Search results for: soil moisture balance
3997 Long-Term Follow-Up of Dynamic Balance, Pain and Functional Performance in Cruciate Retaining, Posterior Stabilized Total Knee Arthroplasty
Authors: Ahmed R. Z. Baghdadi, Mona H. Gamal Eldein
Abstract:
Background: With the perceived pain and poor function experienced following knee arthroplasty, patients usually feel unsatisfied. Yet, a controversy still persists on the appropriate operative technique that doesn’t affect proprioception much. Purpose: This study compared the effects of Cruciate Retaining (CR) and Posterior Stabilized (PS) total knee arthroplasty (TKA on dynamic balance, pain and functional performance following rehabilitation. Methods: Thirty patients with CRTKA (group I), thirty with PSTKA (group II) and fifteen indicated for arthroplasty but weren’t operated on yet (group III) participated in the study. The mean age was 54.53±3.44, 55.13±3.48 and 55.33±2.32 years and BMI 35.7±3.03, 35.7±1.99 and 35.73±1.03 kg/m2 for group I, II, and III respectively. The Berg Balance Scale (BBS), WOMAC pain subscale and Timed-Up-and-Go (TUG) and Stair-Climbing (SC) tests were used for assessment. Assessments were conducted four weeks pre- and post-operatively, three, six and twelve months post-operatively with the control group being assessed at the same time intervals. The post-operative rehabilitation involved hospitalization (1st week), home-based (2nd-4th weeks), and outpatient clinic (5th-12th weeks) programs, follow-up to all groups for twelve months. Results: The Mixed design MANOVA revealed that group I had significantly lower pain scores and SC time compared with group II three, six and twelve months post-operatively. Moreover, the BBS scores increased significantly and the pain scores and TUG and SC time decreased significantly six months post-operatively compared with four weeks pre- and post-operatively and three months post-operatively in group I and II with the opposite being true four weeks post-operatively. But no significant differences in BBS scores, pain scores and TUG and SC time between six and twelve months post-operatively in group I and II. Interpretation/Conclusion: CRTKA is preferable to PSTKA, possibly due to the preserved human proprioceptors in the un-excised PCL.Keywords: dynamic balance, functional performance, knee arthroplasty, long-term
Procedia PDF Downloads 4123996 Use of Treated Municipal Wastewater on Artichoke Crop
Authors: G. Disciglio, G. Gatta, A. Libutti, A. Tarantino, L. Frabboni, E. Tarantino
Abstract:
Results of a field study carried out at Trinitapoli (Puglia region, southern Italy) on the irrigation of an artichoke crop with three types of water (secondary-treated wastewater, SW; tertiary-treated wastewater, TW; and freshwater, FW) are reported. Physical, chemical and microbiological analyses were performed on the irrigation water, and on soil and yield samples. The levels of most of the chemical parameters, such as electrical conductivity, total suspended solids, Na+, Ca2+, Mg+2, K+, sodium adsorption ratio, chemical oxygen demand, biological oxygen demand over 5 days, NO3 –N, total N, CO32, HCO3, phenols and chlorides of the applied irrigation water were significantly higher in SW compared to GW and TW. No differences were found for Mg2+, PO4-P, K+ only between SW and TW. Although the chemical parameters of the three irrigation water sources were different, few effects on the soil were observed. Even though monitoring of Escherichia coli showed high SW levels, which were above the limits allowed under Italian law (DM 152/2006), contamination of the soil and the marketable yield were never observed. Moreover, no Salmonella spp. were detected in these irrigation waters; consequently, they were absent in the plants. Finally, the data on the quantitative-qualitative parameters of the artichoke yield with the various treatments show no significant differences between the three irrigation water sources. Therefore, if adequately treated, municipal wastewater can be used for irrigation and represents a sound alternative to conventional water resources.Keywords: artichoke, soil chemical characteristics, fecal indicators, treated municipal wastewater, water recycling
Procedia PDF Downloads 4273995 Balancing and Synchronization Control of a Two Wheel Inverted Pendulum Vehicle
Authors: Shiuh-Jer Huang, Shin-Ham Lee, Sheam-Chyun Lin
Abstract:
A two wheel inverted pendulum (TWIP) vehicle is built with two hub DC motors for motion control evaluation. Arduino Nano micro-processor is chosen as the control kernel for this electric test plant. Accelerometer and gyroscope sensors are built in to measure the tilt angle and angular velocity of the inverted pendulum vehicle. Since the TWIP has significantly hub motor dead zone and nonlinear system dynamics characteristics, the vehicle system is difficult to control by traditional model based controller. The intelligent model-free fuzzy sliding mode controller (FSMC) was employed as the main control algorithm. Then, intelligent controllers are designed for TWIP balance control, and two wheels synchronization control purposes.Keywords: balance control, synchronization control, two-wheel inverted pendulum, TWIP
Procedia PDF Downloads 3983994 Toxic Metal and Radiological Risk Assessment of Soil, Water and Vegetables around a Gold Mine Turned Residential Area in Mokuro Area of Ile-Ife, Osun State Nigeria: An Implications for Human Health
Authors: Grace O. Akinlade, Danjuma D. Maza, Oluwakemi O. Olawolu, Delight O. Babalola, John A. O. Oyekunle, Joshua O. Ojo
Abstract:
The Mokuro area of Ile-Ife, South West Nigeria, was well known for gold mining in the past (about twenty years ago). However, the place has since been reclaimed and converted to residential area without any environmental risk assessment of the impact of the mining tailings on the environment. Soil, water, and plant samples were collected from 4 different locations around the mine-turned-residential area. Soil samples were pulverized and sieved into finer particles, while the plant samples were dried and pulverized. All the samples were digested and analyzed for As, Pb, Cd, and Zn using atomic absorption spectroscopy (AAS). From the analysis results, the hazard index (HI) was then calculated for the metals. The soil and plant samples were air dried and pulverized, then weighed, after which the samples were packed into special and properly sealed containers to prevent radon gas leakage. After the sealing, the samples were kept for 28 days to attain secular equilibrium. The concentrations of 40K, 238U, and 232Th in the samples were measured using a cesium iodide (CsI) spectrometer and URSA software. The AAS analysis showed that As, Pb, Cd (Toxic metals), and Zn (essential trace metals) are in concentrations lower than permissible limits in plants and soil samples, while the water samples had concentrations higher than permissible limits. The calculated health indices (HI) show that HI for water is >1 and that of plants and soil is <1. Gamma spectrometry result shows high levels of activity concentrations above the recommended limits for all the soil and plant samples collected from the area. Only the water samples have activity concentrations below the recommended limit. Consequently, the absorbed dose, annual effective dose, and excess lifetime cancer risk are all above the recommended safe limit for all the samples except for water samples. In conclusion, all the samples collected from the area are either contaminated with toxic metals or they pose radiological hazards to the consumers. Further detailed study is therefore recommended in order to be able to advise the residents appropriately.Keywords: toxic metals, gamma spectrometry, Ile-Ife, radiological hazards, gold mining
Procedia PDF Downloads 583993 Optimizing Cellulase Production from Municipal Solid Wastes (MSW) Following a Solid State Fermentation (SSF) by Trichoderma reesei and Aspergillus niger
Authors: Jwan J. Abdullah, Greetham Darren, Gregory A, Tucker, Chenyu Du
Abstract:
Solid-state fermentation (SSF) is an alternative to liquid fermentations for the production of commercially important products such as antibiotics, single cell proteins, enzymes, organic acids, or biofuels from lignocellulosic material. This paper describes the optimisation of SSF on municipal solid waste (MSW) for the production of cellulase enzyme. Production of cellulase enzymes was optimised by Trichoderma reesei or Aspergillus niger for temperature, moisture content, inoculation, and period of incubation. Also, presence of minerals, and alternative carbon and nitrogen sources. Optimisation revealed that production of cellulolytic enzymes was optimal when using Trichoderma spp at 30°C with an incubation period of 168 hours with a 60% moisture content. Crude enzymes produced from MSW, by Trichoderma were evaluated for the saccharification of MSW and compared with activity of a commercially available enzyme, results demonstrated that MSW can be used as inexpensive lignocellulosic material for the production of cellulase enzymes using Trichoderma reesei.Keywords: SSF, enzyme hydrolysis, municipal solid waste (MSW), optimizing conditions, enzyme hydrolysis
Procedia PDF Downloads 5583992 Economic of Chickpea Cultivars as Influenced by Sowing Time and Seed Rate
Authors: Indu Bala Sethi, Meena Sewhag, Rakesh Kumar, Parveen Kumar
Abstract:
Field experiment was conducted at Pulse Research Area of CCS Haryana Agricultural University, Hisar during rabi 2012-13 to study the economics of chickpea cultivars as influenced by sowing time and seed rate on sandy loam soils under irrigated conditions. The factorial experiment consisting of 24 treatment combinations with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 was laid out in split plot design with three replications. The crop was sown with common row spacing of 30 cm as per the dates of sowing. The fertilizer was applied in the form of di- ammonium phosphate. The soil of the experimental site was deep sandy loam having pH of 7.9, EC of 0.13 dS/m and low in organic carbon (0.34%), low in available N status (193.36 kg ha-1), medium in available P2O5 (32.18 kg ha-1) and high in available K2O (249.67 kg ha-1). The crop was irrigated as and when required so as to maintain adequate soil moisture in the root zone The crop was sprayed with monocrotophos (1.25 l/ha) at initiation of flowering and at pod filling stage to protect the crop from pod borer attack. The yield was measured at the time of harvest. The cost of field preparation, sowing of seeds, thinning, weeding, plant protection, harvesting and cleaning contributed to fixed cost. The experiment was laid out in a split plot design with two sowing time (1st fortnight of November and 1st fortnight of December.) and four cultivars (H09-23, H08-18, C-235 and HC-1) kept in main plots while three seed rates viz. 40 kg ha-1, 50 kg ha-1 and 60 kg ha-1 were kept in subplots and replicated thrice. Results revealed that 1st fortnight of November sowing recorded significantly higher gross (Rs.1, 01,254 ha-1), net returns (Rs. 68,504 ha-1) and BC (3.09) ratio as compared to delayed crop of chickpea. Highest gross (Rs.91826 ha-1), net returns (Rs. 59076ha-1) and BC ratio (2.81) was recorded with H08-18. Higher value of cost of cultivation of chickpea was observed in higher seed rate than the lower ones. However no significant variation in net and gross returns was observed due to seed rates. Highest BC (2.72) ratio was recorded with 50 kg ha-1 which differs significantly from 60 kg ha-1 but was at par with 40 kg ha-1. This is because of higher grain yield obtained with 50 kg ha-1 seed rate. Net profit for farmers growing chickpea with seed rate of 50 kg ha-1 was higher than the farmers growing chickpea with seed rate of 40 and 60 kg ha.Keywords: chickpea, cultivars, seed rate, sowing time
Procedia PDF Downloads 4453991 A New Binder Mineral for Cement Stabilized Road Pavements Soils
Authors: Aydın Kavak, Özkan Coruk, Adnan Aydıner
Abstract:
Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide enough support required to achieve acceptable performance under traffic loading and environmental demands. NovoCrete® is a powder binder-mineral for cement stabilized road pavements soils. NovoCrete® combined with Portland cement at optimum water content increases the crystallize formations during the hydration process, resulting in higher strengths, neutralizes pH levels, and provides water impermeability. These changes in soil properties may lead to transforming existing unsuitable in-situ materials into suitable fill materials. The main features of NovoCrete® are: They are applicable to all types of soil, reduce premature cracking and improve soil properties, creating base and subbase course layers with high bearing capacity by reducing hazardous materials. It can be used also for stabilization of recyclable aggregates and old asphalt pavement aggregate, etc. There are many applications in Germany, Turkey, India etc. In this paper, a few field application in Turkey will be discussed. In the road construction works, this binder material is used for cement stabilization works. In the applications 120-180 kg cement is used for 1 m3 of soil with a 2 % of binder NovoCrete® material for the stabilization. The results of a plate loading test in a road construction site show 1 mm deformation which is very small under 7 kg/cm2 loading. The modulus of subgrade reaction increase from 611 MN/m3 to 3673 MN/m3.The soaked CBR values for stabilized soils increase from 10-20 % to 150-200 %. According to these data weak subgrade soil can be used as a base or sub base after the modification. The potential reduction in the need for quarried materials will help conserve natural resources. The use of on-site or nearby materials in fills, will significantly reduce transportation costs and provide both economic and environmental benefits.Keywords: soil, stabilization, cement, binder, Novocrete, additive
Procedia PDF Downloads 2233990 Causes Analysis of Vacuum Consolidation Failure to Soft Foundation Filled by Newly Dredged Mud
Authors: Bao Shu-Feng, Lou Yan, Dong Zhi-Liang, Mo Hai-Hong, Chen Ping-Shan
Abstract:
For soft foundation filled by newly dredged mud, after improved by Vacuum Preloading Technology (VPT), the soil strength was increased only a little, the effective improved depth was small, and the ground bearing capacity is still low. To analyze the causes in depth, it was conducted in laboratory of several comparative single well model experiments of VPT. It was concluded: (1) it mainly caused serious clogging problem and poor drainage performance in vertical drains of high content of fine soil particles and strong hydrophilic minerals in dredged mud, too fast loading rate at the early stage of vacuum preloading (namely rapidly reaching-80kPa) and too small characteristic opening size of the filter of the existed vertical drains; (2) it commonly reduced the drainage efficiency of drainage system, in turn weaken vacuum pressure in soils and soil improvement effect of the greater partial loss and friction loss of vacuum pressure caused by larger curvature of vertical drains and larger transfer resistance of vacuum pressure in horizontal drain.Keywords: newly dredged mud, single well model experiments of vacuum preloading technology, poor drainage performance of vertical drains, poor soil improvement effect, causes analysis
Procedia PDF Downloads 2893989 Combating Money Laundering and Inroads into Banking Secrecy: Evidence from Malaysia
Authors: Aspalella A. Rahman
Abstract:
It is widely accepted that the investigation of money laundering and the tracing and confiscation of criminal proceeds have intruded into the principles of banking secrecy. The inroads into banking secrecy present serious threats to democracy, and more importantly, to the traditional banker-customer relationship. It is generally accepted that the fight against money laundering is in conflict with the secrecy rule. Banking secrecy is a customer privilege whereas combating crime is critical for public safety and security. Indeed, achieving a proper balance is a desirable goal. But how we go about achieving such a balance is a question encountered by many law enforcement authorities. Therefore, this paper examines the effect of disclosure under the Malaysian anti-money laundering laws on the traditional duty of banks to keep the customer’s information confidential. It also analyzes whether the Malaysian laws provide a right balance between a duty to keep customer’s information secret and a duty to disclose such information in the fight against money laundering. On closer inspection, it is submitted that the Malaysian laws provide sufficient safeguards to ensure that the disclosure of customer’s information is carried out in a manner that is not prejudicial to the interest of legitimate customers. This is a positive approach that could protect the innocent customers from being mistreated by the law. Ultimately, it can be said that the growing threat of global money laundering and terrorism makes the overriding of banking secrecy justified because without a flow of information from the banks, the effective prevention of the menace is not possible.Keywords: anti-money laundering law, banker-customer relationship, banking secrecy, confidentiality, money laundering
Procedia PDF Downloads 4293988 Numerical Simulation of Large-Scale Landslide-Generated Impulse Waves With a Soil‒Water Coupling Smooth Particle Hydrodynamics Model
Authors: Can Huang, Xiaoliang Wang, Qingquan Liu
Abstract:
Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslide-generated water waves, is simulated to demonstrate the accuracy of this model. Then, the Huangtian LGIW, a real large-scale LGIW problem is modeled to reproduce the entire disaster chain, including landslide dynamics, fluid‒solid interaction, and surge wave generation. The convergence analysis shows that a particle distance of 5.0 m can provide a converged landslide deposit and surge wave for this example. Numerical simulation results are in good agreement with the limited field survey data. The application example of the Huangtian LGIW provides a typical reference for large-scale LGIW assessments, which can provide reliable information on landslide dynamics, interface coupling behavior, and surge wave characteristics.Keywords: soil‒water coupling, landslide-generated impulse wave, large-scale, SPH
Procedia PDF Downloads 643987 Evaluation of Critical State Behavior of Granular Soil in Confined Compression Tests
Authors: Rabia Chaudhry, Andrew Dawson
Abstract:
Identification of steady/critical state of coarse granular soil is challenging at conventional pressures. This study examines the drained and undrained triaxial tests for large strains on loose to dense, uniformly graded, Leighton Buzzard Fraction A sand. The triaxial tests are conducted under controlled test conditions. The comparison of soil behavior on shear strength characteristics at different effective stresses has been studied at the medium to large strains levels and the uniqueness of the critical state was discussed. The test results showed that there were two steady/critical state lines for drained and undrained conditions at confining pressures less than 1000 kPa. A critical state friction angle is not constant and the overall scatter in the steady/critical state line for the tested sand is ±0.01 in terms of void ratio at stress levels less than 1000 kPa.Keywords: critical state, stress strain behavior, fabric/structure, triaxial tests
Procedia PDF Downloads 4133986 Altering the Solid Phase Speciation of Arsenic in Paddy Soil: An Approach to Reduce Rice Grain Arsenic Uptake
Authors: Supriya Majumder, Pabitra Banik
Abstract:
Fates of Arsenic (As) on the soil-plant environment belong to the critical emerging issue, which in turn to appraises the threatening implications of a human health risk — assessing the dynamics of As in soil solid components are likely to impose its potential availability towards plant uptake. In the present context, we introduced an improved Sequential Extraction Procedure (SEP) questioning to identify solid-phase speciation of As in paddy soil under variable soil environmental conditions during two consecutive seasons of rice cultivation practices. We coupled gradients of water management practices with the addition of fertilizer amendments to assess the changes in a partition of As through a field experimental study during monsoon and post-monsoon season using two rice cultivars. Water management regimes were varied based on the methods of cultivation of rice by Conventional (waterlogged) vis-a-vis System of Rice Intensification-SRI (saturated). Fertilizer amendment through the nutrient treatment of absolute control, NPK-RD, NPK-RD + Calcium silicate, NPK-RD + Ferrous sulfate, Farmyard manure (FYM), FYM + Calcium silicate, FYM + Ferrous sulfate, Vermicompost (VC), VC + Calcium silicate, VC + Ferrous sulfate were selected to construct the study. After harvest, soil samples were sequentially extracted to estimate partition of As among the different fractions such as: exchangeable (F1), specifically sorbed (F2), As bound to amorphous Fe oxides (F3), crystalline Fe oxides (F4), organic matter (F5) and residual phase (F6). Results showed that the major proportions of As were found in F3, F4 and F6, whereas F1 exhibited the lowest proportion of total soil As. Among the nutrient treatment mediated changes on As fractions, the application of organic manure and ferrous sulfate were significantly found to restrict the release of As from exchangeable phase. Meanwhile, conventional practice produced much higher release of As from F1 as compared to SRI, which may substantially increase the environmental risk. In contrast, SRI practice was found to retain a significantly higher proportion of As in F2, F3, and F4 phase resulting restricted mobilization of As. This was critically reflected towards rice grain As bioavailability where the reduction in grain As concentration of 33% and 55% in SRI concerning conventional treatment (p <0.05) during monsoon and post-monsoon season respectively. Also, prediction assay for rice grain As bioavailability based on the linear regression model was performed. Results demonstrated that rice grain As concentration was positively correlated with As concentration in F1 and negatively correlated with F2, F3, and F4 with a satisfactory level of variation being explained (p <0.001). Finally, we conclude that F1, F2, F3 and F4 are the major soil. As fractions critically may govern the potential availability of As in soil and suggest that rice cultivation with the SRI treatment is particularly at less risk of As availability in soil. Such exhaustive information may be useful for adopting certain management practices for rice grown in contaminated soil concerning to the environmental issues in particular.Keywords: arsenic, fractionation, paddy soil, potential availability
Procedia PDF Downloads 1263985 Proximate and Mineral Composition of Chicken Giblets from Vojvodina, Northern Serbia
Authors: M. R. Jokanović, V. M. Tomović, M. T. Jović, S. B. Škaljac, B. V. Šojić, P. M. Ikonić, T. A. Tasić
Abstract:
Proximate (moisture, protein, total fat, total ash) and mineral (K, P, Na, Mg, Ca, Zn, Fe, Cu and Mn) composition of chicken giblets (heart, liver and gizzard) were investigated. Phosphorous content, as well as proximate composition, were determined according to recommended ISO methods. The content of all elements, except phosphorus, of the giblets tissues were determined using inductively coupled plasma-optical emission spectrometry (ICP-OES), after dry ashing mineralization. Regarding proximate composition heart was the highest in total fat content, and the lowest in protein content. Liver was the highest in protein and total ash content, while gizzard was the highest in moisture and the lowest in total fat content. Regarding mineral composition liver was the highest for K, P, Ca, Mg, Fe, Zn, Cu, and Mn, while heart was the highest for Na content. The contents of almost all investigated minerals in analysed giblets tissues of chickens from Vojvodina were similar to values reported in the literature, i.e. in national food composition databases of other countries.Keywords: chicken giblets, proximate composition, mineral composition, inductively coupled plasma-optical emission spectrometry (ICP-OES)
Procedia PDF Downloads 4523984 A Concept of Rational Water Management at Local Utilities: The Use of RO for Water Supply and Wastewater Treatment/Reuse
Authors: N. Matveev, A. Pervov
Abstract:
Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.Keywords: reverse osmosis, stormwater treatment, open-channel module, wastewater reuse
Procedia PDF Downloads 3203983 Effect of Integrity of the Earthing System on the Rise of Earth Potential
Authors: N. Ullah, A. Haddad, F. Van Der Linde
Abstract:
This paper investigates the effects of breaks in bonds, breaks in the earthing system and breaks in earth wire on the rise of the earth potential (EPR) in a substation and at the transmission tower bases using various models of an L6 tower. Different approaches were adopted to examine the integrity of the earthing system and the terminal towers. These effects were investigated to see the associated difference in the EPR magnitudes with respect to a healthy system at various locations. Comparisons of the computed EPR magnitudes were then made between the healthy and unhealthy system to detect any difference. The studies were conducted at power frequency for a uniform soil with different soil resistivities. It was found that full breaks in the double bond of the terminal towers increase the EPR significantly at the fault location, while they reduce EPR at the terminal tower bases. A fault on the isolated section of the grid can result in EPR values up to 8 times of those on a healthy system at higher soil resistivities, provided that the extended earthing system stays connected to the grid.Keywords: bonding, earthing, EPR, integrity, system
Procedia PDF Downloads 3313982 1-g Shake Table Tests to Study the Impact of PGA on Foundation Settlement in Liquefiable Soil
Authors: Md. Kausar Alam, Mohammad Yazdi, Peiman Zogh, Ramin Motamed
Abstract:
The liquefaction-induced ground settlement has caused severe damage to structures in the past decades. However, the amount of building settlement caused by liquefaction is directly proportional to the intensity of the ground shaking. To reduce this soil liquefaction effect, it is essential to examine the influence of peak ground acceleration (PGA). Unfortunately, limited studies have been carried out on this issue. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada Reno to evaluate the influence of PGA with the same duration in liquefiable soil layers. The model is prepared based on a large-scale shake table with a scaling factor of N = 5, which has been conducted at the University of California, San Diego. The model ground has three soil layers with relative densities of 50% for crust, 30% for liquefiable, and 90% for dense layer, respectively. In addition, a shallow foundation is seated over an unsaturated crust layer. After preparing the model, the input motions having various peak ground accelerations (i.e., 0.16g, 0.25g, and 0.37g) for the same duration (10 sec) were applied. Based on the experimental results, when the PGA increased from 0.16g to 0.37g, the foundation increased from 20 mm to 100 mm. In addition, the expected foundation settlement based on the scaling factor was 25 mm, while the actual settlement for PGA 0.25g for 10 seconds was 50 mm.Keywords: foundation settlement, liquefaction, peak ground acceleration, shake table test
Procedia PDF Downloads 793981 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing
Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego
Abstract:
Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.Keywords: drying time, lyophilization, mango, vacuum induced freezing
Procedia PDF Downloads 4113980 Site Formation Processes at a New Kingdom Settlement at Sai Island, Sudan
Authors: Sean Taylor, Sayantani Neogi, Julia Budka
Abstract:
The important Egyptian New Kingdom settlement at Sai Island Sudan presents a complex stratigraphic archaeological record. This study takes the theoretic stance that it, not just the archaeological material being retrieved from the deposits but the sediments themselves that reflect human agency. These anthropogenic sediments reflect the use life of the buildings and spaces between and the post-depositional processes which operate to complicate the archaeological record. The application of soil micromorphology is a technique that takes intact block samples of sediment and analyses them in thin section under a petrological microscope. A detailed understanding of site formation processes and a contextualized knowledge of the material culture can be understood through careful and systematic observation of the changing facies. The major findings of the study are that soil and sedimentary information can provide valuable insights to the use of space during the New Kingdom and elucidate the complexities of site formation processes.Keywords: anthropogenic sediment, New Kingdom, site formation processes, soil micromorphology
Procedia PDF Downloads 4363979 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop
Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares
Abstract:
Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.Keywords: agriculture, composting, soil, sugar beet lime, wastewater
Procedia PDF Downloads 3263978 Effect of Elastic Modulus Anisotropy on Helical Piles Behavior in Sandy Soil
Authors: Reza Ziaie Moayed, Javad Shamsi Soosahab
Abstract:
Helical piles are being used extensively in engineering applications all over the world. There are insufficient studies on the helical piles' behavior in anisotropic soils. In this paper, numerical modeling was adopted to investigate the effect of elastic modulus anisotropy on helical pile behavior resting on anisotropic sand by using a finite element limit analysis. The load-displacement behavior of helical piles under compression and tension loads is investigated in different relative densities of soils, and the effect of the ratio of horizontal elastic modulus with respect to vertical elastic modulus (EH/EV) is evaluated. The obtained results illustrate that in sandy soils, the anisotropic ratio of elastic modulus (EH/EV) has notable effect on bearing capacity of helical piles in different relative density. Therefore, it may be recommended that the effect of anisotropic condition of soil elastic modulus should be considered in helical piles behavior.Keywords: helical piles, bearing capacity, numerical modeling, soil anisotropy
Procedia PDF Downloads 1643977 Peak Floor Response for Buildings with Flexible Base
Authors: Luciano Roberto Fernandez-Sola, Cesar Augusto Arredondo-Velez, Miguel Angel Jaimes-Tellez
Abstract:
This paper explores the modifications on peak acceleration, velocity and displacement profiles over the structure due to dynamic soil-structure interaction (DSSI). A shear beam model is used for the structure. Soil-foundation flexibility (inertial interaction) is considered by a set of springs and dashpots at the structure base. Kinematic interaction is considered using transfer functions. Impedance functions are computed using simplified expressions for rigid foundations. The research studies the influence of the slenderness ratio on the value of the peak floor response. It is shown that the modifications of peak floor responses are not the same for acceleration, velocity and displacement. This is opposite to the hypothesis used by methods included in several building codes. Results show that modifications produced by DSSI on different response quantities are not equal.Keywords: peak floor intensities, dynamic soil-structure interaction, buildings with flexible base, kinematic and inertial interaction
Procedia PDF Downloads 4543976 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi
Authors: Farhan Ali
Abstract:
Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.Keywords: pathogens, wastewater, concentration, effluent
Procedia PDF Downloads 2993975 Biological Soil Crust Effects on Dust Control Around the Urmia Lake
Authors: Abbas Ahmadi, Nasser Aliasgharzad, Ali Asghar Jafarzadeh
Abstract:
Nowadays, drying of the Urmia Lake as a largest saline lake in the world and emerging its saline bed from water has caused the risk of salty dune storms, which threats the health of human society and also plants and animal communities living in the region. Biological soil crusts (BSCs) as a dust stabilizer attracted the attention of Soil conservation experts in recent years. Although the presence of water by the impenetrable lake bed and endorheic basin can be an advantage to create BSCs, but the extraordinary of the lake bed salinity is a factor for prevention of its establishment in the region. Therefore, the present research work has been carried out to investigate the effects of inoculating the Cyanobacteria, algae and their combination to create BSCs for dust control. In this study, an algae attributed to Chlamydomonas sp and a cyanobacteria attributed to Anabaena sp isolated from the soils of Urmia Lake margin were used to create BSC in four soil samples which collected from 0-10 cm of the current margin (A), the previous bed (B), affected lands by lake (C) and Quomtappe sand dune (D). The main characteristics of the A, B and C soil samples are their highly salinity (their ECe are 108, 140 and 118 dS/m, respectively) and sodicity. Also, texture class of the soil A was loamy sand, and other two soils had clay textures. Soil D was Non-saline, but it was sodic with a sandy texture class. This study was conducted separately in each soil in a completely randomized design under four inoculation treatments of non-inoculated (T0), Algae (T1), cyanobacteria (T2) and equal mixture of algae and cyanobacteria (T3) with three replications. In the experiment, the soil was placed into wind tunnel trays, and a suspension containing microorganisms mixed with the trays surface soil. During the experiment, water was sprayed to the trays at the morning and evening of every day. After passing the incubation period (30 days), some characteristics of samples such as pH, EC, cold water extractable carbohydrate (CWEC), hot water extractable carbohydrate (HWEC), sulfuric acid extractable carbohydrate (SAEC), organic matter, crust thickness, penetration resistance, wind erosion threshold velocity and soil loss in the wind tunnel were measured, and Correlation between the measured characteristics was obtained through the SPSS software. Analysis of variance and so comparison between the means of treatments were analyzed with MSTATC software. In this research, Chlorophyll, an amount, was used as an indicator of the microorganism's population in the samples. Based on obtained results, the amount of Chlorophyll a in the T2 treatment of soil A and all treatments of soil D was significantly increased in comparison to the control and crust thickness showed increase in all treatments by microorganism’s inoculation. But effect of the treatments was significant in soils A and D. At all treatment’s inoculation of microorganisms in soil A caused to increase %46, %34 and %55 of the wind erosion threshold velocity in T1, T2 and T3 treatments in comparison to the control, respectively, and in soil D all treatments caused wind erosion threshold velocity became two times more than control. However, soil loss in the wind tunnel experiments was significant in T2 and T3 treatments of these soils and T1 treatment had no effect in reducing soil loss. Correlation between Chlorophyll a and salinity shows the important role of salinity in microbial growth prevention and formation of BSCs in the studied samples. In general, according to the obtained results, it can be concluded that salinity reduces the growth of microorganisms in saline soils of the region, and in soils with fine textures, salinity role in prevention of the microbial growth is clear. Also, using the mix of algae and cyanobacteria together caused the synergistic growth of them and consequently, better protection of the soil against wind erosion was provided.Keywords: wind erosion, algae, cyanobacteria, carbohydrate
Procedia PDF Downloads 653974 Directional Dependence of the Stress-Strain Behavior of Reinforced Sand
Authors: Alaa H. J. Al-Rkaby, A. Chegenizadeh, H. R. Nikraz
Abstract:
The technique of reinforcing soil is an efficient, reliable and cost-effective alternative way for improving the performance of soil in civil engineering applications. Despite the anisotropic states of stresses induced within soil elements by many geotechnical structures such as footings, highways and offshore, most of the previous studies have been carried out under isotropic conditions. The anisotropic stress state in term of the inclined principal stress and the inequality of the intermediate and minor principal stresses cannot be investigated using conventional devices. Therefore, the advanced hollow cylinder apparatus, used in this work, provides a great opportunity to simulate such anisotropic stress states. To date, very little consideration has been given to how the direction of principal stress α and intermediate principal stress ratio b can affect the performance of the reinforced sand. This study presented that the anisotropic conditions of α and b resulted in significant variations in the deviator stress and volumetric strain of sand reinforced with geosynthetics. Anisotropic effect has been decreased by adding clay content.Keywords: anisotropy, reinforced sand, direction of principal stress, intermediate principal stress ratio
Procedia PDF Downloads 1993973 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines
Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi
Abstract:
Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines.Keywords: beam deformation, EPS block, laboratory test, post-Beam system, soil surface settlement
Procedia PDF Downloads 2393972 Flexible Work Arrangements for Managers-Gender Diversity and Organizational Development in German Firms
Authors: Marc Gärtner, Monika Huesmann, Katharina Schiederig
Abstract:
While workplace flexibility provides opportunities to better balance work and family care, careers in management are still predominantly based on physical presence, blurred boundaries and a culture of availability at the workplace. Thus, carers (mostly women) still experience disadvantages and stalled careers. In a multi-case study, funded by the German Federal Ministry of Education and Research, success factors and barriers of flexible work arrangements in five big organizations, including three of the largest German companies, have been identified. Using qualitative interview methods, the working models of 10 female and male users of flexible work arrangements like part time, home office and job sharing have been studied. The study group applied a 360-degree approach with focus groups, covering the users’ themselves, their superiors, colleagues and staff as well as in-house human resource managers. The group interviews reveal that success of flexible models is mainly built on three factors: (a) the inclusiveness of the organizational culture, (b) the commitment of leaders and especially the supervisors, and (c) the fitting of the model and the user(s). Flexibilization of time and space can indeed contribute to a better work-life balance. This is, however, not a necessary outcome, as the interviews suggest, but depends on the right implementation of the right model in the particular work environment. Beyond the actual study results, the presentation will also assess the methodological approach.Keywords: flexible work, leadership, organizational culture, work-life balance
Procedia PDF Downloads 3583971 Modelling Water Vapor Sorption and Diffusion in Hydrocolloid Particles
Authors: Andrew Terhemen Tyowua, Zhibing Zhang, Michael J. Adams
Abstract:
Water vapor sorption data at a range of temperatures (25–70 °C) have been obtained for starch (corn and wheat) and non-starch (carrageenan and xanthan gum) hydrocolloid particles in the form of a thin slab. The results reveal that the data may be more accurately described by an existing sigmoidal rather than a Fickian model. The sigmoidal model accounts for the initial surface sorption before the onset of bulk diffusion. At relatively small water activities (≤ 0.3), the absorption of the moisture caused the particles to be plasticized, but at greater activity values (> 0.3), anti-plasticization was induced. However, it was found that for the whole range of water activities and temperatures studied, the data could be characterized by a single non-dimensional number, which was termed the non-Fickian diffusion number where τ is the characteristic time of surface sorption, D is the bulk diffusion coefficient and L is the thickness of the layer of particles. The activation energy suggested that the anti-plasticization mechanism was the result of a reduction in the molecular free volume or an increase in crystallinity.Keywords: anti-plasticization, arrhenius behavior, diffusion coefficient, hygroscopic polymers, moisture migration, non-fickian sigmoidal model
Procedia PDF Downloads 323970 Impact of Integrated Watershed Management Programme Based on Four Waters Concept: A Case Study of Sali Village, Rajasthan State of India
Authors: Garima Sharma, R. N. Sharma
Abstract:
Integrated watershed management programme based on 'Four Water Concept' was implemented in Sali village, in Jaipur District, Rajasthan State of India . The latitude 26.7234486 North and longitude 75.023876 East are the geocoordinate of the Sali. 'Four Waters Concept' is evolved by integrating the 'Four Waters', viz. rain water, soil moisture, ground water and surface water This methodology involves various water harvesting techniques to prevent the runoff of water by treatment of catchment, proper utilization of available water harvesting structures, renovation of the non-functional water harvesting structures and creation of new water harvesting structures. The case study included questionnaire survey from farmers and continuous study of village for two years. The total project area is 6153 Hac, and the project cost is Rs. 92.25 million. The sanctioned area of Sali Micro watershed is 2228 Hac with an outlay of Rs. 10.52 million. Watershed treatment activities such as water absorption trench, continuous contour trench, field bunding, check dams, were undertaken on agricultural lands for soil and water conservation. These measures have contributed in preventing runoff and increased the perennial availability of water in wells. According to the survey, water level in open wells in the area has risen by approximately 5 metres after the introduction of water harvesting structures. The continuous availability of water in wells has increased the area under irrigation and helped in crop diversification. Watershed management activities have brought the changes in cropping patterns and crop productivity. It helped in transforming 567 Hac culturable waste land into culturable arable land in the village. The farmers of village have created an additional income from the increased crop production. The programme also assured the availability of water during peak summers for the day to day activities of villagers. The outcomes indicate that there is positive impact of watershed management practices on the water resource potential as well the crop production of the area. This suggests that persistent efforts in this direction may lead to sustainability of the watershed.Keywords: four water concept, groundwater potential, irrigation potential, watershed management
Procedia PDF Downloads 3603969 Dielectric Response Analysis Measurement for Diagnostic Oil-Paper Insulation System on Aged Inter Bus Transformer 3x10 MVA
Authors: Eki Farlen, Akas
Abstract:
Condition assessment of oil-paper-insulated power transformers, particularly of water content, is becoming increasingly important for aged transformers. As insulation ages, it can produce water, which reduces its dielectric strength, accelerates the cellulose ageing process, and causes gas bubbles to form at high temperatures. This paper mainly assesses the life condition of oil-paper insulation system of Inter Bus Transformer (IBT) 30 MVA, 150/30 kV in PT PLN-Substation Jelok that has been operating for 41 years, since 1974. Valuable information about the condition of high voltage insulation may be obtained by measuring its dielectric response. This paper describes in detail the interpretation of Dielectric Response Analysis (DIRANA) measurements and the test result compared to other insulation tests to get deep information for diagnostic, such as Tan delta test, oil characteristic test and Dissolve Gas Analysis (DGA) test. This paper mainly discusses the parameter relationship between moisture content, water content, acidity, oil conductivity and dissipation factor. The result and analysis show that IBT 30 MVA Jelok phase U and W had just been ageing due to high acidity level (>0.2 mgKOH/g) which cause high moisture in cellulose/paper (%) are in wet category about 4.7% and 5% and water content in oil (ppm) about 3.13 ppm and 3.33 ppm at temperature 20°C. High acidity level can make oxidation process and produce water in paper and particle which can decrease the value of Interfacial Tension (IFT) below 22 mN/m (poor category) for both phase U and W. Even if paper insulation of transformer are in wet condition, dissipation factor and capacitance at the same frequency (50 Hz) from both measurement DIRANA test and Tangent delta test give the same result (almost), the results are 0.69% and 0.71% (<1%), it may be acceptable and should not be investigated. The DGA results show that TDCG are in level one (1) condition and there are no found a Key Gases, it means that transformers had no failure during operation like arching, partial discharge and thermal in oil or cellulose.Keywords: diagnostic, inter-bus transformer, oil-paper insulation, moisture, dissipation factor
Procedia PDF Downloads 2803968 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms
Authors: Irina Mikajlo, Jakub Elbl, Helena Dvořáčková, Antonín Kintl, Jindřich Kynický, Martin Brtnický, Jaroslav Záhora
Abstract:
Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pre-treated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduce may occur.Keywords: fertigation, fertilizers, mineral nitrogen, soil microorganisms
Procedia PDF Downloads 353