butyl) Phenyl)-N-Methyl Methanaminium Chloride from Tert-Butyl Benzyl Derivatives

Authors: Muhammad A. Muhammad

Abstract:

Butenafine (N-4-tert-butyl benzyl-N-methyl-1-naphthylene methylamine hydrochloride) is a benzylamine antimycotic (antifungal) agent that has a broad spectrum of action. The quest for improved antimycotic action brought about many research on the structure-activity properties of butenafine in relation to other antifungal agents. Of all those research, only little or no effort was recorded on the substituents attached to the aromatic systems in butenafine. In this research, N-(4-(tert-butyl) benzyl)-1-(4-tert-butyl) phenyl)-N-methyl methanaminium chloride, which is a butenafine analogue was synthesised from tert-butyl benzyl derivatives, by reductive amination using various solvents through a direct approach, where 1,2-dichloroethane gave the best solvent action at 40 °C (Yield: 75%) and of all the reducing agents used, sodium borohydride was found to give the best reducing action in the presence of silica chloride at room temperature (Yield: 50%). Characterization of the compound by 1H NMR showed a singlet peak of 18 hydrogen atoms with a chemical shift at 1.3-1.5 ppm for the presence of 6 methyl groups in the two tert-butyl substituents, the 13C NMR also indicated the presence of the two tert-butyl substituents by the peak with a chemical shift at 31-32 ppm for the six methyl carbon atoms, the IR indicated the presence of a tertiary ammonium ion by a strong band at 2460 cm-1 and finally the EIS-MS confirmed the molar mass of the compound by a mass to charge ratio of 324.2693. These results suggested that the target molecule was actually synthesised and therefore, 1,2-dichloroethane is a good solvent for this synthesis, and the most suitable reducing agent is sodium borohydride.

Keywords: antimicrobial agents, antimycotic agents, butenafine, chemotherapeutic agents, semisynthetic agents

Procedia PDF Downloads 293
318 Deuterium Effect on the Growth of the Fungus Aspergillus Fumigatus and Candida Albicans

Authors: Farzad Doostishoar, Abdolreza Hasanzadeh, Seyed Amin Ayatolahi Mousavi

Abstract:

Introduction and Goals: Deuterium has different action from its isotopes hydrogen in chemical reactions and biochemical processes. It is not a significant difference in heavier atoms between the behavior of heavier isotope and the lighter One but for very lighter atoms it is significant . According to that most of the weight of all creatures body is water natural rate can be significant. In this article we want to study the effect of reduced deuterium on the fungus cell. If we saw the dependence of deuterium concentration of environment on the cells growth we can test this in invivo models too. Methods: First we measured deuterium concentration of the distillated water this analyze was operated by Arak’s heavy water company. Then the deuterium was diluted to ½ ¼ 1/8 1/16 by adding water free of deuterium for making media. In tree of samples the deuterium concentration was increased by adding D2O up to 10,50,100 times more concentrated. For candida albicans growth we used sabor medium and for aspergillus fomigatis growth we used sabor medium containing chloramphenicol. After culturing the funguses species we put the mediums for each species in the shaker incubator for 10 days in 25 centigrade. In different days and times the plates were studied morphologically and some microscopic characteristics were studied too. This experiments and cultures were repeated 3 times. Results: Statistical analyzes by paired-sample T test showed that aspergilus fomigatoos growth was decreased in concentration of 72 ppm( half deuterium concentration of negative control) significantly. In deuterium concentration reduction the growth reduce into the negative control significantly. The project results showed that candida albicans was sensitive to reduce and decrease of the deuterium in all concentrations.

Keywords: deuterium, cancer cell, growth, candida albicans

Procedia PDF Downloads 401
317 First Principle-Based Dft and Microkinetic Simulation of Co-Conversion of Carbon Dioxide and Methane on Single Iridium Atom Doped Hematite with Surface Oxygen Defect

Authors: Kefale W. Yizengaw, Delele Worku Ayele, Jyh-Chiang Jiang

Abstract:

The catalytic co-conversion of CO₂ and CH₄ to value-added compounds has become one of the promising approaches to addressing global climate change by having valuable fossil fuels. Thedirect co-conversion of CO₂ and CH₄ to value-added compounds is attractive but tremendously challenging because of both molecules' thermodynamic stability and kinetic inertness. In the present study, a single iridium atom doped and a single oxygen atom defect hematite (110)surface model catalyst, which can comprehend direct C–O coupling based on simultaneous activation of CO2 and CH4 was studied using density functional theory plus U (DFT + U)calculations. The presence of dual active sites on the Ir/Fe₂O₃(110)-OV surface catalyst enablesCO₂ activation on the Ir site and CH₄ activation at the defect site. The electron analysis for the theco-adsorption of CO₂ and CH₄ deals with the electron redistribution on the surface and clearly shows the synergistic effect for simultaneous CO₂ and CH₄ activation on Ir/α- Fe₂O₃(110)-OVsurface. The microkinetic analysis shows that the dissociation of CH4 to CH3 * and H* plays an excellent role in the C–O coupling. The coverage analysis for the intermediate products of the microkinetic simulation results indicates that C–O coupling is the reaction limiting step. Finally, after the CH₃O* intermediate product species is produced, the radical hydrogen species spontaneously diffuse to the CH3O* intermediate product to form methanol at around 490 [K]. The present work provides mechanistic and kinetic insights into the direct C–O coupling of CO₂and CH₄, which could help design more-efficient catalysts.

Keywords: co-conversion, C–O coupling, doping, oxygen vacancy, microkinetic

Procedia PDF Downloads 115
316 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector

Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner

Abstract:

Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.

Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics

Procedia PDF Downloads 461
315 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 40
314 Salt-Induced Modulation in Biomass Production, Pigment Concentration, Ion Accumulation, Antioxidant System and Yield in Pea Plant

Authors: S. Noreen, S. Ahmad

Abstract:

Salinity is one of the most important environmental factors that limit the production of crop plants to the greatest proportion than any other ones. Salt-induced changes in growth, pigment concentration, water status, malondialdehydes (MDA) and H₂O₂ content, enzymatic and non-enzymatic antioxidants, Na⁺, K⁺ content and yield attributes were examined in the glasshouse on ten pea (Pisum Sativum L.) accessions, namely ‘13240’, ‘18302’, ‘19666’, ‘19700’, ‘19776’, ‘19785’, ‘19788’, ‘20153’, ‘20155’, ‘26719’ were subjected to non-stress (0 mM NaCl) and salt stress (100 mM and150 mM NaCl) in pots containing sand medium. The results showed that salt stress at level150 mM substantially reduced biomass production, leaf water status, pigment concentration (chlorophyll ‘a’, ‘b’, ‘carotenoid content’ total chlorophyll), K⁺ content, quantum yield and yield attributes as compared to plants treated with 100 mM NaCl. Antioxidant enzymes, Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD) and Ascorbate peroxidase (APX), proline content, total soluble protein, total amino acids, Malondialdehyde content (MDA), Hydrogen peroxide (H₂O₂) content and Na⁺ uptake markedly enhanced due to the influence of salt stress. On the basis of analyses (expressed as percent of control), of 10 accessions of pea plant, two were ranked as salt tolerant namely (‘19666’, ‘20153’), four were moderately tolerant namely (‘19700’, ‘19776’, ‘19785’, ‘20155’), and three were salt sensitive namely (‘13240’, ‘18302’, ‘26719’) at 150 mM NaCl level.

Keywords: antioxidant enzymes, ion uptake, pigment concentration, salt stress, yield attributes

Procedia PDF Downloads 107
313 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications

Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader

Abstract:

Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.

Keywords: geobacillus, optimization, production, xylanase

Procedia PDF Downloads 308
312 Anticancer Effect of Resveratrol-Loaded Gelatin Nanoparticles in NCI-H460 Non-Small Cell Lung Carcinoma Cell Lines

Authors: N. Rajendra Prasad

Abstract:

Resveratrol (RSV), a grape phytochemical, has drawn greater attention because of its beneficial ef-fects against cancer. However, RSV has some draw-backs such as unstabilization, poor water solubility and short biological half time, which limit the utili-zation of RSV in medicine, food and pharmaceutical industries. In this study, we have encapsulated RSV in gelatin nanoparticles (GNPs) and studied its anti-cancer efficacy in NCI-H460 lung cancer cells. SEM and DLS studies have revealed that the prepared RSV-GNPs possess spherical shape with a mean diameter of 294 nm. The successful encapsulation of RSV in GNPs has been achieved by the cross-linker glutaraldehyde probably through Schiff base reaction and hydrogen bond interaction. Spectrophotometric analysis revealed that the max-imum of 93.6% of RSV has been entrapped in GNPs. In vitro drug release kinetics indicated that there was an initial burst release followed by a slow and sustained release of RSV from GNPs. The prepared RSV-GNPs exhibited very rapid and more efficient cellular uptake than free RSV. Further, RSV-GNPs treatment showed greater antiproliferative efficacy than free RSV treatment in NCI-H460 cells. It has been found that greater ROS generation, DNA damage and apoptotic incidence in RSV-GNPs treated cells than free RSV treatment. Erythrocyte aggregation assay showed that the prepared RSV-GNPs formulation elicit no toxic response. HPLC analysis revealed that RSV-GNPs was more bioavailable and had a longer half-life than free RSV. Hence, GNPs carrier system might be a promising mode for controlled delivery and for improved therapeutic index of poorly water soluble RSV.

Keywords: resveratrol, coacervation, anticancer gelatin nanoparticles, lung cancer, controlled release

Procedia PDF Downloads 447
311 Assessing Carbon Stock and Sequestration of Reforestation Species on Old Mining Sites in Morocco Using the DNDC Model

Authors: Nabil Elkhatri, Mohamed Louay Metougui, Ngonidzashe Chirinda

Abstract:

Mining activities have left a legacy of degraded landscapes, prompting urgent efforts for ecological restoration. Reforestation holds promise as a potent tool to rehabilitate these old mining sites, with the potential to sequester carbon and contribute to climate change mitigation. This study focuses on evaluating the carbon stock and sequestration potential of reforestation species in the context of Morocco's mining areas, employing the DeNitrification-DeComposition (DNDC) model. The research is grounded in recognizing the need to connect theoretical models with practical implementation, ensuring that reforestation efforts are informed by accurate and context-specific data. Field data collection encompasses growth patterns, biomass accumulation, and carbon sequestration rates, establishing an empirical foundation for the study's analyses. By integrating the collected data with the DNDC model, the study aims to provide a comprehensive understanding of carbon dynamics within reforested ecosystems on old mining sites. The major findings reveal varying sequestration rates among different reforestation species, indicating the potential for species-specific optimization of reforestation strategies to enhance carbon capture. This research's significance lies in its potential to contribute to sustainable land management practices and climate change mitigation strategies. By quantifying the carbon stock and sequestration potential of reforestation species, the study serves as a valuable resource for policymakers, land managers, and practitioners involved in ecological restoration and carbon management. Ultimately, the study aligns with global objectives to rejuvenate degraded landscapes while addressing pressing climate challenges.

Keywords: carbon stock, carbon sequestration, DNDC model, ecological restoration, mining sites, Morocco, reforestation, sustainable land management.

Procedia PDF Downloads 76
310 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method

Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike

Abstract:

Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.

Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction

Procedia PDF Downloads 160
309 EDTA Enhanced Plant Growth, Antioxidant Defense System, and Phytoextraction of Copper by Brassica napus L.

Authors: Ume Habiba, Shafaqat Ali, Mujahid Farid, Muhammad Bilal Shakoor

Abstract:

Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland’s nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils.

Keywords: antioxidants, biomass, copper, EDTA, phytoextraction, tolerance

Procedia PDF Downloads 411
308 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics

Authors: Said Belaaouad

Abstract:

This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.

Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 97
307 Personalizing Human Physical Life Routines Recognition over Cloud-based Sensor Data via AI and Machine Learning

Authors: Kaushik Sathupadi, Sandesh Achar

Abstract:

Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study introduces state-of-the-art techniques for recognizing static and dy-namic patterns and forecasting those challenging activities from multi-fused sensors. Further-more, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, we acquired raw data is filtered with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.

Keywords: artificial intelligence, machine learning, gait analysis, local binary pattern (LBP), statistical features, micro-electro-mechanical systems (MEMS), maximum relevance and minimum re-dundancy (MRMR)

Procedia PDF Downloads 20
306 In Silico Study of Antiviral Drugs Against Three Important Proteins of Sars-Cov-2 Using Molecular Docking Method

Authors: Alireza Jalalvand, Maryam Saleh, Somayeh Behjat Khatouni, Zahra Bahri Najafi, Foroozan Fatahinia, Narges Ismailzadeh, Behrokh Farahmand

Abstract:

Object: In the last two decades, the recent outbreak of Coronavirus (SARS-CoV-2) imposed a global pandemic in the world. Despite the increasing prevalence of the disease, there are no effective drugs to treat it. A suitable and rapid way to afford an effective drug and treat the global pandemic is a computational drug study. This study used molecular docking methods to examine the potential inhibition of over 50 antiviral drugs against three fundamental proteins of SARS-CoV-2. METHODS: Through a literature review, three important proteins (a key protease, RNA-dependent RNA polymerase (RdRp), and spike) were selected as drug targets. Three-dimensional (3D) structures of protease, spike, and RdRP proteins were obtained from the Protein Data Bank. Protein had minimal energy. Over 50 antiviral drugs were considered candidates for protein inhibition and their 3D structures were obtained from drug banks. The Autodock 4.2 software was used to define the molecular docking settings and run the algorithm. RESULTS: Five drugs, including indinavir, lopinavir, saquinavir, nelfinavir, and remdesivir, exhibited the highest inhibitory potency against all three proteins based on the binding energies and drug binding positions deduced from docking and hydrogen-bonding analysis. Conclusions: According to the results, among the drugs mentioned, saquinavir and lopinavir showed the highest inhibitory potency against all three proteins compared to other drugs. It may enter laboratory phase studies as a dual-drug treatment to inhibit SARS-CoV-2.

Keywords: covid-19, drug repositioning, molecular docking, lopinavir, saquinavir

Procedia PDF Downloads 88
305 Advanced Phosphorus-Containing Polymer Materials towards Eco-Friendly Flame Retardant Epoxy Thermosets

Authors: Ionela-Daniela Carja, Diana Serbezeanu, Tachita Vlad-Bubulac, Corneliu Hamciuc

Abstract:

Nowadays, epoxy materials are extensively used in ever more areas and under ever more demanding environmental conditions due to their remarkable combination of properties, light weight and ease of processing. However, these materials greatly increase the fire risk due to their flammability and possible release of toxic by-products as a result of their chemical composition which consists mainly from carbon and hydrogen atoms. Therefore, improving the fire retardant behaviour to prevent the loss of life and property is of particular concern among government regulatory bodies, consumers and manufacturers alike. Modification of epoxy resins with organophosphorus compounds, as reactive flame retardants or additives, is the key to achieving non-flammable advanced epoxy materials. Herein, a detailed characterization of fire behaviour for a series of phosphorus-containing epoxy thermosets is reported. A carefully designed phosphorus flame retardant additive was simply blended with a bifunctional bisphenol-A based epoxy resin. Further thermal cross-linking in the presence of various aminic hardeners led to eco-friendly flame retardant epoxy resins. The type of hardener, concentration of flame retardant additive, compatibility between the components of the mixture, char formation and morphology, thermal stability, flame retardant mechanisms were investigated. It was found that even a very low content of phosphorus introduced into the epoxy matrix increased the limiting oxygen index value to about 30%. In addition, the peak of the heat release rate value decreased up to 45% as compared to the one of the neat epoxy system. The main flame retardant mechanism was the condensed-phase one as revealed by SEM and XPS measurements.

Keywords: condensed-phase mechanism, eco-friendly phosphorus flame retardant, epoxy resin, thermal stability

Procedia PDF Downloads 312
304 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains

Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*

Abstract:

Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.

Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy

Procedia PDF Downloads 143
303 Evaluation of the Discoloration of Methyl Orange Using Black Sand as Semiconductor through Photocatalytic Oxidation and Reduction

Authors: P. Acosta-Santamaría, A. Ibatá-Soto, A. López-Vásquez

Abstract:

Organic compounds in wastewaters coming from textile and pharmaceutical industry generated multiple harmful effects on the environment and the human health. One of them is the methyl orange (MeO), an azoic dye considered to be a recalcitrant compound. The heterogeneous photocatalysis emerges as an alternative for treating this type of hazardous compounds, through the generation of OH radicals using radiation and a semiconductor oxide. According to the author’s knowledge, catalysts such as TiO2 doped with metals show high efficiency in degrading MeO; however, this presents economic limitations on industrial scale. Black sand can be considered as a naturally doped catalyst because in its structure is common to find compounds such as titanium, iron and aluminum oxides, also elements such as zircon, cadmium, manganese, etc. This study reports the photocatalytic activity of the mineral black sand used as semiconductor in the discoloration of MeO by oxidation and reduction photocatalytic techniques. For this, magnetic composites from the mineral were prepared (RM, M1, M2 and NM) and their activity were tested through MeO discoloration while TiO2 was used as reference. For the fractions, chemical, morphological and structural characterizations were performed using Scanning Electron Microscopy with Energy Dispersive X-Ray (SEM-EDX), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analysis. M2 fraction showed higher MeO discoloration (93%) in oxidation conditions at pH 2 and it could be due to the presence of ferric oxides. However, the best result to reduction process was using M1 fraction (20%) at pH 2, which contains a higher titanium percentage. In the first process, hydrogen peroxide (H2O2) was used as electron donor agent. According to the results, black sand mineral can be used as natural semiconductor in photocatalytic process. It could be considered as a photocatalyst precursor in such processes, due to its low cost and easy access.

Keywords: black sand mineral, methyl orange, oxidation, photocatalysis, reduction

Procedia PDF Downloads 383
302 Exergy Analysis of a Green Dimethyl Ether Production Plant

Authors: Marcello De Falco, Gianluca Natrella, Mauro Capocelli

Abstract:

CO₂ capture and utilization (CCU) is a promising approach to reduce GHG(greenhouse gas) emissions. Many technologies in this field are recently attracting attention. However, since CO₂ is a very stable compound, its utilization as a reagent is energetic intensive. As a consequence, it is unclear whether CCU processes allow for a net reduction of environmental impacts from a life cycle perspective and whether these solutions are sustainable. Among the tools to apply for the quantification of the real environmental benefits of CCU technologies, exergy analysis is the most rigorous from a scientific point of view. The exergy of a system is the maximum obtainable work during a process that brings the system into equilibrium with its reference environment through a series of reversible processes in which the system can only interact with such an environment. In other words, exergy is an “opportunity for doing work” and, in real processes, it is destroyed by entropy generation. The exergy-based analysis is useful to evaluate the thermodynamic inefficiencies of processes, to understand and locate the main consumption of fuels or primary energy, to provide an instrument for comparison among different process configurations and to detect solutions to reduce the energy penalties of a process. In this work, the exergy analysis of a process for the production of Dimethyl Ether (DME) from green hydrogen generated through an electrolysis unit and pure CO₂ captured from flue gas is performed. The model simulates the behavior of all units composing the plant (electrolyzer, carbon capture section, DME synthesis reactor, purification step), with the scope to quantify the performance indices based on the II Law of Thermodynamics and to identify the entropy generation points. Then, a plant optimization strategy is proposed to maximize the exergy efficiency.

Keywords: green DME production, exergy analysis, energy penalties, exergy efficiency

Procedia PDF Downloads 256
301 Multidimensional Poverty and Its Correlates among Rural Households in Limpopo Province, South Africa

Authors: Tamunotonye Mayowa Braide, Isaac Oluwatayo

Abstract:

This study investigates multidimensional poverty, and its correlates among rural households in Sekhukhune and Capricorn District municipalities (SDM & CDM) in Limpopo Province, South Africa. Primary data were collected from 407 rural households selected through purposive and simple random sampling techniques. Analytical techniques employed include descriptive statistics, principal component analysis (PCA), and the Alkire Foster (A-F) methodology. The results of the descriptive statistics showed there are more females (66%) than males (34%) in rural areas of Limpopo Province, with about 45% of them having secondary school education as the highest educational level attained and only about 3% do not have formal education. In the analysis of deprivation, eight dimensions of deprivation, constructed from 21 variables, were identified using the PCA. These dimensions include type and condition of dwelling water and sanitation, educational attainment and income, type of fuel for cooking and heating, access to clothing and cell phone, assets and fuel for light, health condition, crowding, and child health. In identifying the poor with poverty cut-off (0.13) of all indicators, about 75.9% of the rural households are deprived in 25% of the total dimensions, with the adjusted headcount ratio (M0) being 0.19. Multidimensional poverty estimates showed higher estimates of poor rural households with 71%, compared to 29%, which fall below the income poverty line. The study conducted poverty decomposition, using sub-groups within the area by examining regions and household characteristics. In SDM, there are more multidimensionally poor households than in CDM. The water and sanitation dimension is the largest contributor to the multidimensional poverty index (MPI) in rural areas of Limpopo Province. The findings can, therefore, assist in better design of welfare policy and target poverty alleviation programs and as well help in efficient resource allocation at the provincial and local municipality levels.

Keywords: Alkire-Foster methodology, Limpopo province, multidimensional poverty, principal component analysis, South Africa

Procedia PDF Downloads 164
300 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications

Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra

Abstract:

Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.

Keywords: granular beds, numerical models, rotary kilns, solar thermal applications

Procedia PDF Downloads 33
299 Carbon Based Classification of Aquaporin Proteins: A New Proposal

Authors: Parul Johri, Mala Trivedi

Abstract:

Major Intrinsic proteins (MIPs), actively involved in the passive transport of small polar molecules across the membranes of almost all living organisms. MIPs that specifically transport water molecules are named aquaporins (AQPs). The permeability of membranes is actively controlled by the regulation of the amount of different MIPs present but also in some cases by phosphorylation and dephosphorylation of the channel. Based on sequence similarity, MIPs have been classified into many categories. All of the proteins are made up of the 20 amino acids, the only difference is there in their orientations. Again all the 20 amino acids are made up of the basic five elements namely: carbon, hydrogen, oxygen, sulphur and nitrogen. These elements are responsible for giving the amino acids the properties of hydrophilicity/hydrophobicity which play an important role in protein interactions. The hydrophobic amino acids characteristically have greater number of carbon atoms as carbon is the main element which contributes to hydrophobic interactions in proteins. It is observed that the carbon level of proteins in different species is different. In the present work, we have taken a sample set of 150 aquaporins proteins from Uniprot database and a dynamic programming code was written to calculate the carbon percentage for each sequence. This carbon percentage was further used to barcode the aqauporins of animals and plants. The protein taken from Oryza sativa, Zea mays and Arabidopsis thaliana preferred to have carbon percentage of 31.8 to 35, whereas on the other hand sequences taken from Mus musculus, Saccharomyces cerevisiae, Homo sapiens, Bos Taurus, and Rattus norvegicus preferred to have carbon percentage of 31 to 33.7. This clearly demarks the carbon range in the aquaporin proteins from plant and animal origin. Hence the atom level analysis of protein sequences can provide us with better results as compared to the residue level comparison.

Keywords: aquaporins, carbon, dynamic prgramming, MIPs

Procedia PDF Downloads 369
298 Tobacco Taxation and the Heterogeneity of Smokers' Responses to Price Increases

Authors: Simone Tedeschi, Francesco Crespi, Paolo Liberati, Massimo Paradiso, Antonio Sciala

Abstract:

This paper aims at contributing to the understanding of smokers’ responses to cigarette prices increases with a focus on heterogeneity, both across individuals and price levels. To do this, a stated preference quasi-experimental design grounded in a random utility framework is proposed to evaluate the effect on smokers’ utility of the price level and variation, along with social conditioning and health impact perception. The analysis is based on individual-level data drawn from a unique survey gathering very detailed information on Italian smokers’ habits. In particular, qualitative information on the individual reactions triggered by changes in prices of different magnitude and composition are exploited. The main findings stemming from the analysis are the following; the average price elasticity of cigarette consumption is comparable with previous estimates for advanced economies (-.32). However, the decomposition of this result across five latent-classes of smokers, reveals extreme heterogeneity in terms of price responsiveness, implying a potential price elasticity that ranges between 0.05 to almost 1. Such heterogeneity is in part explained by observable characteristics such as age, income, gender, education as well as (current and lagged) smoking intensity. Moreover, price responsiveness is far from being independent from the size of the prospected price increase. Finally, by comparing even and uneven price variations, it is shown that uniform across-brand price increases are able to limit the scope of product substitutions and downgrade. Estimated price-response heterogeneity has significant implications for tax policy. Among them, first, it provides evidence and a rationale for why the aggregate price elasticity is likely to follow a strictly increasing pattern as a function of the experienced price variation. This information is crucial for forecasting the effect of a given tax-driven price change on tax revenue. Second, it provides some guidance on how to design excise tax reforms to balance public health and revenue goals.

Keywords: smoking behaviour, preference heterogeneity, price responsiveness, cigarette taxation, random utility models

Procedia PDF Downloads 162
297 Design and Optimisation of 2-Oxoglutarate Dioxygenase Expression in Escherichia coli Strains for Production of Bioethylene from Crude Glycerol

Authors: Idan Chiyanzu, Maruping Mangena

Abstract:

Crude glycerol, a major by-product from the transesterification of triacylglycerides with alcohol to biodiesel, is known to have a broad range of applications. For example, its bioconversion can afford a wide range of chemicals including alcohols, organic acids, hydrogen, solvents and intermediate compounds. In bacteria, the 2-oxoglutarate dioxygenase (2-OGD) enzymes are widely found among the Pseudomonas syringae species and have been recognized with an emerging importance in ethylene formation. However, the use of optimized enzyme function in recombinant systems for crude glycerol conversion to ethylene is still not been reported. The present study investigated the production of ethylene from crude glycerol using engineered E. coli MG1655 and JM109 strains. Ethylene production with an optimized expression system for 2-OGD in E. coli using a codon optimized construct of the ethylene-forming gene was studied. The codon-optimization resulted in a 20-fold increase of protein production and thus an enhanced production of the ethylene gas. For a reliable bioreactor performance, the effect of temperature, fermentation time, pH, substrate concentration, the concentration of methanol, concentration of potassium hydroxide and media supplements on ethylene yield was investigated. The results demonstrate that the recombinant enzyme can be used for future studies to exploit the conversion of low-priced crude glycerol into advanced value products like light olefins, and tools including recombineering techniques for DNA, molecular biology, and bioengineering can be used to allowing unlimited the production of ethylene directly from the fermentation of crude glycerol. It can be concluded that recombinant E.coli production systems represent significantly secure, renewable and environmentally safe alternative to thermochemical approach to ethylene production.

Keywords: crude glycerol, bioethylene, recombinant E. coli, optimization

Procedia PDF Downloads 279