Search results for: TiO₂ nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1707

Search results for: TiO₂ nanoparticles

477 New Formulation of FFS3 Layered Blown Films Containing Toughened Polypropylene and Plastomer with Superior Properties

Authors: S. Talebnezhad, S. Pourmahdian, D. Soudbar, M. Khosravani, J. Merasi

Abstract:

Adding toughened polypropylene and plastomer in FFS 3 layered blown film formulation resulted in superior dart impact and MD tear resistance along with acceptable tensile properties in TD and MD. The optimum loading of toughened polypropylene and plastomer in each layer depends on miscibility of polypropylene in polyethylene medium, mechanical properties, welding characteristics in bags top and bottoms and friction coefficient of film surfaces. Film property tests and efficiency of FFS machinery during processing in industrial scale showed that about 4% loading of plastomer and 16% of toughened polypropylene (reactor grade) in middle layer and loading of 0-1% plastomer and 5-19% of toughened polypropylene in other layers results optimum characteristics in the formulation based on 1-butene LLDPE grade with MFR of 0.9 and LDPE grade with MFI of 0.3. Both the plastomer and toughened polypropylene had the MFI of blow 1 and the TiO2 and processing aid masterbatches loading was 2%. The friction coefficient test results also represented the anti-block masterbatch could be omitted from formulation with adding toughened polypropylene due to partial miscibility of PP in PE which makes the surface of films somewhat bristly.

Keywords: FFS 3 layered blown film, toughened polypropylene, plastomer, dart impact, tear resistance

Procedia PDF Downloads 408
476 Photoinduced Energy and Charge Transfer in InP Quantum Dots-Polymer/Metal Composites for Optoelectronic Devices

Authors: Akanksha Singh, Mahesh Kumar, Shailesh N. Sharma

Abstract:

Semiconductor quantum dots (QDs) such as CdSe, CdS, InP, etc. have gained significant interest in the recent years due to its application in various fields such as LEDs, solar cells, lasers, biological markers, etc. The interesting feature of the QDs is their tunable band gap. The size of the QDs can be easily varied by varying the synthesis parameters which change the band gap. One of the limitations with II-VI semiconductor QDs is their biological application. The use of cadmium makes them unsuitable for biological applications. III-V QD such as InP overcomes this problem as they are structurally robust because of the covalent bonds which do not allow the ions to leak. Also, InP QDs has large Bohr radii which increase the window for the quantum confinement effect. The synthesis of InP QDs is difficult and time consuming. Authors have synthesized InP using a novel, quick synthesis method which utilizes trioctylphosphine as a source of phosphorus. In this work, authors have made InP composites with P3HT(Poly(3-hexylthiophene-2,5-diyl))polymer(organic-inorganic hybrid material) and gold nanoparticles(metal-semiconductor composites). InP-P3HT shows FRET phenomenon whereas InP-Au shows charge transfer mechanism. The synthesized InP QDs has an absorption band at 397 nm and PL peak position at 491 nm. The band gap of the InP QDs is 2.46 eV as compared to the bulk band gap of InP i.e. 1.35 eV. The average size of the QDs is around 3-4 nm. In order to protect the InP core, a shell of wide band gap material i.e. ZnS is coated on the top of InP core. InP-P3HT composites were made in order to study the charge transfer/energy transfer phenomenon between them. On adding aliquots of P3HT to InP QDs solution, the P3HT PL increases which can be attributed to the dominance of Förster energy transfer between InP QDs (donor) P3HT polymer (acceptor). There is a significant spectral overlap between the PL spectra of InP QDs and absorbance spectra of P3HT. But in the case of InP-Au nanocomposites, significant charge transfer was seen from InP QDs to Au NPs. When aliquots of Au NPs were added to InP QDs, a decrease in the PL of the InP QDs was observed. This is due to the charge transfer from the InP QDs to the Au NPs. In the case of metal semiconductor composites, the enhancement and quenching of QDs depend on the size of the QD and the distance between the QD and the metal NP. These two composites have different phenomenon between donor and acceptor and hence can be utilized for two different applications. The InP-P3HT composite can be utilized for LED devices due to enhancement in the PL emission (FRET). The InP-Au can be utilized efficiently for photovoltaic application owing to the successful charge transfer between InP-Au NPs.

Keywords: charge transfer, FRET, gold nanoparticles, InP quantum dots

Procedia PDF Downloads 145
475 Dielectrophoretic Characterization of Tin Oxide Nanowires for Biotechnology Application

Authors: Ahmad Sabry Mohamad, Kai F. Hoettges, Michael Pycraft Hughes

Abstract:

This study investigates nanowires using Dielectrophoresis (DEP) in non-aqueous suspension of Tin (IV) Oxide (SnO2) nanoparticles dispersed in N,N-dimenthylformamide (DMF). The self assembly of nanowires in DEP impedance spectroscopy can be determined. In this work, dielectrophoretic method was used to measure non-organic molecules for estimating the permittivity and conductivity characteristic of the nanowires. As in aqueous such as salt solution has been dominating the transport of SnO2, which are the wire growth threshold, depend on applied voltage. While DEP assembly of nanowires depend on applied frequency, the applications of dielectrophoretic collection are measured using impedance spectroscopy.

Keywords: dielectrophoresis, impedance spectroscopy, nanowires, N, N-dimenthylformamide, SnO2

Procedia PDF Downloads 658
474 Synthesis of AgInS2–ZnS at Low Temperature with Tunable Photoluminescence for Photovoltaic Applications

Authors: Nitu Chhikaraa, S. B. Tyagia, Kiran Jainb, Mamta Kharkwala

Abstract:

The I–III–VI2 semiconductor Nanocrystals such as AgInS2 have great interest for various applications such as optical devices (solar cell and LED), cellular Imaging and bio tagging etc. we synthesized the phase and shape controlled chalcopyrite AgInS2 (AIS) colloidal nanoparticles by thermal decomposition of metal xanthate at low temperature in an organic solvent’s containing surfactant molecules. Here we are focusing on enhancements of photoluminescence of AgInS2 Nps by coating of ZnS at low temperature for application of optical devices. The size of core shell Nps was less than 50nm.by increasing the time and temperature the emission of the wavelength of the Zn coated AgInS2 Nps could be adjusted from visible region to IR the QY of the AgInS2 Nps could be increased by coating of ZnS from 20 to 80% which was reasonably good as compared to those of the previously reported. The synthesized NPs were characterized by PL, UV, XRD and TEM.

Keywords: PL, UV, XRD, TEM

Procedia PDF Downloads 374
473 Magnesium Nanoparticles for Photothermal Therapy

Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini

Abstract:

Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.

Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy

Procedia PDF Downloads 269
472 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring

Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon

Abstract:

We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.

Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch

Procedia PDF Downloads 184
471 Embryotoxicity of Nano-Iron Oxide (Fe2O3) to Bio-Indicator of Pollution of Land Helix Aspersa

Authors: S. Besnaci, S. Bensoltane, H. Locif, S. Saadi

Abstract:

To validate an ecotoxicological approach to assessing toxicological effects caused by the oxide powder of nano-iron Fe2O3, we searched in the ecotoxicology laboratory cell bodies bio accumulators and bio-indicators of soil pollution the snail Helix aspersa. In this study, we evaluated the toxicity of nano Fe2O3 during a very sensitive phase of development H.aspersa (embryonic stage). During embryonic development, we observed in treated with various concentrations of nano Fe2O3 (1.25 g/l, 1.5 g/l, and 2 g/l) compared to control, the deformation of the membrane of the egg and accumulation of this molecule at the rear of the egg proven by the photographs, as with the influence on the hatching percentage.

Keywords: eggs, embryotoxicity, Fe2O3, Helix aspersa, nanoparticles

Procedia PDF Downloads 375
470 Colloid-Based Biodetection at Aqueous Electrical Interfaces Using Fluidic Dielectrophoresis

Authors: Francesca Crivellari, Nicholas Mavrogiannis, Zachary Gagnon

Abstract:

Portable diagnostic methods have become increasingly important for a number of different purposes: point-of-care screening in developing nations, environmental contamination studies, bio/chemical warfare agent detection, and end-user use for commercial health monitoring. The cheapest and most portable methods currently available are paper-based – lateral flow and dipstick methods are widely available in drug stores for use in pregnancy detection and blood glucose monitoring. These tests are successful because they are cheap to produce, easy to use, and require minimally invasive sampling. While adequate for their intended uses, in the realm of blood-borne pathogens and numerous cancers, these paper-based methods become unreliable, as they lack the nM/pM sensitivity currently achieved by clinical diagnostic methods. Clinical diagnostics, however, utilize techniques involving surface plasmon resonance (SPR) and enzyme-linked immunosorbent assays (ELISAs), which are expensive and unfeasible in terms of portability. To develop a better, competitive biosensor, we must reduce the cost of one, or increase the sensitivity of the other. Electric fields are commonly utilized in microfluidic devices to manipulate particles, biomolecules, and cells. Applications in this area, however, are primarily limited to interfaces formed between immiscible interfaces. Miscible, liquid-liquid interfaces are common in microfluidic devices, and are easily reproduced with simple geometries. Here, we demonstrate the use of electrical fields at liquid-liquid electrical interfaces, known as fluidic dielectrophoresis, (fDEP) for biodetection in a microfluidic device. In this work, we apply an AC electric field across concurrent laminar streams with differing conductivities and permittivities to polarize the interface and induce a discernible, near-immediate, frequency-dependent interfacial tilt. We design this aqueous electrical interface, which becomes the biosensing “substrate,” to be intelligent – it “moves” only when a target of interest is present. This motion requires neither labels nor expensive electrical equipment, so the biosensor is inexpensive and portable, yet still capable of sensitive detection. Nanoparticles, due to their high surface-area-to-volume ratio, are often incorporated to enhance detection capabilities of schemes like SPR and fluorimetric assays. Most studies currently investigate binding at an immobilized solid-liquid or solid-gas interface, where particles are adsorbed onto a planar surface, functionalized with a receptor to create a reactive substrate, and subsequently flushed with a fluid or gas with the relevant analyte. These typically involve many preparation and rinsing steps, and are susceptible to surface fouling. Our microfluidic device is continuously flowing and renewing the “substrate,” and is thus not subject to fouling. In this work, we demonstrate the ability to electrokinetically detect biomolecules binding to functionalized nanoparticles at liquid-liquid interfaces using fDEP. In biotin-streptavidin experiments, we report binding detection limits on the order of 1-10 pM, without amplifying signals or concentrating samples. We also demonstrate the ability to detect this interfacial motion, and thus the presence of binding, using impedance spectroscopy, allowing this scheme to become non-optical, in addition to being label-free.

Keywords: biodetection, dielectrophoresis, microfluidics, nanoparticles

Procedia PDF Downloads 387
469 Optimization of Radiation Therapy with a Nanotechnology Based Enzymatic Therapy

Authors: R. D. Esposito, V. M. Barberá, P. García Morales, P. Dorado Rodríguez, J. Sanz, M. Fuentes, D. Planes Meseguer, M. Saceda, L. Fernández Fornos, M. P. Ventero

Abstract:

Results obtained by our group on glioblastoma multiforme (GBM) primary cultures , show a dramatic potentiation of radiation effects when 2 units/ml of D-amino acid oxidase (DAO) enzyme are added, free or immobilized in magnetic nanoparticles, to irradiated samples just after the irradiation. Cell cultures were exposed to radiation doses of 7Gy and 15Gy of 6 MV photons from a clinical linear accelerator. At both doses, we observed a clear enhancing effect of radiation-induced damages due to the addition of DAO.

Keywords: D-amino Acid Oxidase (DAO) enzyme, magnetic particles, nanotechnology, radiation therapy enhancement

Procedia PDF Downloads 520
468 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 427
467 Silk Fibroin-PVP-Nanoparticles-Based Barrier Membranes for Tissue Regeneration

Authors: Ivone R. Oliveira, Isabela S. Gonçalves, Tiago M. B. Campos, Leandro J. Raniero, Luana M. R. Vasconcellos, João H. Lopes

Abstract:

Originally, the principles of guided tissue/bone regeneration (GTR/GBR) were followed to restore the architecture and functionality of the periodontal system. In essence, a biocompatible polymer-based occlusive membrane is used as a barrier to prevent migration of epithelial and connective tissue to the regenerating site. In this way, progenitor cells located in the remaining periodontal ligament can recolonize the root area and differentiate into new periodontal tissues, alveolar bone, and new connective attachment. The use of synthetic or collagen-derived membranes with or without calcium phosphate-based bone graft materials has been the treatment used. Ideally, these membranes need to exhibit sufficient initial mechanical strength to allow handling and implantation, withstand the various mechanical stresses suffered during surgery while maintaining their integrity, and support the process of bone tissue regeneration and repair by resisting cellular traction forces and wound contraction forces during tissue healing in vivo. Although different RTG/ROG products are available on the market, they have serious deficiencies in terms of mechanical strength. Aiming to improve the mechanical strength and osteogenic properties of the membrane, this work evaluated the production of membranes that integrate the biocompatibility of the natural polymer (silk fibroin - FS) and the synthetic polymer poly(vinyl pyrrolidone - PVP) with graphene nanoplates (NPG) and gold nanoparticles (AuNPs), using the electrospinning equipment (AeroSpinner L1.0 from Areka) which allows the execution of high voltage spinning and/or solution blowing and with a high production rate, enabling development on an industrial scale. Silk fibroin uniquely solved many of the problems presented by collagen and was used in this work because it has unique combined merits, such as programmable biodegradability, biocompatibility and sustainable large-scale production. Graphene has attracted considerable attention in recent years as a potential biomaterial for mechanical reinforcement because of its unique physicochemical properties and was added to improve the mechanical properties of the membranes associated or not with the presence of AuNPs, which have shown great potential in regulating osteoblast activity. The preparation of FS from silkworm cocoons involved cleaning, degumming, dissolution in lithium bromide, dialysis, lyophilization and dissolution in hexafluoroisopropanol (HFIP) to prepare the solution for electrospinning, and crosslinking tests were performed in methanol. The NPGs were characterized and underwent treatment in nitric acid for functionalization to improve the adhesion of the nanoplates to the PVP fibers. PVP-NPG membranes were produced with 0.5, 1.0 and 1.5 wt% functionalized or not and evaluated by SEM/FEG, FTIR, mechanical strength and cell culture assays. Functionalized GNP particles showed stronger binding, remaining adhered to the fibers. Increasing the graphene content resulted in higher mechanical strength of the membrane and greater biocompatibility. The production of FS-PVP-NPG-AuNPs hybrid membranes was performed by electrospinning in separate syringes and simultaneously the FS solution and the solution containing PVP-NPG 1.5 wt% in the presence or absence of AuNPs. After cross-linking, they were characterized by SEM/FEG, FTIR and behavior in cell culture. The presence of NPG-AuNPs increased the viability and the presence of mineralization nodules.

Keywords: barrier membranes, silk fibroin, nanoparticles, tissue regeneration.

Procedia PDF Downloads 5
466 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers

Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab

Abstract:

The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.

Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles

Procedia PDF Downloads 145
465 Understanding the Accumulation of Microplastics in Riverbeds and Soils

Authors: Gopala Krishna Darbha

Abstract:

Microplastics (MPs) are secondary fragments of large-sized plastic debris released into the environment and fall in the size range of less than 5 mm. Though reports indicate the abundance of MPs in both riverine and soil environments, their fate is still not completely understood due to the complexity of natural conditions. Mineral particles are ubiquitous in the rivers and may play a vital role in accumulating MPs to the riverbed, thus affecting the benthic life and posing a threat to the river's health. Apart, the chemistry (pH, ionic strength, humics) at the interface can be very prominent. The MPs can also act as potential vectors to transport other contaminants in the environment causing secondary water pollution. The present study focuses on understanding the interaction of MPs with weathering sequence of minerals (feldspar, kaolinite and gibbsite) under batch mode under relevant environmental and natural conditions. Simultaneously, we performed stability studies and transport (column) experiments to understand the mobility of MPs under varying soil solutions (SS) chemistry and the influence of contaminants (CuO nanoparticles). Results showed that the charge and morphology of the gibbsite played an significant role in sorption of NPs (108.1 mg/g) compared to feldspar (7.7 mg/g) and kaolinite (11.9 mg/g). The Fourier transform infrared spectroscopy data supports the complexation of NPs with gibbsite particles via hydrogen bonding. In case of feldspar and kaolinite, a weak interaction with NPs was observed which can be due to electrostatic repulsions and low surface area to volume ration of the mineral particles. The study highlights the enhanced mobility in presence of feldspar and kaolinite while gibbsite rich zones can cause entrapment of NPs accumulating in the riverbeds. In the case of soils, in the absence of MPs, a very high aggregation of CuO NPs observed in SS extracted from black, lateritic, and red soils, which can be correlated with ionic strength (IS) and type of ionic species. The sedimentation rate (Ksed(1/h)) for CuO NPs was >0.5 h−1 in the case of these SS. Interestingly, the stability and sedimentation behavior of CuO NPs varied significantly in the presence of MPs. The Ksed for CuO NPs decreased to half and found <0.25 h−1 in the presence of MPs in all SS. C/C0 values in breakthrough curves increased drastically (black < alluvial < laterite < red) in the presence of MPs. Results suggest that the release of MPs in the terrestrial ecosystem is a potential threat leading to increased mobility of metal nanoparticles in the environment.

Keywords: microplastics, minerals, sorption, soils

Procedia PDF Downloads 87
464 Up-Scaling of Highly Transparent Quasi-Solid State Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up-scaling

Procedia PDF Downloads 336
463 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 460
462 Physicochemical Characterization of Mercerized Cellulose-Supported Nickel-Oxide

Authors: Sherif M. A. S. Keshk, Hisham S. M. Abd-Rabboh, Mohamed S. Hamdy, Ibrahim H. A. Badr

Abstract:

Microwave radiation was applied to synthesize nanoparticles of nickel oxide supported on pretreated cellulose with metal acetate in the presence of NaOH. Optimization, in terms of irradiation time and metal concentration, was investigated. FT-IR spectrum of cellulose/NiO spectrum shows a band at 445 cm^-1 that is related to the Ni–O stretching vibration of NiO6 octahedral in the cubic NiO structure. cellulose/NiO showed similar XRD pattern of cellulose I and exhibited sharpened reflection peak at 2q = 29.8°, corresponding to (111) plane of NiO, with two weak broad peaks at 48.5°, and 49.2°, representing (222) planes of NiO. XPS spectrum of mercerized cellulose/NiO composite showed did not show any peaks corresponding to Na ion.

Keywords: cellulose, mercerized cellulose, cellulose/zinc and nickeloxides composite, FTIR, XRD, XPS, SEM, Raman spectrum

Procedia PDF Downloads 440
461 Green Synthesis, Characterization and Application of Zinc Oxide and Silver Oxide Nonparticipants

Authors: Nassima Khanfri, Ali Boucenna

Abstract:

As metallic nanoparticles are increasingly used in many economic sectors, there is interest in the biological and environmental safety of their production. The main methods of synthesizing nanoparticales are chemical and physical approaches that are often expensive and potentially harmful to the environment. The present study is devoted to the possibility of the synthesis of silver nanoparticales and zinc oxide from silver nitrate and zinc acetate using basilica plant extracts. The products obtained are characterized by various analysis techniques, such as UV/V, XRD, MEB-EDX, FTIR, and RAMAN. These analyzes confirm the crystalline nature of AgNps and ZnONps. These crystalline powders having effective biological activities regarding the antioxidant and antibacterial, which could be used in several biological applications.

Keywords: green synthesis, bio-reduction, metals nan Oparticales, Plants extracts

Procedia PDF Downloads 197
460 An Enhanced Room Temperature Magnetic Refrigerator Based on Nanofluid: From Theoretical Study to Design

Authors: Moulay Youssef El Hafidi

Abstract:

In this research, an enhanced room-temperature magnetic refrigerator based on nanofluid, consisting of permanent magnets as a magnetism source, gadolinium as magnetocaloric material, water as base liquid, and carbon nanotubes (CNT) as nanoparticles, has been designed. The magnetic field is supplied by NdFeB permanent magnets and is about 1.3 Tesla. Two similar heat exchangers are employed to absorb and expel heat. The cycle performance of this self-designed device is analyzed theoretically. The results provide useful data for future optimization of room-temperature magnetic refrigeration using nanofluids.

Keywords: magnetic cooling, nanofluid, gadolinium, permanent magnets, heat exchange

Procedia PDF Downloads 78
459 Magnetic Activated Carbon: Preparation, Characterization, and Application for Vanadium Removal

Authors: Hakimeh Sharififard, Mansooreh Soleimani

Abstract:

In this work, the magnetic activated carbon nanocomposite (Fe-CAC) has been synthesized by anchorage iron hydr(oxide) nanoparticles onto commercial activated carbon (CAC) surface and characterized using BET, XRF, SEM techniques. The influence of various removal parameters such as pH, contact time and initial concentration of vanadium on vanadium removal was evaluated using CAC and Fe-CAC in batch method. The sorption isotherms were studied using Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. These equilibrium data were well described by the Freundlich model. Results showed that CAC had the vanadium adsorption capacity of 37.87 mg/g, while the Fe-AC was able to adsorb 119.01 mg/g of vanadium. Kinetic data was found to confirm pseudo-second-order kinetic model for both adsorbents.

Keywords: magnetic activated carbon, remove, vanadium, nanocomposite, freundlich

Procedia PDF Downloads 460
458 Geochemical and Spatial Distribution of Minerals in the Tailings of IFE/IJESA Gold Mine Zone, Nigeria

Authors: Oladejo S. O, Tomori W. B, Adebayo A. O

Abstract:

The main objective of this research is to identify the geochemical and mineralogical characteristics potential of unexplored tailings around the gold deposit region using spatial statistics and map modeling. Some physicochemical parameters such as pH, redox potential, electrical conductivity, cation exchange capacity, total organic carbon, total organic matter, residual humidity, Cation exchange capacity, and particle size were determined from both the mine drains and tailing samples using standard methods. The physicochemical parameters of tailings ranges obtained were pH (6.0 – 7.3), Eh (−16 - 95 Mev), EC (49 - 156 µS/cm), RH (0.20-2.60%), CEC (3.64-6.45 cmol/kg), TOC (3.57-18.62%), TOM (6.15-22.93%). The geochemical oxide composition were identified using Proton Induced X-ray emission and the results indicated that SiO2>Al2O3>Fe2O3>TiO2>K2O>MgO>CaO>Na2O> P2O5>MnO>Cr2O3>SrO>K2O>P2O5. The major mineralogical components in the tailing samples were determined by quantitative X-ray diffraction techniques using the Rietveld method. Geostatistical relationships among the known points were determined using ArcGIS 10.2 software to interpolate mineral concentration with respect to the study area. The Rietveld method gave a general Quartz value of 73.73-92.76%, IImenite as 0.38-4.77%, Kaolinite group as 3.19-20.83%, Muscovite as 0.77-11.70% with a trace of other minerals. The high percentage of quartz is an indication of a sandy environment with a loose binding site.

Keywords: tailings, geochemical, mineralogy, spatial

Procedia PDF Downloads 72
457 A Theoretical Modelling and Simulation of a Surface Plasmon Resonance Biosensor for the Detection of Glucose Concentration in Blood and Urine

Authors: Natasha Mandal, Rakesh Singh Moirangthem

Abstract:

The present work reports a theoretical model to develop a plasmonic biosensor for the detection of glucose concentrations in human blood and urine as the abnormality of glucose label is the major cause of diabetes which becomes a life-threatening disease worldwide. This study is based on the surface plasmon resonance (SPR) sensor applications which is a well-established, highly sensitive, label-free, rapid optical sensing tool. Here we have introduced a sandwich assay of two dielectric spacer layers of MgF2 and BaTiO3which gives better performance compared to commonly used SiO2 and TiO2 dielectric spacers due to their low dielectric loss and higher refractive index. The sensitivity of our proposed sensor was found as 3242 nm/RIU approximately, with an excellent linear response of 0.958, which is higher than the conventional single-layer Au SPR sensor. Further, the sensitivity enhancement is also optimized by coating a few layers of two-dimensional (2D) nanomaterials (e.g., Graphene, h-BN, MXene, MoS2, WS2, etc.) on the sensor chip. Hence, our proposed SPR sensor has the potential for the detection of glucose concentration in blood and urine with enhanced sensitivity and high affinity and could be utilized as a reliable platform for the optical biosensing application in the field of medical diagnosis.

Keywords: biosensor, surface plasmon resonance, dielectric spacer, 2D nanomaterials

Procedia PDF Downloads 104
456 Hysteresis Effect in Organometallic Perovskite Solar Cells with Mesoscopic NiO as a Hole Transport Layer

Authors: D. C. Asebiah, D. Saranin, S. Karazhanov, A. R. Tameev, M. Kah

Abstract:

In this paper, the mesoscopic NiO was used as a hole transport layer in the inverted planar organometallic hybrid perovskite solar cell to study the effect of hysteresis. The devices we fabricated have the structures Fluorine Tin Oxide (FTO)/mesoscopic NiO/perovskite/[6,6]-phenyl C₆₁-butyric acid methyl ester (PC₆₁BM) photovoltaic device. The perovskite solar cell was done by toluene air (TLA) method and horn sonication for the dispersion of the NiO nanoparticles in deionized water. The power conversion efficiency was 12.07% under 1.5 AM illumination. We report hysteresis in the in current-voltage dependence of the solar cells with mesoscopic NiO as a hole transport layer.

Keywords: perovskite, mesoscopic, hysteresis, toluene air

Procedia PDF Downloads 168
455 Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: aqueous emulsion, graphene, nanocomposites, thermal characterization

Procedia PDF Downloads 165
454 Computational Studies of the Reactivity Descriptors and the Optoelectronic Properties on the Efficiency Free-Base- and Zn-Porphyrin-Sensitized Solar Cells

Authors: Soraya Abtouche, Zeyneb Ghoualem, Syrine Daoudi, Lina Ouldmohamed, Xavier Assfeld

Abstract:

This work reports density functional theory calculations of the optimized geometries, molecular reactivity, energy gap,and thermodynamic properties of the free base (H2P) and their Zn (II) metallated (ZnP), bearing one, two, or three carboxylic acid groups using the hybrid functional B3LYP, Cam-B3lYP, wb97xd with 6-31G(d,p) basis sets. When donating groups are attached to the molecular dye, the bond lengths are slightly decreased, which is important for the easy transfer of an electron from donating to the accepting group. For all dyes, the highest occupied molecular orbital/lowest occupied molecular orbital analysis results in positive outcomes upon electron injection to the semiconductor and subsequent dye regeneration by the electrolyte. The ionization potential increases with increasing conjugation; therefore, the compound dye attached to one carboxylic acid group has the highest ionization potential. The results show higher efficiencies of those sensitized with ZnP. These results have been explained, taking into account the electronic character of the metal ion, which acts as a mediator in the injection step, and, on the other hand, considering the number of anchoring groups to which it binds to the surface of TiO2.

Keywords: DSSC, porphyrin, TD-DFT, electronic properties, donor-acceptor groups

Procedia PDF Downloads 77
453 A Dihydropyridine Derivative as a Highly Selective Fluorometric Probe for Quantification of Au3+ Residue in Gold Nanoparticle Solution

Authors: Waroton Paisuwan, Mongkol Sukwattanasinitt, Mamoru Tobisu, Anawat Ajavakom

Abstract:

Novel dihydroquinoline derivatives (DHP and DHP-OH) were synthesized in one pot via a tandem trimerization-cyclization of methylpropiolate. DHP and DHP-OH possess strong blue fluorescence with high quantum efficiencies over 0.70 in aqueous media. DHP-OH displays a remarkable fluorescence quenching selectively to the presence of Au3+ through the oxidation of dihydropyridine to pyridinium ion as confirmed by NMR and HRMS. DHP-OH was used to demonstrate the quantitative analysis of Au3+ in water samples with the limit of detection of 33 ppb and excellent recovery (>95%). This fluorescent probe was also applied for the determination of Au3+ residue in the gold nanoparticle solution and a paper-based sensing strip for the on-site detection of Au3+.

Keywords: Gold(III) ion detection, Fluorescent sensor, Fluorescence quenching, Dihydropyridine, Gold nanoparticles (AuNPs)

Procedia PDF Downloads 83
452 Rapid Plasmonic Colorimetric Glucose Biosensor via Biocatalytic Enlargement of Gold Nanostars

Authors: Masauso Moses Phiri

Abstract:

Frequent glucose monitoring is essential to the management of diabetes. Plasmonic enzyme-based glucose biosensors have the advantages of greater specificity, simplicity and rapidity. The aim of this study was to develop a rapid plasmonic colorimetric glucose biosensor based on biocatalytic enlargement of AuNS guided by GOx. Gold nanoparticles of 18 nm in diameter were synthesized using the citrate method. Using these as seeds, a modified seeded method for the synthesis of monodispersed gold nanostars was followed. Both the spherical and star-shaped nanoparticles were characterized using ultra-violet visible spectroscopy, agarose gel electrophoresis, dynamic light scattering, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The feasibility of a plasmonic colorimetric assay through growth of AuNS by silver coating in the presence of hydrogen peroxide was investigated by several control and optimization experiments. Conditions for excellent sensing such as the concentration of the detection solution in the presence of 20 µL AuNS, 10 mM of 2-(N-morpholino) ethanesulfonic acid (MES), ammonia and hydrogen peroxide were optimized. Using the optimized conditions, the glucose assay was developed by adding 5mM of GOx to the solution and varying concentrations of glucose to it. Kinetic readings, as well as color changes, were observed. The results showed that the absorbance values of the AuNS were blue shifting and increasing as the concentration of glucose was elevated. Control experiments indicated no growth of AuNS in the absence of GOx, glucose or molecular O₂. Increased glucose concentration led to an enhanced growth of AuNS. The detection of glucose was also done by naked-eye. The color development was near complete in ± 10 minutes. The kinetic readings which were monitored at 450 and 560 nm showed that the assay could discriminate between different concentrations of glucose by ± 50 seconds and near complete at ± 120 seconds. A calibration curve for the qualitative measurement of glucose was derived. The magnitude of wavelength shifts and absorbance values increased concomitantly with glucose concentrations until 90 µg/mL. Beyond that, it leveled off. The lowest amount of glucose that could produce a blue shift in the localized surface plasmon resonance (LSPR) absorption maxima was found to be 10 – 90 µg/mL. The limit of detection was 0.12 µg/mL. This enabled the construction of a direct sensitivity plasmonic colorimetric detection of glucose using AuNS that was rapid, sensitive and cost-effective with naked-eye detection. It has great potential for transfer of technology for point-of-care devices.

Keywords: colorimetric, gold nanostars, glucose, glucose oxidase, plasmonic

Procedia PDF Downloads 151
451 Enhancing the Performance of Vapor Compression Refrigeration Systems Using HFC134a by Nanoparticles Suspensions

Authors: Hafsi Khebab, Zirari Mounir, Mohamed Nadjib Bouaziz

Abstract:

High Global Warming Potential refrigerants (HydroFluroCarbons) are one of the worst greenhouse gases used in a wide variety of applications, including refrigeration and air-conditioning. Nanotechnology is a promising field in sustainable energy to reduce energy and ecological resource consumption for HVACR (heat, ventilation, air conditioning, and refrigeration) systems. Most researchers reported an improvement in heat transfer coefficient, Coefficient of performance. In this report, a brief summary has been done on the performance enhancement of the Vapor Compression Refrigeration system using HFC134a with nano refrigerants.

Keywords: nanorefrigerant, HFCs, greenhouse gases, GWP, HVACR systems, energy saving

Procedia PDF Downloads 80
450 The Effect of Feedstock Powder Treatment / Processing on the Microstructure, Quality, and Performance of Thermally Sprayed Titanium Based Composite Coating

Authors: Asma Salman, Brian Gabbitas, Peng Cao, Deliang Zhang

Abstract:

The performance of a coating is strongly dependent upon its microstructure, which in turn is dependent on the characteristics of the feedstock powder. This study involves the evaluation and performance of a titanium-based composite coating produced by the HVOF (high-velocity oxygen fuel) spraying method. The feedstock for making the composite coating was produced using high energy mechanical milling of TiO2 and Al powders followed by a combustion reaction. The characteristics of the feedstock powder were improved by treating it with an organic binder. Two types of coatings were produced using treated and untreated feedstock powders. The microstructures and characteristics of both types of coatings were studied, and their thermal shock resistance was accessed by dipping into molten aluminum. The results of this study showed that feedstock treatment did not have a significant effect on the microstructure of the coatings. However, it did affect the uniformity, thickness and surface roughness of the coating on the steel substrate. A coating produced by an untreated feedstock showed better thermal shock resistance in molten aluminum compared with the one produced by PVA (polyvinyl alcohol) treatment.

Keywords: coating, feedstock, powder processing, thermal shock resistance, thermally spraying

Procedia PDF Downloads 268
449 A Low-Cost Dye Solar Cells Based on Ordinary Glass as Substrates

Authors: Sangmo Jon, Ganghyok Kim, Kwanghyok Jong, Ilnam Jo, Hyangsun Kim, Kukhyon Pae, GyeChol Sin

Abstract:

The back contact dye solar cells (BCDSCs), in which the transparent conductive oxide (TCO) is omitted, have the potential to use intact low-cost general substrates such as glass, metal foil, and papers. Herein, we introduce a facile manufacturing method of a Ti back contact electrode for the BCDSCs. We found that the polylinkers such as poly(butyl titanate) have a strong binding property to make Ti particles connect with one another. A porous Ti film, which consists of Ti particles of ≤10㎛ size connected by a small amount of polylinkers, has an excellent low sheet resistance of 10 ohm sq⁻¹ for an efficient electron collection for DSCs. This Ti back contact electrode can be prepared by using a facile printing method under normal ambient conditions. Conjugating the new back contact electrode technology with the traditional monolithic structure using the carbon counter electrode, we fabricated all TCO-less DSCs. These four-layer structured DSCs consist of a dye-adsorbed nanocrystalline TiO₂ film on a glass substrate, a porous Ti back contact layer, a ZrO₂ spacer layer, and a carbon counter electrode in a layered structure. Under AM 1.5G and 100mWcm⁻² simulated sunlight illumination, the four-layer structured DSCs with N719 dyes and I⁻/I₃⁻ redox electrolytes achieved PCEs up to 5.21%.

Keywords: dye solar cells, TCO-less, back contact, printing, porous Ti film

Procedia PDF Downloads 65
448 Effect of Wheat Germ Agglutinin- and Lactoferrin-Grafted Catanionic Solid Lipid Nanoparticles on Targeting Delivery of Etoposide to Glioblastoma Multiforme

Authors: Yung-Chih Kuo, I-Hsin Wang

Abstract:

Catanionic solid lipid nanoparticles (CASLNs) with surface wheat germ agglutinin (WGA) and lactoferrin (Lf) were formulated for entrapping and releasing etoposide (ETP), crossing the blood–brain barrier (BBB), and inhibiting the growth of glioblastoma multiforme (GBM). Microemulsified ETP-CASLNs were modified with WGA and Lf for permeating a cultured monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and for treating malignant U87MG cells. Experimental evidence revealed that an increase in the concentration of catanionic surfactant from 5 μM to 7.5 μM reduced the particle size. When the concentration of catanionic surfactant increased from 7.5 μM to 12.5 μM, the particle size increased, yielding a minimal diameter of WGA-Lf-ETP-CASLNs at 7.5 μM of catanionic surfactant. An increase in the weight percentage of BW from 25% to 75% enlarged WGA-Lf-ETP-CASLNs. In addition, an increase in the concentration of catanionic surfactant from 5 to 15 μM increased the absolute value of zeta potential of WGA-Lf-ETP-CASLNs. It was intriguing that the increment of the charge as a function of the concentration of catanionic surfactant was approximately linear. WGA-Lf-ETP-CASLNs revealed an integral structure with smooth particle contour, displayed a lighter exterior layer of catanionic surfactant, WGA, and Lf and showed a rigid interior region of solid lipids. A variation in the concentration of catanionic surfactant between 5 μM and 15 μM yielded a maximal encapsulation efficiency of ETP ata 7.5 μM of catanionic surfactant. An increase in the concentration of Lf/WGA decreased the grafting efficiency of Lf/WGA. Also, an increase in the weight percentage of ETP decreased its encapsulation efficiency. Moreover, the release rate of ETP from WGA-Lf-ETP-CASLNs reduced with increasing concentration of catanionic surfactant, and WGA-Lf-ETP-CASLNs at 12.5 μM of catanionic surfactant exhibited a feature of sustained release. The order in the viability of HBMECs was ETP-CASLNs ≅ Lf-ETP-CASLNs ≅ WGA-Lf-ETP-CASLNs > ETP. The variation in the transendothelial electrical resistance (TEER) and permeability of propidium iodide (PI) was negligible when the concentration of Lf increased. Furthermore, an increase in the concentration of WGA from 0.2 to 0.6 mg/mL insignificantly altered the TEER and permeability of PI. When the concentration of Lf increased from 2.5 to 7.5 μg/mL and the concentration of WGA increased from 2.5 to 5 μg/mL, the enhancement in the permeability of ETP was minor. However, 10 μg/mL of Lf promoted the permeability of ETP using Lf-ETP-CASLNs, and 5 and 10 μg/mL of WGA could considerably improve the permeability of ETP using WGA-Lf-ETP-CASLNs. The order in the efficacy of inhibiting U87MG cells was WGA-Lf-ETP-CASLNs > Lf-ETP-CASLNs > ETP-CASLNs > ETP. As a result, WGA-Lf-ETP-CASLNs reduced the TEER, enhanced the permeability of PI, induced a minor cytotoxicity to HBMECs, increased the permeability of ETP across the BBB, and improved the antiproliferative efficacy of U87MG cells. The grafting of WGA and Lf is crucial to control the medicinal property of ETP-CASLNs and WGA-Lf-ETP-CASLNs can be promising colloidal carriers in GBM management.

Keywords: catanionic solid lipid nanoparticle, etoposide, glioblastoma multiforme, lactoferrin, wheat germ agglutinin

Procedia PDF Downloads 235