Search results for: fine motor skill
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2554

Search results for: fine motor skill

1264 Beyond Replicating Linguistic Elements: Novel Concept Combinations in Multilingual Children

Authors: Xiao-lei Wang

Abstract:

The Novel Concept Combination (NCC) refers to the unique ability of multilingual children to creatively merge and integrate different linguistic and cultural elements to form innovative and original concepts. Children raised with more than one language often exhibit this skill in their daily communication, such as creating innovative metaphors that enrich their communication, showcasing their creativity in conveying the essence of their messages. This paper explores NCC abilities in multilingual children by focusing on two male trilingual siblings exposed to Chinese, French, and English from birth. The siblings were observed for 19 years in their daily context. Seventy-six hours of video-recorded data were used for this study (38 hours for each participant). A coding scheme developed by Wang et al. was employed to code the recorded data. The results suggest that these multilingual siblings proportionally increased their NCC skills over the years, emerging at age 3 and peaking at age 15. The characteristic of their NCC lies in their capacity to not merely replicate linguistic elements of different languages but to recreate, reshape, and reconstruct novel ideas in communication, enriching their interactions. The paper also addresses the educational implications for educators and parents, emphasizing the importance of valuing these novel ideas in everyday environments to encourage NCC development. This, in turn, contributes to cognitive and social development.

Keywords: multilingual children, novel concept combination, multilingual creativity, linguistic richness

Procedia PDF Downloads 67
1263 The Potential of 48V HEV in Real Driving

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.

Keywords: customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system

Procedia PDF Downloads 507
1262 Dissecting Big Trajectory Data to Analyse Road Network Travel Efficiency

Authors: Rania Alshikhe, Vinita Jindal

Abstract:

Digital innovation has played a crucial role in managing smart transportation. For this, big trajectory data collected from traveling vehicles, such as taxis through installed global positioning system (GPS)-enabled devices can be utilized. It offers an unprecedented opportunity to trace the movements of vehicles in fine spatiotemporal granularity. This paper aims to explore big trajectory data to measure the travel efficiency of road networks using the proposed statistical travel efficiency measure (STEM) across an entire city. Further, it identifies the cause of low travel efficiency by proposed least square approximation network-based causality exploration (LANCE). Finally, the resulting data analysis reveals the causes of low travel efficiency, along with the road segments that need to be optimized to improve the traffic conditions and thus minimize the average travel time from given point A to point B in the road network. Obtained results show that our proposed approach outperforms the baseline algorithms for measuring the travel efficiency of the road network.

Keywords: GPS trajectory, road network, taxi trips, digital map, big data, STEM, LANCE

Procedia PDF Downloads 157
1261 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application

Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr

Abstract:

Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.

Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion

Procedia PDF Downloads 400
1260 Study of Heat Conduction in Multicore Chips

Authors: K. N. Seetharamu, Naveen Teggi, Kiranakumar Dhavalagi, Narayana Kamath

Abstract:

A method of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore chips. A physical model which has salient features of multicore chips is incorporated for the analysis. The model consists of active and background cell laid out in a checkered pattern, and this pattern repeats itself in each fine grain active cells. The die has three layers i) body ii) buried oxide layer iii) wiring layer, stacked one above the other with heat source placed at the interface between wiring and buried oxide layer. With this model we propose analytical method to calculate the target hotspot temperature, heat flow to top and bottom layers of the die and thermal resistance components at each granularity level, assuming appropriate values of die dimensions and parameters. Finally we attempt to find an easier method for the calculation of the target hotspot temperature using graph.

Keywords: checkered pattern, granularity level, heat conduction, multicore chips, target hotspot temperature

Procedia PDF Downloads 466
1259 Improvement of GVPI Insulation System Characteristics by Curing Process Modification

Authors: M. Shadmand

Abstract:

The curing process of insulation system for electrical machines plays a determinative role for its durability and reliability. Polar structure of insulating resin molecules and used filler of insulation system can be taken as an occasion to leverage it to enhance overall characteristics of insulation system, mechanically and electrically. The curing process regime for insulating system plays an important role for its mechanical and electrical characteristics by arranging the polymerization of chain structure for resin. In this research, the effect of electrical field application on in-curing insulating system for Global Vacuum Pressurized Impregnation (GVPI) system for traction motor was considered by performing the dissipation factor, polarization and de-polarization current (PDC) and voltage endurance (aging) measurements on sample test objects. Outcome results depicted obvious improvement in mechanical strength of the insulation system as well as higher electrical characteristics with routing and long-time (aging) electrical tests. Coming together, polarization of insulation system during curing process would enhance the machine life time. 

Keywords: insulation system, GVPI, PDC, aging

Procedia PDF Downloads 268
1258 Forming Form, Motivation and Their Biolinguistic Hypothesis: The Case of Consonant Iconicity in Tashelhiyt Amazigh and English

Authors: Noury Bakrim

Abstract:

When dealing with motivation/arbitrariness, forming form (Forma Formans) and morphodynamics are to be grasped as relevant implications of enunciation/enactment, schematization within the specificity of language as sound/meaning articulation. Thus, the fact that a language is a form does not contradict stasis/dynamic enunciation (reflexivity vs double articulation). Moreover, some languages exemplify the role of the forming form, uttering, and schematization (roots in Semitic languages, the Chinese case). Beyond the evolutionary biosemiotic process (form/substance bifurcation, the split between realization/representation), non-isomorphism/asymmetry between linguistic form/norm and linguistic realization (phonetics for instance) opens up a new horizon problematizing the role of Brain – sensorimotor contribution in the continuous forming form. Therefore, we hypothesize biotization as both process/trace co-constructing motivation/forming form. Henceforth, referring to our findings concerning distribution and motivation patterns within Berber written texts (pulse based obstruents and nasal-lateral levels in poetry) and oral storytelling (consonant intensity clustering in quantitative and semantic/prosodic motivation), we understand consonant clustering, motivation and schematization as a complex phenomenon partaking in patterns of oral/written iconic prosody and reflexive metalinguistic representation opening the stable form. We focus our inquiry on both Amazigh and English clusters (/spl/, /spr/) and iconic consonant iteration in [gnunnuy] (to roll/tumble), [smummuy] (to moan sadly or crankily). For instance, the syllabic structures of /splaeʃ/ and /splaet/ imply an anamorphic representation of the state of the world: splash, impact on aquatic surfaces/splat impact on the ground. The pair has stridency and distribution as distinctive features which specify its phonetic realization (and a part of its meaning) /ʃ/ is [+ strident] and /t/ is [+ distributed] on the vocal tract. Schematization is then a process relating both physiology/code as an arthron vocal/bodily, vocal/practical shaping of the motor-articulatory system, leading to syntactic/semantic thematization (agent/patient roles in /spl/, /sm/ and other clusters or the tense uvular /qq/ at the initial position in Berber). Furthermore, the productivity of serial syllable sequencing in Berber points out different expressivity forms. We postulate two Components of motivated formalization: i) the process of memory paradigmatization relating to sequence modeling under sensorimotor/verbal specific categories (production/perception), ii) the process of phonotactic selection - prosodic unconscious/subconscious distribution by virtue of iconicity. Basing on multiple tests including a questionnaire, phonotactic/visual recognition and oral/written reproduction, we aim at patterning/conceptualizing consonant schematization and motivation among EFL and Amazigh (Berber) learners and speakers integrating biolinguistic hypotheses.

Keywords: consonant motivation and prosody, language and order of life, anamorphic representation, represented representation, biotization, sensori-motor and brain representation, form, formalization and schematization

Procedia PDF Downloads 143
1257 Nursing Care Experience for a Patient with Type2 Diabetes Mellitus and Hyperglycemic Hyperosmolar State

Authors: Yen-Hsia Lin, Ya-Fang Cheng, Hui-Zhu Chen, Chi-Hui Tiao

Abstract:

This is a case study of a 70-year-old man suffering from Type 2 diabetes mellitus and hyperglycemia hyperosmolarity state. He was admitted into the intensive care unit from the 20th to 26th of October, 2015. After receiving relevant information through open-ended conversations, observation, and physical assessment, as well as the psychological, social and spiritual holistic nursing assessment, several clinical health problems such as unstable blood sugar, impaired skin integrity and lack of self-care management knowledge were identified by the author. During the period of care, the patient was encouraged to share and express his feelings, an active listening and initiating approach from the nursing team had led to the understanding of why the patient refused to use insulin. This knowledge enabled the nursing team to manage patient care by educating the patient with self-care management skills, such as foot wound care and insulin injection skills to slow the deterioration of complications. Also, the implementation of appropriate diet and exercise routine to improve patients’ style. By enhancing self-care ability in diabetic patients, they are able to return home with the skill to improve better quality life style.

Keywords: hyperglycemia hyperosmolar state, type2 diabetes Mellitu, diabetes Mellitu foot care, intensive care

Procedia PDF Downloads 146
1256 Design of Self-Balancing Bicycle Using Object State Detection in Co-Ordinate System

Authors: Mamta M. Barapatre, V. N. Sahare

Abstract:

Since from long time two wheeled vehicle self-balancing has always been a back-breaking task for both human and robots. Leaning a bicycle driving is long time process and goes through building knowledge base for parameter decision making while balancing robots. In order to create this machine learning phase with embedded system the proposed system is designed. The system proposed aims to construct a bicycle automaton, power-driven by an electric motor, which could balance by itself and move along a specific path. This path could be wavy with bumps and varying widths. The key aim was to construct a cycle which self-balances itself by controlling its handle. In order to take a turn, the mass was transferred to the center. In order to maintain the stability, the bicycle bot automatically turned the handle and a turn. Some problems were faced by the team which were Speed, Steering mechanism through mass- distribution (leaning), Center of mass location and gyroscopic effect of its wheel. The idea proposed have potential applications in automation of transportation system and is most efficient.

Keywords: gyroscope-flywheel, accelerometer, servomotor-controller, self stability concept

Procedia PDF Downloads 278
1255 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: particle size, RESS, solid oil particle, supercritical carbon dioxide,

Procedia PDF Downloads 335
1254 Improving Reading Comprehension Skills of Elementary School Students through Cooperative Integrated Reading and Composition Model Using Padlet

Authors: Neneng Hayatul Milah

Abstract:

The most important reading skill for students is comprehension. Understanding the reading text will have an impact on learning outcomes. However, reading comprehension instruction in Indonesian elementary schools is lacking. A more effective learning model is needed to enhance students' reading comprehension. This study aimed to evaluate the effectiveness of the CIRC (Cooperative Integrated Reading and Composition) model with Padlet integration in improving the reading comprehension skills of grade IV students in elementary schools in Cimahi City, Indonesia. This research methodology was quantitative with a pre-experiment research type and one group pretest-posttest research design. The sample of this study consisted of 30 students. The results of statistical analysis showed that there was a significant effect of using the CIRC learning model using Padlet on improving students' reading comprehension skills of narrative text. The mean score of students' pretest was 67.41, while the mean score of the posttest increased to 84.82. The paired sample t-test resulted in a t-count score of -13.706 with a significance score of <0.001, which is smaller than α = 0.05. This research is expected to provide useful insights for educational practitioners on how the use of the CIRC model using Padlet can improve the reading comprehension skills of elementary school students.

Keywords: reading comprehension skills, CIRC, Padlet, narrative text

Procedia PDF Downloads 32
1253 Opto-Electronic Study of the Silicon Nitride Doped Cerium Thin Films Deposed by Evaporation

Authors: Bekhedda Kheira

Abstract:

Rare earth-doped luminescent materials (Ce, Eu, Yb, Tb, etc.) are now widely used in flat-screen displays, fluorescent lamps, and photovoltaic solar cells. They exhibit several fine emission bands in a spectral range from near UV to infrared when added to inorganic materials. This study chose cerium oxide (CeO2) because of its exceptional intrinsic properties, energy levels, and ease of implementation of doped layer synthesis. In this study, thin films were obtained by the evaporation deposition technique of cerium oxide (CeO2) on silicon Nitride (SiNx) layers and then annealing under nitrogen N2. The characterization of these films was carried out by different techniques, scanning electron microscopy (SEM) to visualize morphological properties and (EDS) was used to determine the elemental composition of individual dots, optical analysis characterization of thin films was studied by a spectrophotometer in reflectance mode to determine different energies gap of the nanostructured layers and to adjust these values for the photovoltaic application.

Keywords: thin films, photovoltaic, rare earth, evaporation

Procedia PDF Downloads 88
1252 Hierarchical Piecewise Linear Representation of Time Series Data

Authors: Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

This paper presents a Hierarchical Piecewise Linear Approximation (HPLA) for the representation of time series data in which the time series is treated as a curve in the time-amplitude image space. The curve is partitioned into segments by choosing perceptually important points as break points. Each segment between adjacent break points is recursively partitioned into two segments at the best point or midpoint until the error between the approximating line and the original curve becomes less than a pre-specified threshold. The HPLA representation achieves dimensionality reduction while preserving prominent local features and general shape of time series. The representation permits course-fine processing at different levels of details, allows flexible definition of similarity based on mathematical measures or general time series shape, and supports time series data mining operations including query by content, clustering and classification based on whole or subsequence similarity.

Keywords: data mining, dimensionality reduction, piecewise linear representation, time series representation

Procedia PDF Downloads 275
1251 Dynamic Ad-hoc Topologies for Mobile Robot Navigation Based on Non-Uniform Grid Maps

Authors: Peter Sauer, Thomas Hinze, Petra Hofstedt

Abstract:

To avoid obstacles in the surrounding environment and to navigate to a given target belong to the most important tasks for mobile robots. According to these tasks different data structures are suitable. To avoid near obstacles, occupancy grid maps are an ideal representation of the surroundings. For less fine grained tasks, such as navigating from one room to another in an apartment, pure grid maps are inappropriate. Grid maps are very detailed, calculating paths to navigate between rooms based on grid maps would take too long. Instead, graph-based data structures, so-called topologies, turn out to be a proper choice for such tasks. In this paper we present two methods to dynamically create topologies from grid maps. Both methods are based on non-uniform grid maps. The topologies are generated on-the-fly and can easily be modified to represent changes in the environment. This allows a hybrid approach to control mobile robots, where, depending on the situation and the current task, either the grid map or the generated topology may be used.

Keywords: robot navigation, occupancy grids, topological maps, dynamic map creation

Procedia PDF Downloads 563
1250 Small Scale Mobile Robot Auto-Parking Using Deep Learning, Image Processing, and Kinematics-Based Target Prediction

Authors: Mingxin Li, Liya Ni

Abstract:

Autonomous parking is a valuable feature applicable to many robotics applications such as tour guide robots, UV sanitizing robots, food delivery robots, and warehouse robots. With auto-parking, the robot will be able to park at the charging zone and charge itself without human intervention. As compared to self-driving vehicles, auto-parking is more challenging for a small-scale mobile robot only equipped with a front camera due to the camera view limited by the robot’s height and the narrow Field of View (FOV) of the inexpensive camera. In this research, auto-parking of a small-scale mobile robot with a front camera only was achieved in a four-step process: Firstly, transfer learning was performed on the AlexNet, a popular pre-trained convolutional neural network (CNN). It was trained with 150 pictures of empty parking slots and 150 pictures of occupied parking slots from the view angle of a small-scale robot. The dataset of images was divided into a group of 70% images for training and the remaining 30% images for validation. An average success rate of 95% was achieved. Secondly, the image of detected empty parking space was processed with edge detection followed by the computation of parametric representations of the boundary lines using the Hough Transform algorithm. Thirdly, the positions of the entrance point and center of available parking space were predicted based on the robot kinematic model as the robot was driving closer to the parking space because the boundary lines disappeared partially or completely from its camera view due to the height and FOV limitations. The robot used its wheel speeds to compute the positions of the parking space with respect to its changing local frame as it moved along, based on its kinematic model. Lastly, the predicted entrance point of the parking space was used as the reference for the motion control of the robot until it was replaced by the actual center when it became visible again by the robot. The linear and angular velocities of the robot chassis center were computed based on the error between the current chassis center and the reference point. Then the left and right wheel speeds were obtained using inverse kinematics and sent to the motor driver. The above-mentioned four subtasks were all successfully accomplished, with the transformed learning, image processing, and target prediction performed in MATLAB, while the motion control and image capture conducted on a self-built small scale differential drive mobile robot. The small-scale robot employs a Raspberry Pi board, a Pi camera, an L298N dual H-bridge motor driver, a USB power module, a power bank, four wheels, and a chassis. Future research includes three areas: the integration of all four subsystems into one hardware/software platform with the upgrade to an Nvidia Jetson Nano board that provides superior performance for deep learning and image processing; more testing and validation on the identification of available parking space and its boundary lines; improvement of performance after the hardware/software integration is completed.

Keywords: autonomous parking, convolutional neural network, image processing, kinematics-based prediction, transfer learning

Procedia PDF Downloads 132
1249 Advanced Analytical Competency Is Necessary for Strategic Leadership to Achieve High-Quality Decision-Making

Authors: Amal Mohammed Alqahatni

Abstract:

This paper is a non-empirical analysis of existing literature on digital leadership competency, data-driven organizations, and dealing with AI technology (big data). This paper will provide insights into the importance of developing the leader’s analytical skills and style to be more effective for high-quality decision-making in a data-driven organization and achieve creativity during the organization's transformation to be digitalized. Despite the enormous potential that big data has, there are not enough experts in the field. Many organizations faced an issue with leadership style, which was considered an obstacle to organizational improvement. It investigates the obstacles to leadership style in this context and the challenges leaders face in coaching and development. The leader's lack of analytical skill with AI technology, such as big data tools, was noticed, as was the lack of understanding of the value of that data, resulting in poor communication with others, especially in meetings when the decision should be made. By acknowledging the different dynamics of work competency and organizational structure and culture, organizations can make the necessary adjustments to best support their leaders. This paper reviews prior research studies and applies what is known to assist with current obstacles. This paper addresses how analytical leadership will assist in overcoming challenges in a data-driven organization's work environment.

Keywords: digital leadership, big data, leadership style, digital leadership challenge

Procedia PDF Downloads 69
1248 Verification of Simulated Accumulated Precipitation

Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze

Abstract:

Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.

Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting

Procedia PDF Downloads 147
1247 Integrating Generic Skills into Disciplinary Curricula

Authors: Sitalakshmi Venkatraman, Fiona Wahr, Anthony de Souza-Daw, Samuel Kaspi

Abstract:

There is a growing emphasis on generic skills in higher education to match the changing skill-set requirements of the labour market. However, researchers and policy makers have not arrived at a consensus on the generic skills that actually contribute towards workplace employability and performance that complement and/or underpin discipline-specific graduate attributes. In order to strengthen the qualifications framework, a range of ‘generic’ learning outcomes have been considered for students undergoing higher education programs and among them it is necessary to have the fundamental generic skills such as literacy and numeracy at a level appropriate to the qualification type. This warrants for curriculum design approaches to contextualise the form and scope of these fundamental generic skills for supporting both students’ learning engagement in the course, as well as the graduate attributes required for employability and to progress within their chosen profession. Little research is reported in integrating such generic skills into discipline-specific learning outcomes. This paper explores the literature of the generic skills required for graduates from the discipline of Information Technology (IT) in relation to an Australian higher education institution. The paper presents the rationale of a proposed Bachelor of IT curriculum designed to contextualize the learning of these generic skills within the students’ discipline studies.

Keywords: curriculum, employability, generic skills, graduate attributes, higher education, information technology

Procedia PDF Downloads 256
1246 PM10 Prediction and Forecasting Using CART: A Case Study for Pleven, Bulgaria

Authors: Snezhana G. Gocheva-Ilieva, Maya P. Stoimenova

Abstract:

Ambient air pollution with fine particulate matter (PM10) is a systematic permanent problem in many countries around the world. The accumulation of a large number of measurements of both the PM10 concentrations and the accompanying atmospheric factors allow for their statistical modeling to detect dependencies and forecast future pollution. This study applies the classification and regression trees (CART) method for building and analyzing PM10 models. In the empirical study, average daily air data for the city of Pleven, Bulgaria for a period of 5 years are used. Predictors in the models are seven meteorological variables, time variables, as well as lagged PM10 variables and some lagged meteorological variables, delayed by 1 or 2 days with respect to the initial time series, respectively. The degree of influence of the predictors in the models is determined. The selected best CART models are used to forecast future PM10 concentrations for two days ahead after the last date in the modeling procedure and show very accurate results.

Keywords: cross-validation, decision tree, lagged variables, short-term forecasting

Procedia PDF Downloads 194
1245 Mechanical and Chemical Properties of Zn-Ni-Al2O3 Nano Composite Coatings

Authors: Soroor Ghaziof, Wei Gao

Abstract:

Zn alloy and composite coatings are widely used in buildings and structures, automobile and fasteners industries to protect steel component from corrosion. In this paper, Zn-Ni-Al2O3 nano-composite coatings were electrodeposited on mild steel using a novel sol enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The effect of alumina sol on the electrodeposition process, and coating properties was investigated using cyclic voltammetry, XRD, ESEM and Tafel test. Results from XRD tests showed that the structure of all coatings was single γ-Ni5Zn21 phase. Cyclic voltammetry results showed that the electrodeposition overpotential was lower in the presence of alumina sol in the bath, and caused the reduction potential of Zn-Ni to shift to more positive values. Zn-Ni-Al2O3 nano composite coatings produced more uniform and compact deposits, with fine grained microstructure when compared to Zn-Ni coatings. The corrosion resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings.

Keywords: Zn-Ni-Al2O3 composite coatings, steel, sol-enhanced electroplating, corrosion resistance

Procedia PDF Downloads 392
1244 Aviation versus Aerospace: A Differential Analysis of Workforce Jobs via Text Mining

Authors: Sarah Werner, Michael J. Pritchard

Abstract:

From pilots to engineers, the skills development within the aerospace industry is exceptionally broad. Employers often struggle with finding the right mixture of qualified skills to fill their organizational demands. This effort to find qualified talent is further complicated by the industrial delineation between two key areas: aviation and aerospace. In a broad sense, the aerospace industry overlaps with the aviation industry. In turn, the aviation industry is a smaller sector segment within the context of the broader definition of the aerospace industry. Furthermore, it could be conceptually argued that -in practice- there is little distinction between these two sectors (i.e., aviation and aerospace). However, through our unstructured text analysis of over 6,000 job listings captured, our team found a clear delineation between aviation-related jobs and aerospace-related jobs. Using techniques in natural language processing, our research identifies an integrated workforce skill pattern that clearly breaks between these two sectors. While the aviation sector has largely maintained its need for pilots, mechanics, and associated support personnel, the staffing needs of the aerospace industry are being progressively driven by integrative engineering needs. Increasingly, this is leading many aerospace-based organizations towards the acquisition of 'system level' staffing requirements. This research helps to better align higher educational institutions with the current industrial staffing complexities within the broader aerospace sector.

Keywords: aerospace industry, job demand, text mining, workforce development

Procedia PDF Downloads 272
1243 Anti-Bubble Painting Booth for Wood Coating Resins

Authors: Abasali Masoumi, Amir Gholamian Bozorgi

Abstract:

To have the best quality in wood products such as tabletops and inlay-woods, applying two principles are required: aesthetic and protection against the destructive agent. Artists spent a lot of time creating a masterwork project and also for better demonstrating beautiful appearance and preserving it for hundred years. So they need good material and appropriate method to finish it. As usual, wood painters use polyester or epoxy resins. These finishes need a special skill to use and then give a fantastic paint film and clearness. If we let resins dry in exposure to environmental agents such as unstable temperature, dust and etc., no doubt it becomes cloudy, crack, blister and much wood dust and air bubbles in it. We have designed a special wood coating booth (IR-Patent No: 70429) for wood-coating resins (polyester and epoxy), and this booth provides an adjustable space to control factors that is necessary to have a good finish in the end. Anti-bubble painting booth has the ability to remove bubbles from resin, precludes the cracking process and causes the resin to be the best. With this booth drying time of resin is reduced from 24 hours to 6 hours by fixing the optimum temperature, and it is very good for saving time. This booth is environment-friendly and never lets the poisonous vapors and other VOC (Volatile organic components) enter to workplace atmosphere because they are very harmful to humans.

Keywords: wood coating, epoxy resin, polyester resin, wood finishes

Procedia PDF Downloads 229
1242 An Extra-Curricular Program to Enhance Student Outcome of a Class

Authors: Dong Jin Kang

Abstract:

Application of single board microcontrollers is an important skill even for non-electronic engineering major students. Arduino board is widely utilized in engineering classes of the Yeungnam University of South Korea. In those classes, students are subjected to learn how to use various sensor components related to motion, sound, light, and so on as well as physical quantities. Students are grouped into several teams, and each team consists of 4~5 students. Many students are not motivated enough to learn those skills. An extracurricular program was planned to improve this problem. The extracurricular program was held as an international boot camp where students from three different countries were invited to participate. 10 students groups were formed, and each team was consisted of students having different nationality. The camp was 4 days long and wrapped up with competitions. During the camp, every student was assigned to design and make a two wheel robot. The competition was carried out in two different areas; individual and group performances. As most skills dealt in the class are used to build the robot, students are much motivated to review the whole subjects of the class. All students were surveyed after the program. The survey shows that the skills studied in the class are greatly improved, and practically understood. Staying at the dormitory and teaming with international students are help students improve communication skills. Competition at the camp was found as a key element to inspire and attract students for voluntary participation.

Keywords: extracurricular program, robot, Arduino board, international camp, competition

Procedia PDF Downloads 219
1241 Evaluation of P300 and CNV Changes in Patients with Essential Tremor

Authors: Sehur Sibel Ozkaynak, Zakir Koc, Ebru Barcın

Abstract:

Essential tremor (ET) is one of the most common movement disorders and has long been considered a monosymptomatic disorder. While ET has traditionally been categorized as a pure motor disease, cross-sectional and longitudinal studies of cognition in ET have been demonstrated that these patients may have cognitive dysfunction. We investigated the neuro physiological aspects of cognition in ET, using event-related potentials (ERPs).Twenty patients with ET and 20 age-education and sex matched healthy controls underwent a neuro physiological evaluation. P300 components and Contingent Negative Variation (CNV) were recorded. The latencies and amplitudes of the P300 and CNV were evaluated. P200-N200 amplitude was significantly smaller in the ET group, while no differences emerged between patients and controls in P300 latencies. CNV amplitude was significantly smaller at Cz electrode site in the ET group. No differences were observed between in the two groups in CNV latencies. As a result, P300 and CNV parameters did not show significant differences between in the two groups, does not mean that there aren't mild cognitive changes in ET patients. In this regard, there is a need to further studies using electro physiological tests related to cognitive changes in ET patients.

Keywords: cognition, essential tremor, event related potentials

Procedia PDF Downloads 287
1240 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 136
1239 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 239
1238 Innovative Tool for Improving Teaching and Learning

Authors: Izharul Haq

Abstract:

Every one of us seek to aspire to gain quality education. The biggest stake holders are students who labor through years acquiring knowledge and skill to help them prepare for their career. Parents spend a fortune on their children’s education. Companies spend billions of dollars to enhance standards by developing new education products and services. Quality education is the golden key to a long lasting prosperity for the individual and the nation. But unfortunately, education standards are continuously deteriorating and it has become a global phenomenon. Unfortunately, teaching is often described as a ‘popularity contest’ and those teachers who are usually popular with students are often those who compromise teaching to appease students. Such teachers also ‘teach-to-the-test’ ensuring high test scores. Such teachers, hence, receive good student rating. Teachers who are conscientious, rigorous and thorough are often the victims of good appraisal. Government and private organizations are spending billions of dollars trying to capture the characteristics of a good teacher. But the results are still vague and inconclusive. At present there is no objective way to measure teaching effectiveness. In this paper we present an innovative method to objectively measure teaching effectiveness using a new teaching tool (TSquare). The TSquare tool used in the study is practical, easy to use, cost effective and requires no special equipment to implement. Hence it has a global appeal for poor and the rich countries alike.

Keywords: measuring teaching effectiveness, quality in education, student learning, teaching styles

Procedia PDF Downloads 296
1237 Functional Neural Network for Decision Processing: A Racing Network of Programmable Neurons Where the Operating Model Is the Network Itself

Authors: Frederic Jumelle, Kelvin So, Didan Deng

Abstract:

In this paper, we are introducing a model of artificial general intelligence (AGI), the functional neural network (FNN), for modeling human decision-making processes. The FNN is composed of multiple artificial mirror neurons (AMN) racing in the network. Each AMN has a similar structure programmed independently by the users and composed of an intention wheel, a motor core, and a sensory core racing at a specific velocity. The mathematics of the node’s formulation and the racing mechanism of multiple nodes in the network will be discussed, and the group decision process with fuzzy logic and the transformation of these conceptual methods into practical methods of simulation and in operations will be developed. Eventually, we will describe some possible future research directions in the fields of finance, education, and medicine, including the opportunity to design an intelligent learning agent with application in AGI. We believe that FNN has a promising potential to transform the way we can compute decision-making and lead to a new generation of AI chips for seamless human-machine interactions (HMI).

Keywords: neural computing, human machine interation, artificial general intelligence, decision processing

Procedia PDF Downloads 125
1236 Fifth Grade Student Skills of Reading Illustrated Drawings in Physical and Chemical Changes Included in Science Textbook

Authors: Sozan H. Omar, Lina L. Al-Rewaili

Abstract:

The current study aimed to measure the fifth Grade student skills of reading illustrates in physical and chemical chapter included in science textbook, as well as identity the tasks the dispersants related to designing these illustrates which obstruct the students to read them properly. The researcher applied the test instrument of open discuss questions to measure the skill of: recognizing, description, interpretation and assessment for a sample of this research consisted of (269) students who read three illustrates, and conduct an interview with sample of them (27) students to recognize the dispersants related to designing of these illustrates. The study results showed that there are poor levels in illustrated drawing reading skills: description, interpretation, and assessment. The most important dispersants which obstruct the students to read theses illustrates properly representing: Art impacts of these illustrates, there are some elements which don’t serve these illustrates. In the light of the above results, the researcher provided some recommendations such as training the students on using the images and illustrates properly in science textbooks, as well as create simple designs of illustrates and they should be free of crowded elements and impacts which don’t serve the illustrates.

Keywords: reading illustrated drawings skills, fifth grade science, physical and chemical changes

Procedia PDF Downloads 374
1235 Comparing the Effectiveness of Social Skills Training and Stress Management on Self Esteem and Agression in First Grade Students of Iranian West High School

Authors: Hossein Nikandam Kermanshah, Babak Samavatian, Akbar Hemmati Sabet, Mohammad Ahmadpanah

Abstract:

This is a quasi-experimental study that has been conducted in order to compare the effectiveness of social skills training and stress management training on self-esteem and aggression in first grade high school students. Forty-five people were selected from research community and were put randomly in there groups of social skills training, stress management training and control ones. Collecting data tools in this study was devise, self-esteem and AGQ aggression questionnaire. Self-esteem and aggression questionnaires has been conducted as the pre-test and post-test. Social skills training and stress management groups participated in eight 1.5 hour session in a week. But control group did not receive any therapy. For descriptive analysis of data, statistical indicators like mean, standard deviation were used, and in inferential statistics level multi variable covariance analysis have been used. The finding result show that group training social skills and stress management is significantly effective on the self-esteem and aggression, there is a meaningful difference between training social skills and stress management on self-esteem that the preference is with group social skills training, in the difference between group social skills training and stress management on aggression, the preference is with group stress management.

Keywords: social skill training, stress management training, self-esteem aggression, psychological sciences

Procedia PDF Downloads 469