Search results for: mechanical behavior of bone
8854 Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement
Authors: Camila Parodi, Viviana Letelier, Giacomo Moriconi
Abstract:
The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material.Keywords: cement replacement, environmental impact, masonry residue, mechanical properties of recycled mortars
Procedia PDF Downloads 3928853 Rheological Assessment of Oil Well Cement Paste Dosed with Cellulose Nanocrystal (CNC)
Authors: Mohammad Reza Dousti, Yaman Boluk, Vivek Bindiganavile
Abstract:
During the past few decades, oil and natural gas consumption have increased significantly. The limited amount of hydrocarbon resources on earth has led to a stronger desire towards efficient drilling, well completion and extracting, with the least time, energy and money wasted. Well cementing is one of the most crucial and important steps in any well completion, to fill the annulus between the casing string and the well bore. However, since it takes place at the end of the drilling process, a satisfying and acceptable job is rarely done. Hence, a large and significant amount of time and energy is then spent in order to do the required corrections or retrofitting the well in some cases. Oil well cement paste needs to be pumped during the cementing process, therefore the rheological and flow behavior of the paste is of great importance. This study examines the use of innovative cellulose-based nanomaterials on the flow properties of the resulting cementitious system. The cementitious paste developed in this research is composed of water, class G oil well cement, bentonite and cellulose nanocrystals (CNC). Bentonite is used as a cross contamination component. Initially, the influence of CNC on the flow and rheological behavior of CNC and bentonite suspensions was assessed. Furthermore, the rheological behavior of oil well cement pastes dosed with CNC was studied using a steady shear parallel-plate rheometer and the results were compared to the rheological behavior of a neat oil well cement paste with no CNC. The parameters assessed were the yield shear stress and the viscosity. Significant changes in yield shear stress and viscosity were observed due to the addition of the CNC. Based on the findings in this study, the addition of a very small dosage of CNC to the oil well cement paste results in a more viscous cement slurry with a higher yield stress, demonstrating a shear thinning behavior.Keywords: cellulose nanocrystal, flow behavior, oil well cement, rheology
Procedia PDF Downloads 2308852 A Geospatial Analysis of Residential Conservation-Attitude, Intention and Behavior
Authors: Prami Sengupta, Randall A. Cantrell, Tracy Johns
Abstract:
A typical US household consumes more energy than households in other countries and is directly responsible for a considerable proportion of the atmospheric concentration of the greenhouse gases. This makes U.S. household a vital target group for energy conservation studies. Positive household behavior is central to residential energy conservation. However, for individuals to conserve energy they must not only know how to conserve energy but be also willing to do so. That is, a positive attitude towards residential conservation and an intention to conserve energy are two of the most important psychological determinants for energy conservation behavior. Most social science studies, to date, have studied the relationships between attitude, intention, and behavior by building upon socio-psychological theories of behavior. However, these frameworks, including the widely used Theory of Planned Behavior and Social Cognitive Theory, lack a spatial component. That is, these studies fail to capture the impact of the geographical locations of homeowners’ residences on their residential energy consumption and conservation practices. Therefore, the purpose of this study is to explore geospatial relationships between homeowners’ residential energy conservation-attitudes, conservation-intentions, and consumption behavior. The study analyzes residential conservation-attitudes and conservation-intentions of homeowners across 63 counties in Florida and compares it with quantifiable measures of residential energy consumption. Empirical findings revealed that the spatial distribution of high and/or low values of homeowners’ mean-score values of conservation-attitudes and conservation-intentions are more spatially clustered than would be expected if the underlying spatial processes were random. On the contrary, the spatial distribution of high and/or low values of households’ carbon footprints was found to be more spatially dispersed than assumed if the underlying spatial process were random. The study also examined the influence of potential spatial variables, such as urban or rural setting and presence of educational institutions and/or extension program, on the conservation-attitudes, intentions, and behaviors of homeowners.Keywords: conservation-attitude, conservation-intention, geospatial analysis, residential energy consumption, spatial autocorrelation
Procedia PDF Downloads 1928851 Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel
Authors: Farha Mizana Shamsudin, Shahidan Radiman, Yusof Abdullah, Nasri Abdul Hamid
Abstract:
Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study.Keywords: hot isostatic pressing, magnetization, microstructure, ODS ferritic steel
Procedia PDF Downloads 3208850 Generation Y in Organizations: Distinctive Characteristics and Behavior at Work of Moroccan YERs
Authors: Fatima Ezzahra Siragi, Omar Benaini
Abstract:
For many years, Generation Y has been at the center of controversies. This topic made the buzz in the Media as well as in scientific literature. Previous research led to contradictory results; some scholars considered this population a wealth for companies, while the others believe it constitutes a young danger in need of proper control. Existing literature has almost studied Generation Y in developed countries; very rare studies were conducted in developing countries. To our knowledge, no published articles have treated Generation Y in Morocco. The purpose of this research is to examine the distinctive characteristics of Generation Y in Morocco as well as their behavior at work. Using quantitative method, the study was conducted on a sample of 250 Moroccan employees that have a high educational level and who belong to Generation Y. Our results have shown high resemblance between Moroccan and Occidental Yers (France, USA, Canada …)Keywords: Behavior in Organizations, Generation Y, Key Characteristics, Moroccan Yers, Motivation
Procedia PDF Downloads 2818849 The Soft and Hard Palate Cleft’s Impact on the Auditory Tube Function
Authors: Fedor Semenov
Abstract:
One of the most widespread facial bones’ malformations – the congenital palatoschisis – significant impact on drainage and ventilation of the middle ear through the incorrect work of soft palate muscles, which results in recurrent middle ear inflammation and subsequently leads to the hearing dysfunction. The purpose of this research is to evaluate the auditory tube function and hearing condition before the operative treatment (uranoplasty) and after 3 and 12 months. 42 patients aged from 6 months to 17 years who had soft and hard palate cleft and B and C type tympanogram were included in that study. The examination includes otoscopy, pure tone audiometry (for patients older than 8 years – 11 patients), tympanometry. According to the otoscopy results all the patients were divided into two groups: those who had a retracted eardrum and those who had a normal one. The results of pure tone audiometry showed that there were six patients with an air-bone gap of more than 10 dB and the five with normal audiograms. According to the results of this research, uranoplasty demonstrated strongly positive effects on the auditory tube function: normalization of eardrum view upon otoscopy was observed in 64% of children with a retracted eardrum three month after surgery and 85 % twelve months. The quantity of patients with A-type of tympanogram improved in 25 children out of 41 in 3 month and in 35 out of 41 in twelve months after operation. While before the operative treatment, six patients older than 8 years had had an air-bone gap of more than 10 dB; only two of them still had it in 12 months, and the others’ audiograms were normal. To sum it up, the uranoplasty showed a significant contribution in the restoration of auditory tube functioning. Some patients had signs of auditory dysfunction even after the operative treatment. That group of children needs further treatment by an otorhinolaryngologist.Keywords: auditory tube dysfunction, palatoschisis, uranoplasy, otitis
Procedia PDF Downloads 78848 Aggressive Behavior Prevention: The Effect of Peace Education and Media Literacy towards Student's Understanding about Aggression
Authors: Dadang Gunawan, I. Dewa Ketut Kertawidana, Lufthi Noorfitriyani
Abstract:
For the last 5 years, there is the never-ending violent act and increased cases regarding aggressive behavior among high school students in Bogor, Indonesia. Those cases caused harm to many people, even death, and lead to the continuation circle of violence. This research was conducted to evaluate the effect of using peace education and media literacy in enhancing student’s understanding about aggression, as an effort to prevent aggressive behavior. In terms of methodology, this research was done by quasi-experiment with one group pretest and post-test design. A number of 38 students who were at risk of aggressive behavior from 3 vocational high school were involved to receive a 10 learning session about peace and media literacy. The aggression questionnaire was used to identify participants, supported by student’s record in school. To collect data, the questionnaire for measuring understanding about aggression has been developed and was used after the validity and reliability of this questionnaire tested. Post-test was carried out after the session ended. Data were analyzed using t-test. The finding result showed that the mean score of student’s understanding of aggression was increased, therefore learning session of peace education and media literacy is significantly effective to enhance student’s understanding of aggression. It also showed a meaningful difference of understanding between male and female student’s whereas female students have a better understanding of aggression.Keywords: aggressive behavior prevention, aggression, media literacy, peace education, peacebuilding
Procedia PDF Downloads 1808847 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study
Authors: Ana Rahma Yuniarti, Ki Moo Lim
Abstract:
Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model
Procedia PDF Downloads 2048846 Relation between Chronic Mechanical Low Back Pain and Hip Rotation
Authors: Mohamed M. Diab, Koura G. Mohamed, A. Balbaa, Radwan Sh. Ahamed
Abstract:
Background: Chronic mechanical low back pain (CMLBP) is the most common complaint of the working-age population. Mechanical low back pain is often a chronic, dull, aching pain of varying intensity that affects the lower spine. In the current proposal the hip rotation-CMLBP relationship is based on that limited hip motion will be compensated by motion in the lumbopelvic region and this increase force translates to the lumbar spine. The purpose of this study was to investigate if there a relationship between chronic mechanical low back pain (CMLBP) and hip medial and lateral rotation (peak torque and Range of motion (ROM) in patients with CMLBP. Methods: Sixty patients with CMLBP diagnosed by an orthopedist participated in the current study after signing a consent form. Their mean of age was (23.76±2.39) years, mean of weight (71.8±12.7) (Kg), mean of height (169.65±7.49) (Cm) and mean of BMI (25.5±3.86) (Kg/m2). Visual Analogue Scale (VAS) was used to assess pain. Fluid Filled Inclinometer was used to measure Hip rotation ROM (medial and lateral). Isokinetic Dynamometer was used to measure peak torque of hip rotators muscles (medial and lateral), concentric peak torque with tow Isokinetic speeds (60ᵒ/sec and 180ᵒ/sec) was selected to measure peak torque. Results: The results of this study demonstrated that there is poor relationship between pain and hip external rotation ROM, also there is poor relation between pain and hip internal rotation ROM. There is poor relation between pain and hip internal rotators peak torque and hip external rotators peak torque in both speeds. Conclusion: Depending on the current study it is not recommended to give an importance to hip rotation in treating Chronic Mechanical Low Back Pain.Keywords: hip rotation ROM, hip rotators strength, low back pain, chronic mechanical
Procedia PDF Downloads 3118845 Behavior Analysis Based on Nine Degrees of Freedom Sensor for Emergency Rescue Evacuation Support System
Authors: Maeng-Hwan Hyun, Dae-Man Do, Young-Bok Choi
Abstract:
Around the world, there are frequent incidents of natural disasters, such as earthquakes, tsunamis, floods, and snowstorms, as well as man made disasters such as fires, arsons, and acts of terror. These diverse and unpredictable adversities have resulted in a number of fatalities and injuries. If disaster occurrence can be assessed quickly and information such as the exact location of the disaster and evacuation routes can be provided, victims can promptly move to safe locations, minimizing losses. This paper proposes a behavior analysis method based on a nine degrees-of-freedom (9-DOF) sensor that is effective for the emergency rescue evacuation support system (ERESS), which is being researched with an objective of providing evacuation support during disasters. Based on experiments performed using the acceleration sensor and the gyroscope sensor in the 9-DOF sensor, data are analyzed for human behavior regarding stationary position, walking, running, and during emergency situation to suggest guidelines for system judgment. Using the results of the experiments performed to determine disaster occurrence, it was confirmed that the proposed method quickly determines whether a disaster has occurred.Keywords: behavior analysis, nine degrees of freedom sensor, emergency rescue, disaster
Procedia PDF Downloads 3048844 The Mechanical Behavior of a Chemically Stabilized Soil
Authors: I Lamri, L Arabet, M. Hidjeb
Abstract:
The direct shear test was used to determine the shear strength parameters C and Ø of a series of samples with different cement content. Samples stabilized with a certain percentage of cement showed a substantial gain in compressive strength and a significant increase in shear strength parameters. C and Ø. The laboratory equipment used in UCS tests consisted of a conventional 102mm diameter sample triaxial loading machine. Beyond 4% cement content a very important increase in shear strength was observed. It can be deduced from a comparative study of shear strength of soil samples with 4%, 7%, and 10% cement with sample containing 2 %, that the sample with a 4% cement content showed 90% increase in shear strength while those with 7% and 10% showed an increase of around 13 and 21 fold.Keywords: cement, compression strength, shear stress, cohesion, angle of internal friction
Procedia PDF Downloads 4888843 Analysis of Behaviors of Single and Group Helical Piles in Sands from Experiment Results
Authors: Jongho Park, Junwon Lee, Byeonghyun Choi, Kicheol Lee, Dongwook Kim
Abstract:
The typically-used oil sand plant foundations are driven pile or drilled shaft. With more strict environmental regulations world widely, it became more important to completely remove the foundation during the stage of plant demolition. However, it is difficult to remove driven piles or drilled shafts that are installed at a deeper and stronger depth to gain more bearing pile capacity. The helical pile can be easily removed after its use and recycled; therefore it is suitable for oil sand plant foundation. This study analyzes the behavior of helical piles in sands. Axial pile load tests were carried out the varying spacing of helix plates (helices), rotation speed and weight of axial loading during pile installation. From the experiments, optimal helix plate spacing, rotation speed, axial loading during installation were determined. In addition, the behavior of helical pile groups was examined varying pile spacing. Finally, the behavior of single helical piles and that of group helical piles were compared.Keywords: oil sand plant, pile load test, helical pile, group helical pile, behavior
Procedia PDF Downloads 1678842 An Examination of Factors Leading to Knowledge-Sharing Behavior of Sri Lankan Bankers
Authors: Eranga N. Somaratna, Pradeep Dharmadasa
Abstract:
In the current competitive environment, the factors leading to organization success are not limited to the investment of capital, labor, and raw material, but in the ability of knowledge innovation from all the members of an organization. However, knowledge on its own cannot provide organizations with its promised benefits unless it is shared, as organizations are increasingly experiencing unsuccessful knowledge sharing efforts. In such a backdrop and due to the dearth of research in this area in the South Asian context, the study set forth to develop an understanding of the factors that influence knowledge-sharing behavior within an organizational framework, using widely accepted social psychology theories. The purpose of the article is to discover the determinants of knowledge-sharing intention and actual knowledge sharing behaviors of bank employees in Sri Lanka using an aggregate model. Knowledge sharing intentions are widely discussed in literature through the application of Ajzen’s Theory of planned behavior (TPB) and Theory of Social Capital (SCT) separately. Both the theories are rich to explain knowledge sharing intention of workers with limitations. The study, therefore, combines the TPB with SCT in developing its conceptual model. Data were collected through a self-administrated paper-based questionnaire of 199 bank managers from 6 public and private banks of Sri Lanka and analyzed the suggested research model using Structural Equation Modelling (SEM). The study supported six of the nine hypotheses, where Attitudes toward Knowledge Sharing Behavior, Perceived Behavioral Control, Trust, Anticipated Reciprocal Relationships and Actual Knowledge Sharing Behavior were supported while Organizational Climate, Sense of Self-Worth and Anticipated Extrinsic Rewards were not, in determining knowledge sharing intentions. Furthermore, the study investigated the effect of demographic factors of bankers (age, gender, position, education, and experiences) to the actual knowledge sharing behavior. However, findings should be confirmed using a larger sample, as well as through cross-sectional studies. The results highlight the need for theoreticians to combined TPB and SCT in understanding knowledge workers’ intentions and actual behavior; and for practitioners to focus on the perceptions and needs of the individual knowledge worker and the need to cultivate a culture of sharing knowledge in the organization for their mutual benefit.Keywords: banks, employees behavior, knowledge management, knowledge sharing
Procedia PDF Downloads 1328841 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites
Authors: B. Yaman, G. Acikbas, N. Calis Acikbas
Abstract:
Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties
Procedia PDF Downloads 1958840 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis
Authors: Mohamed Bendoukha, Mustapha Mosbah
Abstract:
The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy
Procedia PDF Downloads 1858839 Investigating the Physical Properties of Polycaprolactone/Eucomis autumnalis Nanocellulose Composite
Authors: Dolly Selikane, Thandi Gumede
Abstract:
Among the commonly studied organic fillers for polycaprolactone (PCL), cellulose is the most promising. It is available in various particle sizes and sources, providing numerous options for finding a suitable match for PCL matrices. In this study, cellulose was extracted from the leaves of E. autumnalis to create a PCL/nanocellulose composite through melt blending. The prepared nanocellulose was blended with PCL at a weight ratio of 97/3, and the resulting composite was characterized by its thermal and mechanical properties. The results showed that the addition of nanocellulose to PCL improved its mechanical properties, with a maximum increase of 29% in tensile strength and 31% in Young's modulus. The SEM analysis confirmed the successful blending of PCL and nanocellulose. The findings of this study suggest that the nanocellulose from Eucomis autumnalis plant has the potential to improve the mechanical properties of PCL and could be used in biomedical and packaging applications.Keywords: polycaprolactone, medicinal plants, Eucomis autumnalis, nanocellulose, composite
Procedia PDF Downloads 1248838 Development of Winter Wears Having Improved Thermal Comfort and Mechanical Properties
Authors: Samen Boota, Arslan Ishaq
Abstract:
More than 4 billion tons of chicken feathers are wasted yearly worldwide which is not environmental friendly. In order to make use of these 4 billion tons of feathers it is necessary to incorporate them to the textile materials. The main objective of this study is to develop the winter wears with improved thermal comfort and mechanical properties. Chick feathers were blended with cotton fibers to spin them into yarn, weave them dye them using reactive dyes. The developed fabric was tested for thermal comfort, tensile and tears strength. The results were also compared with pure cotton fabric of similar GSM. It is observed from the results that chicken feathers and cotton blended fabric was improved thermal comfort and mechanical properties.Keywords: Alambeta, compatibilizing, permeability, sliver
Procedia PDF Downloads 3418837 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures
Authors: Olesia Mikhailova, Pavel Rovnaník
Abstract:
In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.Keywords: geopolymer, mechanical properties, metakaolin, microstructure, polymer admixtures, porosity
Procedia PDF Downloads 2368836 Restoring Total Form and Function in Patients with Lower Limb Bony Defects Utilizing Patient-Specific Fused Deposition Modelling- A Neoteric Multidisciplinary Reconstructive Approach
Authors: Divya SY. Ang, Mark B. Tan, Nicholas EM. Yeo, Siti RB. Sudirman, Khong Yik Chew
Abstract:
Introduction: The importance of the amalgamation of technological and engineering advances with surgical principles of reconstruction cannot be overemphasized. With earlier detection of cancer, consequences of high-speed living and neglect, like traumatic injuries and infection, resulting in increasingly younger patients with bone defects. This may result in malformations and suboptimal function that is more noticeable and palpable in the younger, active demographic. Our team proposes a technique that encapsulates a mesh of multidisciplinary effort, tissue engineering and reconstructive principles. Methods/Materials: Our patient was a young competitive footballer in his early 30s who was diagnosed with submandibular adenoid cystic carcinoma with bony involvement. He was thus counselled for a right hemi mandibulectomy, the floor of mouth resection, right selective neck dissection, tracheostomy, and free fibular flap reconstruction of his mandible and required post-operative radiotherapy. Being young and in his prime sportsman years, he was unable to accept the morbidities associated with using his fibula to reconstruct his mandible despite it being the gold standard reconstructive option. The fibula is an ideal vascularized bone flap because it’s reliable and easily shaped with relatively minimal impact on functional outcomes. The fibula contributes to 30% of weightbearing and is the attachment for the lateral compartment muscles; it is stronger in footballers concerning lateral bending. When harvesting the fibula, the distal 6-8cm and up to 10% of the total length is preserved to maintain the ankle’s stability, thus, minimizing the impact on daily activities. There are studies that have noted gait variability post-operatively. Therefore, returning to a premorbid competitive level may be doubtful. To improve his functional outcomes, the decision was made to try and restore the fibula's form and function. Using the concept of Fused Deposition Modelling (FDM), our team comprising of Plastics, Otolaryngology, Orthopedics and Radiology, worked with Osteopore to design a 3D bioresorbable implant to regenerate the fibula defect (14.5cm). Bone marrow was harvested via reaming the contralateral hip prior to the wide resection. 30mls of his blood was obtained for extracting platelet rich plasma. These were packed into the Osteopore 3D-printed bone scaffold. This was then secured into the fibula defect with titanium plates and screws. The flexor hallucis longus and soleus were anchored along the construct and intraosseous membrane, done in a single setting. Results: He was reviewed closely as an outpatient over 10 months post operatively. He reported no discernable loss or difference in ankle function. He is satisfied and back in training and our team has video and photographs that substantiate his progress. Conclusion: FDM allows regeneration of long bone defects. However, we aimed to also restore his eversion and inversion that is imperative for footballers and hence reattached his previously dissected muscles along the length of the Osteopore implant. We believe that the reattachment of the muscle stabilizes not only the construct but allows optimum muscle tensioning when moving his ankle. This is a simple but effective technique in restoring complete function and form in a young patient whose minute muscle control is imperative to life.Keywords: fused deposition modelling, functional reconstruction, lower limb bony defects, regenerative surgery, 3D printing, tissue engineering
Procedia PDF Downloads 738835 Neuron Point-of-Care Stem Cell Therapy: Intrathecal Transplant of Autologous Bone Marrow-Derived Stem Cells in Patients with Cerebral Palsy
Authors: F. Ruiz-Navarro, M. Matzner, G. Kobinia
Abstract:
Background: Cerebral palsy (CP) encompasses the largest group of childhood movement disorders, the patterns and severity varies widely. Today, the management focuses only on a rehabilitation therapy that tries to secure the functions remained and prevents complications. However the treatments are not aimed to cure the disease. Stem cells (SCs) transplant via intrathecal is a new approach to the disease. Method: Our aim was to performed a pilot study under the condition of unproven treatment on clinical practice to assessed the safety and efficacy of Neuron Point-of-care Stem cell Therapy (N-POCST), an ambulatory procedure of autologous bone marrow derived SCs (BM-SCs) harvested from the posterior superior iliac crest undergo an on-site cell separation for intrathecal infusion via lumbar puncture. Results: 82 patients were treated in a period of 28 months, with a follow-up after 6 months. They had a mean age of 6,2 years old and male predominance (65,9%). Our preliminary results show that: A. No patient had any major side effects, B. Only 20% presented mild headache due to LP, C. 53% of the patients had an improvement in spasticity, D. 61% improved the coordination abilities, 23% improved the motor function, 15% improved the speech, 23% reduced the number of convulsive events with the same doses or less doses of anti-convulsive medication and 94% of the patients report a subjective general improvement. Conclusions: These results support previous worldwide publications that described the safety and effectiveness of autologous BM-SCs transplant for patients wit CP.Keywords: autologous transplant, cerebral palsy, point of care, childhood movement disorders
Procedia PDF Downloads 4148834 Drastic Increase of Wave Dissipation within Metastructures Having Negative Stiffness Inclusions
Authors: D. Chronopoulos, I. Antoniadis, V. Spitas, D. Koulocheris, V. Polenta
Abstract:
A concept of a simple linear oscillator, incorporating a negative stiffness element is demonstrated to exhibit extraordinary damping properties. This oscillator shares the same overall (static) stiffness, the same mass and the same damping element with a reference classical linear SDOF oscillator. However, it differs from the original SDOF oscillator by appropriately redistributing the component spring stiffness elements and by re-allocating the damping element. Despite the fact that the proposed oscillator incorporates a negative stiffness element, it is designed to be both statically and dynamically stable. Once such an oscillator is optimally designed, it is shown to exhibit an extraordinary apparent damping ratio, which is even several orders of magnitude higher than that of the original SDOF system, especially in cases where the original damping of the SDOF system is low. This damping behavior is not a result of a novel additional extraordinary energy dissipation mechanism, but a result of the phase difference between the positive and the negative stiffness elastic forces, which is in turn a consequence of the proper re-distribution of the stiffness and the damper elements. This fact ensures that an adequate level of elastic forces exists throughout the entire frequency range, able to counteract the inertial and the excitation forces. Next, Acoustic or Phononic Meta-materials are considered, in which one atom is replaced by the concept of the above simple linear oscillator. The results indicate that not only the damping of the meta-material verifies and exceeds the one expected from the so-called "meta-damping" behavior, but also that the band gap of the meta-material can be significantly increased.Keywords: wave propagation, periodic structures, wave damping, mechanical engineering
Procedia PDF Downloads 3578833 Advances in Axonal Biomechanics and Mechanobiology: A Nanotechnology-Based Approach to the Study of Mechanotransduction of Axonal Growth
Authors: Alessandro Falconieri, Sara De Vincentiis, Vittoria Raffa
Abstract:
Mechanical force regulates axonal growth, elongation and maturation processes. This force is opening new frontiers in the field, contributing to a general understanding of the mechanisms of axon growth that, in the past, was thought to be governed exclusively by the growth cone and its ability to influence axonal growth in response to chemical signals. A method recently developed in our laboratory allows, through the labeling of neurons with magnetic nanoparticles (MNPs) and the use of permanent magnets, to apply extremely low mechanical forces, similar to those generated endogenously by the growth cone or by the increase of body mass during the organism growth. We found that these extremely low forces strongly enhance the spontaneous axonal elongation rate as well as neuronal sprouting. Data obtained don’t exclude that local phenomena, such as local transport and local translation, may be involved. These new advances could shed new light on what happens when the cell is subjected to external mechanical forces, opening new interesting scenarios in the field of mechanobiology.Keywords: axon, external mechanical forces, magnetic nanoparticles, mechanotransduction
Procedia PDF Downloads 1228832 Experimental Study of Different Types of Concrete in Uniaxial Compression Test
Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh
Abstract:
Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.Keywords: polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain
Procedia PDF Downloads 3948831 Effects of Bone Marrow Derived Mesenchymal Stem Cells (MSC) in Acute Respiratory Distress Syndrome (ARDS) Lung Remodeling
Authors: Diana Islam, Juan Fang, Vito Fanelli, Bing Han, Julie Khang, Jianfeng Wu, Arthur S. Slutsky, Haibo Zhang
Abstract:
Introduction: MSC delivery in preclinical models of ARDS has demonstrated significant improvements in lung function and recovery from acute injury. However, the role of MSC delivery in ARDS associated pulmonary fibrosis is not well understood. Some animal studies using bleomycin, asbestos, and silica-induced pulmonary fibrosis show that MSC delivery can suppress fibrosis. While other animal studies using radiation induced pulmonary fibrosis, liver, and kidney fibrosis models show that MSC delivery can contribute to fibrosis. Hypothesis: The beneficial and deleterious effects of MSC in ARDS are modulated by the lung microenvironment at the time of MSC delivery. Methods: To induce ARDS a two-hit mouse model of Hydrochloric acid (HCl) aspiration (day 0) and mechanical ventilation (MV) (day 2) was used. HCl and injurious MV generated fibrosis within 14-28 days. 0.5x106 mouse MSCs were delivered (via both intratracheal and intravenous routes) either in the active inflammatory phase (day 2) or during the remodeling phase (day 14) of ARDS (mouse fibroblasts or PBS used as a control). Lung injury accessed using inflammation score and elastance measurement. Pulmonary fibrosis was accessed using histological score, tissue collagen level, and collagen expression. In addition alveolar epithelial (E) and mesenchymal (M) marker expression profile was also measured. All measurements were taken at day 2, 14, and 28. Results: MSC delivery 2 days after HCl exacerbated lung injury and fibrosis compared to HCl alone, while the day 14 delivery showed protective effects. However in the absence of HCl, MSC significantly reduced the injurious MV-induced fibrosis. HCl injury suppressed E markers and up-regulated M markers. MSC delivery 2 days after HCl further amplified M marker expression, indicating their role in myofibroblast proliferation/activation. While with 14-day delivery E marker up-regulation was observed indicating their role in epithelial restoration. Conclusions: Early MSC delivery can be protective of injurious MV. Late MSC delivery during repair phase may also aid in recovery. However, early MSC delivery during the exudative inflammatory phase of HCl-induced ARDS can result in pro-fibrotic profiles. It is critical to understand the interaction between MSC and the lung microenvironment before MSC-based therapies are utilized for ARDS.Keywords: acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC), hydrochloric acid (HCl), mechanical ventilation (MV)
Procedia PDF Downloads 6708830 The University of California at Los Angeles-Young Autism Project: A Systematic Review of Replication Studies
Authors: Michael Nicolosi, Karola Dillenburger
Abstract:
The University of California at Los Angeles-Young Autism Project (UCLA-YAP) provides one of the best-known and most researched comprehensive applied behavior analysis-based intervention models for young children on the autism spectrum. This paper reports a systematic literature review of replication studies over more than 30 years. The data show that the relatively high-intensity UCLA-YAP model can be greatly beneficial for children on the autism spectrum, particularly with regard to their cognitive functioning and adaptive behavior. This review concludes that, while more research is always welcome, the impact of the UCLA-YAP model on autism interventions is justified by more than 30 years of outcome evidence.Keywords: ABA, applied behavior analysis, autism, California at Los Angeles Young Autism project, intervention, Lovaas, UCLA-YAP
Procedia PDF Downloads 1038829 Environmental Effect on Corrosion Fatigue Behaviors of Steam Generator Forging in Simulated Pressurized Water Reactor Environment
Authors: Yakui Bai, Chen Sun, Ke Wang
Abstract:
An experimental investigation of environmental effect on fatigue behavior in SA508 Gr.3 Cl.2 Steam Generator Forging CAP1400 nuclear power plant has been carried out. In order to simulate actual loading condition, a range of strain amplitude was applied in different low cycle fatigue (LCF) tests. The current American Society of Mechanical Engineers (ASME) design fatigue code does not take full account of the interactions of environmental, loading, and material's factors. A range of strain amplitude was applied in different low cycle fatigue (LCF) tests at a strain rate of 0.01%s⁻¹. A design fatigue model was constructed by taking environmentally assisted fatigue effects into account, and the corresponding design curves were given for the convenience of engineering applications. The corrosion fatigue experiment was performed in a strain control mode in 320℃ borated and lithiated water environment to evaluate the effects of a mixed environment on fatigue life. Stress corrosion cracking (SCC) in steam generator large forging in primary water of pressurized water reactor was also observed. In addition, it is found that the CF life of SA508 Gr.3 Cl.2 decreases with increasing temperature in the water environment. The relationship between the reciprocal of temperature and the logarithm of fatigue life was found to be linear. Through experiments and subsequent analysis, the mechanisms of reduced low cycle fatigue life have been investigated for steam generator forging.Keywords: failure behavior, low alloy steel, steam generator forging, stress corrosion cracking
Procedia PDF Downloads 1258828 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer
Authors: K. Benyounes, A. Benmounah
Abstract:
Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.Keywords: rheology, cement grout, bentonite, superplasticizer, viscosity, yield stress
Procedia PDF Downloads 3628827 The Fantasy of the Media and the Sexual World of Adolescents: The Relationship between Viewing Sexual Content on Television and Sexual Behaviour of Adolescents
Authors: Ifeanyi Adigwe
Abstract:
The influence of television on adolescents is prevalent and widespread because television is a powerful sex educator for adolescents. This study examined the relationship between viewing sexual content on television and sexual behaviour of adolescents in public senior secondary schools in Lagos, Nigeria. The study employed a survey research design with a structured questionnaire as instrument. The multi-stage sampling technique was adopted. Firstly, purposive sampling was adopted in selecting 3 educational districts namely: Agege, Maryland, and Agboju. These educational districts were chosen for convenience and its wide coverage area of public senior secondary schools in Lagos State. Secondly, the researcher adopted systematic sampling to select the schools. The schools were listed in alphabetical order in each district and every 10th school were selected, yielding 13 schools altogether. A total of 501 copies of questionnaire were administered to the students and a total 491 copies of the questionnaire were retrieved. Only 453 copies of the questionnaire met the inclusion criteria and were used for analysis. Data were analyzed using descriptive statistics, Pearson Correlation, Principal components analysis, and regression analysis. Results of correlation analysis showed a positive and significant relationship between adolescent sexual belief and their preference for sexual content in television (r =0.117, N =453, p=0.13), viewing sexual content on television and adolescent sexual behavior, (r =-0.112, N =453, p<0.05), adolescent television preference and their preference for sexual content in television (r =0.328, N =453, p<0.05), adolescent television preference and adolescent’s sexual behavior (r=0.093, N =453, p<0.05). However, a negative but significant relationship exists between adolescent’s sexual knowledge and their sexual behavior (r=-122, N=453, p=0.0009). Pearson’s correlation between adolescents’ sexual knowledge and sexual behavior shows that there is a positive significant but strong relationship between adolescent’s sexual knowledge and their sexual behavior (r=0.967, N=453, p<0.05). The results also show that adolescent’s preference for sexual content in television informs them about their sexuality, development and sexual health. The descriptive and inferential analysis of data revealed that the interaction among adolescent sexual belief, knowledge and adolescents’ preference of sexual in television and its resultant effect on adolescent sexual behavior is apparent because sexual belief and norms about sex of an adolescent can induce his television preference of sexual content on television. The study concludes that exposure to sexual content in television can impact on adolescent sexual behaviour. There is no doubt that the actual outcome of television viewing and adolescent sexual behavior remains controversial because adolescent sexual behavior is multifaceted and multi-dimensional. Since behavior is learned overtime, the frequency of exposure and nature of sexual content viewed overtime induces and hastens sexual activity.Keywords: adolescent sexual behavior, Nigeria, sexual belief, sexual content, sexual knowledge, television preference
Procedia PDF Downloads 3928826 Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates
Authors: Jefri Draup, Antoine Ambard, Chi-Toan Nguyen
Abstract:
Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent.Keywords: accident, fuel, modelling, zirconium
Procedia PDF Downloads 1428825 Structure and Mechanics Patterns in the Assembly of Type V Intermediate-Filament Protein-Based Fibers
Authors: Mark Bezner, Shani Deri, Tom Trigano, Kfir Ben-Harush
Abstract:
Intermediate filament (IF) proteins-based fibers are among the toughest fibers in nature, as was shown by native hagfish slime threads and by synthetic fibers that are based on type V IF-proteins, the nuclear lamins. It is assumed that their mechanical performance stems from two major factors: (1) the transition from elastic -helices to stiff-sheets during tensile load; and (2) the specific organization of the coiled-coil proteins into a hierarchical network of nano-filaments. Here, we investigated the interrelationship between these two factors by using wet-spun fibers based on C. elegans (Ce) lamin. We found that Ce-lamin fibers, whether assembled in aqueous or alcoholic solutions, had the same nonlinear mechanical behavior, with the elastic region ending at ~5%. The pattern of the transition was, however, different: the ratio between -helices and -sheets/random coils was relatively constant until a 20% strain for fibers assembled in an aqueous solution, whereas for fibers assembled in 70% ethanol, the transition ended at a 6% strain. This structural phenomenon in alcoholic solution probably occurred through the transition between compacted and extended conformation of the random coil, and not between -helix and -sheets, as cycle analyses had suggested. The different transition pattern can also be explained by the different higher order organization of Ce-lamins in aqueous or alcoholic solutions, as demonstrated by introducing a point mutation in conserved residue in Ce-lamin gene that alter the structure of the Ce-lamins’ nano-fibrils. In addition, biomimicking the layered structure of silk and hair fibers by coating the Ce-lamin fiber with a hydrophobic layer enhanced fiber toughness and lead to a reversible transition between -helix and the extended conformation. This work suggests that different hierarchical structures, which are formed by specific assembly conditions, lead to diverse secondary structure transitions patterns, which in turn affect the fibers’ mechanical properties.Keywords: protein-based fibers, intermediate filaments (IF) assembly, toughness, structure-property relationships
Procedia PDF Downloads 110