Search results for: swelling performance
638 Numerical Simulation of the Heat Transfer Process in a Double Pipe Heat Exchanger
Authors: J. I. Corcoles, J. D. Moya-Rico, A. Molina, J. F. Belmonte, J. A. Almendros-Ibanez
Abstract:
One of the most common heat exchangers technology in engineering processes is the use of double-pipe heat exchangers (DPHx), mainly in the food industry. To improve the heat transfer performance, several passive geometrical devices can be used, such as the wall corrugation of tubes, which increases the wet perimeter maintaining a constant cross-section area, increasing consequently the convective surface area. It contributes to enhance heat transfer in forced convection, promoting secondary recirculating flows. One of the most extended tools to analyse heat exchangers' efficiency is the use of computational fluid dynamic techniques (CFD), a complementary activity to the experimental studies as well as a previous step for the design of heat exchangers. In this study, a double pipe heat exchanger behaviour with two different inner tubes, smooth and spirally corrugated tube, have been analysed. Hence, experimental analysis and steady 3-D numerical simulations using the commercial code ANSYS Workbench v. 17.0 are carried out to analyse the influence of geometrical parameters for spirally corrugated tubes at turbulent flow. To validate the numerical results, an experimental setup has been used. To heat up or cool down the cold fluid as it passes through the heat exchanger, the installation includes heating and cooling loops served by an electric boiler with a heating capacity of 72 kW and a chiller, with a cooling capacity of 48 kW. Two tests have been carried out for the smooth tube and for the corrugated one. In all the tests, the hot fluid has a constant flowrate of 50 l/min and inlet temperature of 59.5°C. For the cold fluid, the flowrate range from 25 l/min (Test 1) and 30 l/min (Test 2) with an inlet temperature of 22.1°C. The heat exchanger is made of stainless steel, with an external diameter of 35 mm and wall thickness of 1.5 mm. Both inner tubes have an external diameter of 24 mm and 1 mm thickness of stainless steel with a length of 2.8 m. The corrugated tube has a corrugation height (H) of 1.1 mm and helical pitch (P) of 25 mm. It is characterized using three non-dimensional parameters, the ratio of the corrugation shape and the diameter (H/D), the helical pitch (P/D) and the severity index (SI = H²/P x D). The results showed good agreement between the numerical and the experimental results. Hence, the lowest differences were shown for the fluid temperatures. In all the analysed tests and for both analysed tubes, the temperature obtained numerically was slightly higher than the experimental results, with values ranged between 0.1% and 0.7%. Regarding the pressure drop, the maximum differences between the values obtained numerically, and the experimental values were close to 16%. Based on the experimental and the numerical results, for the corrugated tube, it can be highlighted that the temperature difference between the inlet and the outlet of the cold fluid is 42%, higher than the smooth tube.Keywords: corrugated tube, heat exchanger, heat transfer, numerical simulation
Procedia PDF Downloads 148637 Counteract Heat Stress on Broiler Chicks by Adding Anti-Heat Stress Vitamins (Vitamin C and E) with Organic Zinc
Authors: Omnia Y. Shawky, Asmaa M. Megahed, Alaa E. ElKomy, A. E. Abd-El-Hamid, Y. A. Attia
Abstract:
This study was carried out to elevate the broilers physiological response against heat stress and reduce this impact by adding vitamin C (VC), vitamin E (VE) alone/or with organic zinc (Zn) to chicks’ rations. A total of 192, 26-day-old Arbor Acers male chicks were randomly divided into equal 8 groups (4 replicates for each). All experimental groups were treated as follow: Group 2 was served as a heat stress control that reared at 37ºC with relative humidity 53 ± 8% for 6 hours/day for three successive days/week and fed the basal diet only. Groups 3-8 were heat stressed in a like manner to group 2 and fed basal diet inclusion 200mg VC (group 3), 200mg VE (group 4), 200mg VC+200mg VE (group 5), 200mg VC+30mg Zn (group 6), 200mg VE+30mg Zn (group 7) and 200mg VC+200mg VE+30mg Zn (group 8) /kg feed, while Group 1 was served as a positive control that reared on a neutral temperature (NT) (approximately 21ºC) and fed the basal diet only. Respiration rate and rectal temperature were boosted of HS chicks (80.8 breath/min and 41.97ºC) compared to NT group (60.12 breath/min and 40.9ºC), while, adding VC alone and with VE or Zn resulted in decrease these measurements. Heat stress had a significantly negative effect on chicks body weight gain, feed consumption and feed conversion ratio compared to the NT group, this harmful effect could be overcome by adding VC and VE individually or with Zn. Chicks exposed to heat stress showed slightly increase hemoglobin concentration compared to NT group, while, adding VC, VE individually or with Zn alleviated this effect. Plasma glucose concentration was significantly increased in HS group than the NT group, but adding VC, VE individually or with Zn resulted in a reduction plasma glucose level, which it was still higher than the NT group. Heat stress caused an increase in plasma total lipids and cholesterol concentration compared to the NT group and inclusion VC or VE alone or with Zn was not able to reduce this effect. The increased liver enzymes activities (AST and ALT) that observed in HS group compared to NT group were removed by adding VC and VE individually or with Zn. As well, exposure of broiler chicks to heat stress resulted in a slightly decrease in plasma total antioxidant capacity level (TAC) superoxide dismutase and catalase enzymes activities, while inclusion VC and VE individually or with Zn in chicks rations caused an increased in these measurements. Broiler chicks that exposed to HS revealed a significant increase in heat shock protein (Hsp 70) compared to the NT group, while, adding VC or VE individually or with Zn resulted in a significant decrease in Hsp70 than the HS group and VE alone or with VC had the greatest effect. In conclusion, it could be overcome the harmful and the negative effect of heat stress on broiler chicks’ productive performance and physiological status by inclusion VC (200mg) or VE (200mg) individual or in a combination with organic zinc (30 mg) in chicks’ rations.Keywords: heat stress, broiler, vitamin C, vitamin E, organic zinc
Procedia PDF Downloads 204636 Evaluation of Yield and Yield Components of Malaysian Palm Oil Board-Senegal Oil Palm Germplasm Using Multivariate Tools
Authors: Khin Aye Myint, Mohd Rafii Yusop, Mohd Yusoff Abd Samad, Shairul Izan Ramlee, Mohd Din Amiruddin, Zulkifli Yaakub
Abstract:
The narrow base of genetic is the main obstacle of breeding and genetic improvement in oil palm industry. In order to broaden the genetic bases, the Malaysian Palm Oil Board has been extensively collected wild germplasm from its original area of 11 African countries which are Nigeria, Senegal, Gambia, Guinea, Sierra Leone, Ghana, Cameroon, Zaire, Angola, Madagascar, and Tanzania. The germplasm collections were established and maintained as a field gene bank in Malaysian Palm Oil Board (MPOB) Research Station in Kluang, Johor, Malaysia to conserve a wide range of oil palm genetic resources for genetic improvement of Malaysian oil palm industry. Therefore, assessing the performance and genetic diversity of the wild materials is very important for understanding the genetic structure of natural oil palm population and to explore genetic resources. Principal component analysis (PCA) and Cluster analysis are very efficient multivariate tools in the evaluation of genetic variation of germplasm and have been applied in many crops. In this study, eight populations of MPOB-Senegal oil palm germplasm were studied to explore the genetic variation pattern using PCA and cluster analysis. A total of 20 yield and yield component traits were used to analyze PCA and Ward’s clustering using SAS 9.4 version software. The first four principal components which have eigenvalue >1 accounted for 93% of total variation with the value of 44%, 19%, 18% and 12% respectively for each principal component. PC1 showed highest positive correlation with fresh fruit bunch (0.315), bunch number (0.321), oil yield (0.317), kernel yield (0.326), total economic product (0.324), and total oil (0.324) while PC 2 has the largest positive association with oil to wet mesocarp (0.397) and oil to fruit (0.458). The oil palm population were grouped into four distinct clusters based on 20 evaluated traits, this imply that high genetic variation existed in among the germplasm. Cluster 1 contains two populations which are SEN 12 and SEN 10, while cluster 2 has only one population of SEN 3. Cluster 3 consists of three populations which are SEN 4, SEN 6, and SEN 7 while SEN 2 and SEN 5 were grouped in cluster 4. Cluster 4 showed the highest mean value of fresh fruit bunch, bunch number, oil yield, kernel yield, total economic product, and total oil and Cluster 1 was characterized by high oil to wet mesocarp, and oil to fruit. The desired traits that have the largest positive correlation on extracted PCs could be utilized for the improvement of oil palm breeding program. The populations from different clusters with the highest cluster means could be used for hybridization. The information from this study can be utilized for effective conservation and selection of the MPOB-Senegal oil palm germplasm for the future breeding program.Keywords: cluster analysis, genetic variability, germplasm, oil palm, principal component analysis
Procedia PDF Downloads 166635 Attention and Memory in the Music Learning Process in Individuals with Visual Impairments
Authors: Lana Burmistrova
Abstract:
Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features.Keywords: attention, blindness, memory, music learning, strategy
Procedia PDF Downloads 186634 Capital Accumulation and Unemployment in Namibia, Nigeria and South Africa
Authors: Abubakar Dikko
Abstract:
The research investigates the causes of unemployment in Namibia, Nigeria and South Africa, and the role of Capital Accumulation in reducing the unemployment profile of these economies as proposed by the post-Keynesian economics. This is conducted through extensive review of literature on the NAIRU models and focused on the post-Keynesian view of unemployment within the NAIRU framework. The NAIRU (non-accelerating inflation rate of unemployment) model has become a dominant framework used in macroeconomic analysis of unemployment. The study views the post-Keynesian economics arguments that capital accumulation is a major determinant of unemployment. Unemployment remains the fundamental socio-economic challenge facing African economies. It has been a burden to citizens of those economies. Namibia, Nigeria and South Africa are great African nations battling with high unemployment rates. In 2013, the countries recorded high unemployment rates of 16.9%, 23.9% and 24.9% respectively. Most of the unemployed in these economies comprises of youth. Roughly about 40% working age South Africans has jobs, whereas in Nigeria and Namibia is less than that. Unemployment in Africa has wide implications on households which has led to extensive poverty and inequality, and created a rampant criminality. Recently in South Africa there has been a case of xenophobic attacks which were caused by the citizens of the country as a result of unemployment. The high unemployment rate in the country led the citizens to chase away foreigners in the country claiming that they have taken away their jobs. The study proposes that there is a strong relationship between capital accumulation and unemployment in Namibia, Nigeria and South Africa, and capital accumulation is responsible for high unemployment rates in these countries. For the economies to achieve steady state level of employment and satisfactory level of economic growth and development there is need for capital accumulation to take place. The countries in the study have been selected after a critical research and investigations. They are selected based on the following criteria; African economies with high unemployment rates above 15% and have about 40% of their workforce unemployed. This level of unemployment is the critical level of unemployment in Africa as expressed by International Labour Organization (ILO). The African countries with low level of capital accumulation. Adequate statistical measures have been employed using a time-series analysis in the study and the results revealed that capital accumulation is the main driver of unemployment performance in the chosen African countries. An increase in the accumulation of capital causes unemployment to reduce significantly. The results of the research work will be useful and relevant to federal governments and ministries, departments and agencies (MDAs) of Namibia, Nigeria and South Africa to resolve the issue of high and persistent unemployment rates in their economies which are great burden that slows growth and development of developing economies. Also, the result can be useful to World Bank, African Development Bank and International Labour Organization (ILO) in their further research and studies on how to tackle unemployment in developing and emerging economies.Keywords: capital accumulation, unemployment, NAIRU, Post-Keynesian economics
Procedia PDF Downloads 265633 Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery
Authors: Ming-Yeh Lu, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu
Abstract:
Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future.Keywords: anaerobic treatment, forward osmosis, phosphorus recovery, membrane bioreactor
Procedia PDF Downloads 271632 Roads and Agriculture: Impacts of Connectivity in Peru
Authors: Julio Aguirre, Yohnny Campana, Elmer Guerrero, Daniel De La Torre Ugarte
Abstract:
A well-developed transportation network is a necessary condition for a country to derive full benefits from good trade and macroeconomic policies. Road infrastructure plays a key role in the economic development of rural areas of developing countries; where agriculture is the main economic activity. The ability to move agricultural production from the place of production to the market, and then to the place of consumption, greatly influence the economic value of farming activities, and of the resources involved in the production process, i.e., labor and land. Consequently, investment in transportation networks contributes to enhance or overcome the natural advantages or disadvantages that topography and location have imposed over the agricultural sector. This is of particular importance when dealing with countries, like Peru, with a great topographic diversity. The objective of this research is to estimate the impacts of road infrastructure on the performance of the agricultural sector. Specific variables of interest are changes in travel time, shifts of production for self-consumption to production for the market, changes in farmers income, and impacts on the diversification of the agricultural sector. In the study, a cross-section model with instrumental variables is the central methodological instrument. The data is obtained from agricultural and transport geo-referenced databases, and the instrumental variable specification utilized is based on the Kruskal algorithm. The results show that the expansion of road connectivity reduced farmers' travel time by an average of 3.1 hours and the proportion of output sold in the market increases by up to 40 percentage points. The increase in connectivity has an unexpected increase in the districts index of diversification of agricultural production. The results are robust to the inclusion of year and region fixed-effects, and to control for geography (i.e., slope and altitude), population variables, and mining activity. Other results are also very eloquent. For example, a clear positive impact can be seen in access to local markets, but this does not necessarily correlate with an increase in the production of the sector. This can be explained by the fact that agricultural development not only requires provision of roads but additional complementary infrastructure and investments intended to provide the necessary conditions so that producers can offer quality products (improved management practices, timely maintenance of irrigation infrastructure, transparent management of water rights, among other factors). Therefore, complementary public goods are needed to enhance the effects of roads on the welfare of the population, beyond enabling them to increase their access to markets.Keywords: agriculture devolepment, market access, road connectivity, regional development
Procedia PDF Downloads 208631 Nano-Immunoassay for Diagnosis of Active Schistosomal Infection
Authors: Manal M. Kame, Hanan G. El-Baz, Zeinab A.Demerdash, Engy M. Abd El-Moneem, Mohamed A. Hendawy, Ibrahim R. Bayoumi
Abstract:
There is a constant need to improve the performance of current diagnostic assays of schistosomiasis as well as develop innovative testing strategies to meet new testing challenges. This study aims at increasing the diagnostic efficiency of monoclonal antibody (MAb)-based antigen detection assays through gold nanoparticles conjugated with specific anti-Schistosoma mansoni monoclonal antibodies. In this study, several hybidoma cell lines secreting MAbs against adult worm tegumental Schistosoma antigen (AWTA) were produced at Immunology Department of Theodor Bilharz Research Institute and preserved in liquid nitrogen. One MAb (6D/6F) was chosen for this study due to its high reactivity to schistosome antigens with highest optical density (OD) values. Gold nanoparticles (AuNPs) were functionalized and conjugated with MAb (6D/6F). The study was conducted on serum samples of 116 subjects: 71 patients with S. mansoni eggs in their stool samples group (gp 1), 25 with other parasites (gp2) and 20 negative healthy controls (gp3). Patients in gp1 were further subdivided according to egg count in their stool samples into Light infection {≤ 50 egg per gram(epg) (n= 17)}, moderate {51-100 epg (n= 33)} and severe infection {>100 epg(n= 21)}. Sandwich ELISA was performed using (AuNPs -MAb) for detection of circulating schistosomal antigen (CSA) levels in serum samples of all groups and the results were compared with that after using MAb/ sandwich ELISA system. Results Gold- MAb/ ELISA system reached a lower detection limit of 10 ng/ml compared to 85 ng/ml on using MAb/ ELISA and the optimal concentrations of AuNPs -MAb were found to be 12 folds less than that of MAb/ ELISA system for detection of CSA. The sensitivity and specificity of sandwich ELISA for detection of CSA levels using AuNPs -MAb were 100% & 97.8 % respectively compared to 87.3% &93.38% respectively on using MAb/ ELISA system. It was found that CSA was detected in 9 out of 71 S.mansoni infected patients on using AuNPs - MAb/ ELISA system and was not detected by MAb/ ELISA system. All those patients (9) was found to have an egg count below 50 epg feces (patients with light infections). ROC curve analyses revealed that sandwich ELISA using gold-MAb was an excellent diagnostic investigator that could differentiate Schistosoma patients from healthy controls, on the other hand it revealed that sandwich ELISA using MAb was not accurate enough as it could not recognize nine out of 71 patients with light infections. Conclusion Our data demonstrated that: Loading gold nanoparticles with MAb (6D/6F) increases the sensitivity and specificity of sandwich ELISA for detection of CSA, thus active (early) and light infections could be easily detected. Moreover this binding will decrease the amount of MAb consumed in the assay and lower the coast. The significant positive correlation that was detected between ova count (intensity of infection) and OD reading in sandwich ELISA using gold- MAb enables its use to detect the severity of infections and follow up patients after treatment for monitoring of cure.Keywords: Schistosomiasis, nanoparticles, gold, monoclonal antibodies, ELISA
Procedia PDF Downloads 372630 Development of Method for Detecting Low Concentration of Organophosphate Pesticides in Vegetables Using near Infrared Spectroscopy
Authors: Atchara Sankom, Warapa Mahakarnchanakul, Ronnarit Rittiron, Tanaboon Sajjaanantakul, Thammasak Thongket
Abstract:
Vegetables are frequently contaminated with pesticides residues resulting in the most food safety concern among agricultural products. The objective of this work was to develop a method to detect the organophosphate (OP) pesticides residues in vegetables using Near Infrared (NIR) spectroscopy technique. Low concentration (ppm) of OP pesticides in vegetables were investigated. The experiment was divided into 2 sections. In the first section, Chinese kale spiked with different concentrations of chlorpyrifos pesticide residues (0.5-100 ppm) was chosen as the sample model to demonstrate the appropriate conditions of sample preparation, both for a solution or solid sample. The spiked samples were extracted with acetone. The sample extracts were applied as solution samples, while the solid samples were prepared by the dry-extract system for infrared (DESIR) technique. The DESIR technique was performed by embedding the solution sample on filter paper (GF/A) and then drying. The NIR spectra were measured with the transflectance mode over wavenumber regions of 12,500-4000 cm⁻¹. The QuEChERS method followed by gas chromatography-mass spectrometry (GC-MS) was performed as the standard method. The results from the first section showed that the DESIR technique with NIR spectroscopy demonstrated good accurate calibration result with R² of 0.93 and RMSEP of 8.23 ppm. However, in the case of solution samples, the prediction regarding the NIR-PLSR (partial least squares regression) equation showed poor performance (R² = 0.16 and RMSEP = 23.70 ppm). In the second section, the DESIR technique coupled with NIR spectroscopy was applied to the detection of OP pesticides in vegetables. Vegetables (Chinese kale, cabbage and hot chili) were spiked with OP pesticides (chlorpyrifos ethion and profenofos) at different concentrations ranging from 0.5 to 100 ppm. Solid samples were prepared (based on the DESIR technique), then samples were scanned by NIR spectrophotometer at ambient temperature (25+2°C). The NIR spectra were measured as in the first section. The NIR- PLSR showed the best calibration equation for detecting low concentrations of chlorpyrifos residues in vegetables (Chinese kale, cabbage and hot chili) according to the prediction set of R2 and RMSEP of 0.85-0.93 and 8.23-11.20 ppm, respectively. For ethion residues, the best calibration equation of NIR-PLSR showed good indexes of R² and RMSEP of 0.88-0.94 and 7.68-11.20 ppm, respectively. As well as the results for profenofos pesticide, the NIR-PLSR also showed the best calibration equation for detecting the profenofos residues in vegetables according to the good index of R² and RMSEP of 0.88-0.97 and 5.25-11.00 ppm, respectively. Moreover, the calibration equation developed in this work could rapidly predict the concentrations of OP pesticides residues (0.5-100 ppm) in vegetables, and there was no significant difference between NIR-predicted values and actual values (data from GC-MS) at a confidence interval of 95%. In this work, the proposed method using NIR spectroscopy involving the DESIR technique has proved to be an efficient method for the screening detection of OP pesticides residues at low concentrations, and thus increases the food safety potential of vegetables for domestic and export markets.Keywords: NIR spectroscopy, organophosphate pesticide, vegetable, food safety
Procedia PDF Downloads 151629 Optimizing the Pair Carbon Xerogels-Electrolyte for High Performance Supercapacitors
Authors: Boriana Karamanova, Svetlana Veleva, Luybomir Soserov, Ana Arenillas, Francesco Lufrano, Antonia Stoyanova
Abstract:
Supercapacitors have received a lot of research attention and are promising energy storage devices due to their high power and long cycle life. In order to developed an advanced device with significant capacity for storing charge and cheap carbon materials, efforts must focus not only on improving synthesis by controlling the morphology and pore size but also on improving electrode-electrolyte compatibility of the resulting systems. The present study examines the relationship between the surface chemistry of two activated carbon xerogels, the electrolyte type, and the electrochemical properties of supercapacitors. Activated carbon xerogels were prepared by varying the initial pH of the resorcinol-formaldehyde aqueous solution. The materials produced are physicochemical characterized by DTA/TGA, porous characterization, and SEM analysis. The carbon xerogel based electrodes were prepared by spreading over glass plate a slurry containing the carbon gel, graphite, and poly vinylidene difluoride (PVDF) binder. The layer formed was dried consecutively at different temperatures and then detached by water. After, the layer was dried again to improve its mechanical stability. The developed electrode materials and the Aquivion® E87-05S membrane (Solvay Specialty Polymers), socked in Na2SO4 as a polymer electrolyte, were used to assembly the solid-state supercapacitor. Symmetric supercapacitor cells composed by same electrodes and 1 M KOH electrolytes are also assembled and tested for comparison. The supercapacitor performances are verified by different electrochemical methods - cyclic voltammetry, galvanostatic charge/discharge measurements, electrochemical impedance spectroscopy, and long-term durability tests in neutral and alkaline electrolytes. Specific capacitances, energy, and power density, energy efficiencies, and durability were compared into studied supercapacitors. Ex-situ physicochemical analyses on the synthesized materials have also been performed, which provide information about chemical and structural changes in the electrode morphology during charge / discharge durability tests. They are discussed on the basis of electrode-electrolyte interaction. The obtained correlations could be of significance in order to design sustainable solid-state supercapacitors with high power and energy density. Acknowledgement: This research is funded by the Ministry of Education and Science of Bulgaria under the National Program "European Scientific Networks" (Agreement D01-286 / 07.10.2020, D01-78/30.03.2021). Authors gratefully acknowledge.Keywords: carbon xerogel, electrochemical tests, neutral and alkaline electrolytes, supercapacitors
Procedia PDF Downloads 137628 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach
Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal
Abstract:
Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol
Procedia PDF Downloads 109627 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays
Authors: Min Han, Di Wu, Lin Yuan, Fei Liu
Abstract:
Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance
Procedia PDF Downloads 275626 Commissioning, Test and Characterization of Low-Tar Biomass Gasifier for Rural Applications and Small-Scale Plant
Authors: M. Mashiur Rahman, Ulrik Birk Henriksen, Jesper Ahrenfeldt, Maria Puig Arnavat
Abstract:
Using biomass gasification to make producer gas is one of the promising sustainable energy options available for small scale plant and rural applications for power and electricity. Tar content in producer gas is the main problem if it is used directly as a fuel. A low-tar biomass (LTB) gasifier of approximately 30 kW capacity has been developed to solve this. Moving bed gasifier with internal recirculation of pyrolysis gas has been the basic principle of the LTB gasifier. The gasifier focuses on the concept of mixing the pyrolysis gases with gasifying air and burning the mixture in separate combustion chamber. Five tests were carried out with the use of wood pellets and wood chips separately, with moisture content of 9-34%. The LTB gasifier offers excellent opportunities for handling extremely low-tar in the producer gas. The gasifiers producer gas had an extremely low tar content of 21.2 mg/Nm³ (avg.) and an average lower heating value (LHV) of 4.69 MJ/Nm³. Tar content found in different tests in the ranges of 10.6-29.8 mg/Nm³. This low tar content makes the producer gas suitable for direct use in internal combustion engine. Using mass and energy balances, the average gasifier capacity and cold gas efficiency (CGE) observed 23.1 kW and 82.7% for wood chips, and 33.1 kW and 60.5% for wood pellets, respectively. Average heat loss in term of higher heating value (HHV) observed 3.2% of thermal input for wood chips and 1% for wood pellets, where heat loss was found 1% of thermal input in term of enthalpy. Thus, the LTB gasifier performs better compared to typical gasifiers in term of heat loss. Equivalence ratio (ER) in the range of 0.29 to 0.41 gives better performance in terms of heating value and CGE. The specific gas production yields at the above ER range were in the range of 2.1-3.2 Nm³/kg. Heating value and CGE changes proportionally with the producer gas yield. The average gas compositions (H₂-19%, CO-19%, CO₂-10%, CH₄-0.7% and N₂-51%) obtained for wood chips are higher than the typical producer gas composition. Again, the temperature profile of the LTB gasifier observed relatively low temperature compared to typical moving bed gasifier. The average partial oxidation zone temperature of 970°C observed for wood chips. The use of separate combustor in the partial oxidation zone substantially lowers the bed temperature to 750°C. During the test, the engine was started and operated completely with the producer gas. The engine operated well on the produced gas, and no deposits were observed in the engine afterwards. Part of the producer gas flow was used for engine operation, and corresponding electrical power was found to be 1.5 kW continuously, and maximum power of 2.5 kW was also observed, while maximum generator capacity is 3 kW. A thermodynamic equilibrium model is good agreement with the experimental results and correctly predicts the equilibrium bed temperature, gas composition, LHV of the producer gas and ER with the experimental data, when the heat loss of 4% of the energy input is considered.Keywords: biomass gasification, low-tar biomass gasifier, tar elimination, engine, deposits, condensate
Procedia PDF Downloads 115625 Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements
Authors: Dragan Ribarić
Abstract:
We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes.Keywords: Mindlin plate theory, problem-independent linked interpolation, problem-dependent interpolation, quadrilateral displacement-based plate finite elements
Procedia PDF Downloads 313624 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction
Authors: Xiaoling Ren, Guidong Yang
Abstract:
As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility
Procedia PDF Downloads 160623 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System
Authors: Emma S. Bowers
Abstract:
Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).Keywords: air circulation, PassivHaus, stack effect, thermal gradient
Procedia PDF Downloads 154622 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan
Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata
Abstract:
The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint
Procedia PDF Downloads 303621 Techno Economic Analysis for Solar PV and Hydro Power for Kafue Gorge Power Station
Authors: Elvis Nyirenda
Abstract:
This research study work was done to evaluate and propose an optimum measure to enhance the uptake of clean energy technologies such as solar photovoltaics, the study also aims at enhancing the country’s energy mix from the overdependence on hydro power which is susceptible to droughts and climate change challenges The country in the years 2015 - 2016 and 2018 - 2019 had received rainfall below average due to climate change and a shift in the weather pattern; this resulted in prolonged power outages and load shedding for more than 10 hours per day. ZESCO Limited, the utility company that owns infrastructure in the generation, transmission, and distribution of electricity (state-owned), is seeking alternative sources of energy in order to reduce the over-dependence on hydropower stations. One of the alternative sources of energy is Solar Energy from the sun. However, solar power is intermittent in nature and to smoothen the load curve, investment in robust energy storage facilities is of great importance to enhance security and reliability of electricity supply in the country. The methodology of the study looked at the historical performance of the Kafue gorge upper power station and utilised the hourly generation figures as input data for generation modelling in Homer software. The average yearly demand was derived from the available data on the system SCADA. The two dams were modelled as natural battery with the absolute state of charging and discharging determined by the available water resource and the peak electricity demand. The software Homer Energy System is used to simulate the scheme incorporating a pumped storage facility and Solar photovoltaic systems. The pumped hydro scheme works like a natural battery for the conservation of water, with the only losses being evaporation and water leakages from the dams and the turbines. To address the problem of intermittency on the solar resource and the non-availability of water for hydropower generation, the study concluded that utilising the existing Hydro power stations, Kafue Gorge upper and Kafue Gorge Lower to work conjunctively with Solar energy will reduce power deficits and increase the security of supply for the country. An optimum capacity of 350MW of solar PV can be integrated while operating Kafue Gorge power station in both generating and pumping mode to enable efficient utilisation of water at Kafue Gorge upper Dam and Kafue Gorge Lower dam.Keywords: hydropower, solar power systems, energy storage, photovoltaics, solar irradiation, pumped hydro storage system, supervisory control and data acquisition, Homer energy
Procedia PDF Downloads 118620 MBES-CARIS Data Validation for the Bathymetric Mapping of Shallow Water in the Kingdom of Bahrain on the Arabian Gulf
Authors: Abderrazak Bannari, Ghadeer Kadhem
Abstract:
The objectives of this paper are the validation and the evaluation of MBES-CARIS BASE surface data performance for bathymetric mapping of shallow water in the Kingdom of Bahrain. The latter is an archipelago with a total land area of about 765.30 km², approximately 126 km of coastline and 8,000 km² of marine area, located in the Arabian Gulf, east of Saudi Arabia and west of Qatar (26° 00’ N, 50° 33’ E). To achieve our objectives, bathymetric attributed grid files (X, Y, and depth) generated from the coverage of ship-track MBSE data with 300 x 300 m cells, processed with CARIS-HIPS, were downloaded from the General Bathymetric Chart of the Oceans (GEBCO). Then, brought into ArcGIS and converted into a raster format following five steps: Exportation of GEBCO BASE surface data to the ASCII file; conversion of ASCII file to a points shape file; extraction of the area points covering the water boundary of the Kingdom of Bahrain and multiplying the depth values by -1 to get the negative values. Then, the simple Kriging method was used in ArcMap environment to generate a new raster bathymetric grid surface of 30×30 m cells, which was the basis of the subsequent analysis. Finally, for validation purposes, 2200 bathymetric points were extracted from a medium scale nautical map (1:100 000) considering different depths over the Bahrain national water boundary. The nautical map was scanned, georeferenced and overlaid on the MBES-CARIS generated raster bathymetric grid surface (step 5 above), and then homologous depth points were selected. Statistical analysis, expressed as a linear error at the 95% confidence level, showed a strong correlation coefficient (R² = 0.96) and a low RMSE (± 0.57 m) between the nautical map and derived MBSE-CARIS depths if we consider only the shallow areas with depths of less than 10 m (about 800 validation points). When we consider only deeper areas (> 10 m) the correlation coefficient is equal to 0.73 and the RMSE is equal to ± 2.43 m while if we consider the totality of 2200 validation points including all depths, the correlation coefficient is still significant (R² = 0.81) with satisfactory RMSE (± 1.57 m). Certainly, this significant variation can be caused by the MBSE that did not completely cover the bottom in several of the deeper pockmarks because of the rapid change in depth. In addition, steep slopes and the rough seafloor probably affect the acquired MBSE raw data. In addition, the interpolation of missed area values between MBSE acquisition swaths-lines (ship-tracked sounding data) may not reflect the true depths of these missed areas. However, globally the results of the MBES-CARIS data are very appropriate for bathymetric mapping of shallow water areas.Keywords: bathymetry mapping, multibeam echosounder systems, CARIS-HIPS, shallow water
Procedia PDF Downloads 381619 Assessment of the Environmental Compliance at the Jurassic Production Facilities towards HSE MS Procedures and Kuwait Environment Public Authority Regulations
Authors: Fatemah Al-Baroud, Sudharani Shreenivas Kshatriya
Abstract:
Kuwait Oil Company (KOC) is one of the companies for gas & oil production in Kuwait. The oil and gas industry is truly global; with operations conducted in every corner of the globe, the global community will rely heavily on oil and gas supplies. KOC has made many commitments to protect all due to KOC’s operations and operational releases. As per KOC’s strategy, the substantial increase in production activities will bring many challenges in managing various environmental hazards and stresses in the company. In order to handle those environmental challenges, the need of implementing effectively the health, safety, and environmental management system (HSEMS) is significant. And by implementing the HSEMS system properly, the environmental aspects of the activities, products, and services were identified, evaluated, and controlled in order to (i) Comply with local regulatory and other obligatory requirements; (ii) Comply with company policy and business requirements; and (iii) Reduce adverse environmental impact, including adverse impact to company reputation. Assessments for the Jurassic Production Facilities are being carried out as a part of the KOC HSEMS procedural requirement and monitoring the implementation of the relevant HSEMS procedures in the facilities. The assessments have been done by conducting series of theme audits using KOC’s audit protocol at JPFs. The objectives of the audits are to evaluate the compliance of the facilities towards the implementation of environmental procedures and the status of the KEPA requirement at all JPFs. The list of the facilities that were covered during the theme audit program are the following: (1) Jurassic Production Facility (JPF) – Sabriya (2) Jurassic Production Facility (JPF) – East Raudhatian (3) Jurassic Production Facility (JPF) – West Raudhatian (4)Early Production Facility (EPF 50). The auditing process comprehensively focuses on the application of KOC HSE MS procedures at JPFs and their ability to reduce the resultant negative impacts on the environment from the operations. Number of findings and observations were noted and highlighted in the audit reports and sent to all concerned controlling teams. The results of these audits indicated that the facilities, in general view, were in line with KOC HSE Procedures, and there were commitments in documenting all the HSE issues in the right records and plans. Further, implemented several control measures at JPFs that minimized/reduced the environmental impact, such as SRU were installed for sulphur recovery. Future scope and monitoring audit after a sufficient period of time will be carried out in conjunction with the controlling teams in order to verify the current status of the recommendations and evaluate the contractors' performance towards the required actions in preserving the environment.Keywords: assessment of the environmental compliance, environmental and social impact assessment, kuwait environment public authority regulations, health, safety and environment management procedures, jurassic production facilities
Procedia PDF Downloads 187618 Modeling Sorption and Permeation in the Separation of Benzene/ Cyclohexane Mixtures through Styrene-Butadiene Rubber Crosslinked Membranes
Authors: Hassiba Benguergoura, Kamal Chanane, Sâad Moulay
Abstract:
Pervaporation (PV), a membrane-based separation technology, has gained much attention because of its energy saving capability and low-cost, especially for separation of azeotropic or close-boiling liquid mixtures. There are two crucial issues for industrial application of pervaporation process. The first is developing membrane material and tailoring membrane structure to obtain high pervaporation performances. The second is modeling pervaporation transport to better understand of the above-mentioned structure–pervaporation relationship. Many models were proposed to predict the mass transfer process, among them, solution-diffusion model is most widely used in describing pervaporation transport including preferential sorption, diffusion and evaporation steps. For modeling pervaporation transport, the permeation flux, which depends on the solubility and diffusivity of components in the membrane, should be obtained first. Traditionally, the solubility was calculated according to the Flory–Huggins theory. Separation of the benzene (Bz)/cyclohexane (Cx) mixture is industrially significant. Numerous papers have been focused on the Bz/Cx system to assess the PV properties of membrane materials. Membranes with both high permeability and selectivity are desirable for practical application. Several new polymers have been prepared to get both high permeability and selectivity. Styrene-butadiene rubbers (SBR), dense membranes cross-linked by chloromethylation were used in the separation of benzene/cyclohexane mixtures. The impact of chloromethylation reaction as a new method of cross-linking SBR on the pervaporation performance have been reported. In contrast to the vulcanization with sulfur, the cross-linking takes places on styrene units of polymeric chains via a methylene bridge. The partial pervaporative (PV) fluxes of benzene/cyclohexane mixtures in styrene-butadiene rubber (SBR) were predicted using Fick's first law. The predicted partial fluxes and the PV separation factor agreed well with the experimental data by integrating Fick's law over the benzene concentration. The effects of feed concentration and operating temperature on the predicted permeation flux by this proposed model are investigated. The predicted permeation fluxes are in good agreement with experimental data at lower benzene concentration in feed, but at higher benzene concentration, the model overestimated permeation flux. The predicted and experimental permeation fluxes all increase with operating temperature increasing. Solvent sorption levels for benzene/ cyclohexane mixtures in a SBR membrane were determined experimentally. The results showed that the solvent sorption levels were strongly affected by the feed composition. The Flory- Huggins equation generates higher R-square coefficient for the sorption selectivity.Keywords: benzene, cyclohexane, pervaporation, permeation, sorption modeling, SBR
Procedia PDF Downloads 328617 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing
Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari
Abstract:
A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.Keywords: bacteria chromosome, bacterial identification, sequence, primer generation
Procedia PDF Downloads 193616 The Display of Environmental Information to Promote Energy Saving Practices: Evidence from a Massive Behavioral Platform
Authors: T. Lazzarini, M. Imbiki, P. E. Sutter, G. Borragan
Abstract:
While several strategies, such as the development of more efficient appliances, the financing of insulation programs or the rolling out of smart meters represent promising tools to reduce future energy consumption, their implementation relies on people’s decisions-actions. Likewise, engaging with consumers to reshape their behavior has shown to be another important way to reduce energy usage. For these reasons, integrating the human factor in the energy transition has become a major objective for researchers and policymakers. Digital education programs based on tangible and gamified user interfaces have become a new tool with potential effects to reduce energy consumption4. The B2020 program, developed by the firm “Économie d’Énergie SAS”, proposes a digital platform to encourage pro-environmental behavior change among employees and citizens. The platform integrates 160 eco-behaviors to help saving energy and water and reducing waste and CO2 emissions. A total of 13,146 citizens have used the tool so far to declare the range of eco-behaviors they adopt in their daily lives. The present work seeks to build on this database to identify the potential impact of adopted energy-saving behaviors (n=62) to reduce the use of energy in buildings. To this end, behaviors were classified into three categories regarding the nature of its implementation (Eco-habits: e.g., turning-off the light, Eco-actions: e.g., installing low carbon technology such as led light-bulbs and Home-Refurbishments: e.g., such as wall-insulation or double-glazed energy efficient windows). General Linear Models (GLM) disclosed the existence of a significantly higher frequency of Eco-habits when compared to the number of home-refurbishments realized by the platform users. While this might be explained in part by the high financial costs that are associated with home renovation works, it also contrasts with the up to three times larger energy-savings that can be accomplished by these means. Furthermore, multiple regression models failed to disclose the expected relationship between energy-savings and frequency of adopted eco behaviors, suggesting that energy-related practices are not necessarily driven by the correspondent energy-savings. Finally, our results also suggested that people adopting more Eco-habits and Eco-actions were more likely to engage in Home-Refurbishments. Altogether, these results fit well with a growing body of scientific research, showing that energy-related practices do not necessarily maximize utility, as postulated by traditional economic models, and suggest that other variables might be triggering them. Promoting home refurbishments could benefit from the adoption of complementary energy-saving habits and actions.Keywords: energy-saving behavior, human performance, behavioral change, energy efficiency
Procedia PDF Downloads 201615 Global-Scale Evaluation of Two Satellite-Based Passive Microwave Soil Moisture Data Sets (SMOS and AMSR-E) with Respect to Modelled Estimates
Authors: A. Alyaaria, b, J. P. Wignerona, A. Ducharneb, Y. Kerrc, P. de Rosnayd, R. de Jeue, A. Govinda, A. Al Bitarc, C. Albergeld, J. Sabaterd, C. Moisya, P. Richaumec, A. Mialonc
Abstract:
Global Level-3 surface soil moisture (SSM) maps from the passive microwave soil moisture and Ocean Salinity satellite (SMOSL3) have been released. To further improve the Level-3 retrieval algorithm, evaluation of the accuracy of the spatio-temporal variability of the SMOS Level 3 products (referred to here as SMOSL3) is necessary. In this study, a comparative analysis of SMOSL3 with a SSM product derived from the observations of the Advanced Microwave Scanning Radiometer (AMSR-E) computed by implementing the Land Parameter Retrieval Model (LPRM) algorithm, referred to here as AMSRM, is presented. The comparison of both products (SMSL3 and AMSRM) were made against SSM products produced by a numerical weather prediction system (SM-DAS-2) at ECMWF (European Centre for Medium-Range Weather Forecasts) for the 03/2010-09/2011 period at global scale. The latter product was considered here a 'reference' product for the inter-comparison of the SMOSL3 and AMSRM products. Three statistical criteria were used for the evaluation, the correlation coefficient (R), the root-mean-squared difference (RMSD), and the bias. Global maps of these criteria were computed, taking into account vegetation information in terms of biome types and Leaf Area Index (LAI). We found that both the SMOSL3 and AMSRM products captured well the spatio-temporal variability of the SM-DAS-2 SSM products in most of the biomes. In general, the AMSRM products overestimated (i.e., wet bias) while the SMOSL3 products underestimated (i.e., dry bias) SSM in comparison to the SM-DAS-2 SSM products. In term of correlation values, the SMOSL3 products were found to better capture the SSM temporal dynamics in highly vegetated biomes ('Tropical humid', 'Temperate Humid', etc.) while best results for AMSRM were obtained over arid and semi-arid biomes ('Desert temperate', 'Desert tropical', etc.). When removing the seasonal cycles in the SSM time variations to compute anomaly values, better correlation with the SM-DAS-2 SSM anomalies were obtained with SMOSL3 than with AMSRM, in most of the biomes with the exception of desert regions. Eventually, we showed that the accuracy of the remotely sensed SSM products is strongly related to LAI. Both the SMOSL3 and AMSRM (slightly better) SSM products correlate well with the SM-DAS2 products over regions with sparse vegetation for values of LAI < 1 (these regions represent almost 50% of the pixels considered in this global study). In regions where LAI>1, SMOSL3 outperformed AMSRM with respect to SM-DAS-2: SMOSL3 had almost consistent performances up to LAI = 6, whereas AMSRM performance deteriorated rapidly with increasing values of LAI.Keywords: remote sensing, microwave, soil moisture, AMSR-E, SMOS
Procedia PDF Downloads 357614 Boussinesq Model for Dam-Break Flow Analysis
Authors: Najibullah M, Soumendra Nath Kuiry
Abstract:
Dams and reservoirs are perceived for their estimable alms to irrigation, water supply, flood control, electricity generation, etc. which civilize the prosperity and wealth of society across the world. Meantime the dam breach could cause devastating flood that can threat to the human lives and properties. Failures of large dams remain fortunately very seldom events. Nevertheless, a number of occurrences have been recorded in the world, corresponding in an average to one to two failures worldwide every year. Some of those accidents have caused catastrophic consequences. So it is decisive to predict the dam break flow for emergency planning and preparedness, as it poses high risk to life and property. To mitigate the adverse impact of dam break, modeling is necessary to gain a good understanding of the temporal and spatial evolution of the dam-break floods. This study will mainly deal with one-dimensional (1D) dam break modeling. Less commonly used in the hydraulic research community, another possible option for modeling the rapidly varied dam-break flows is the extended Boussinesq equations (BEs), which can describe the dynamics of short waves with a reasonable accuracy. Unlike the Shallow Water Equations (SWEs), the BEs taken into account the wave dispersion and non-hydrostatic pressure distribution. To capture the dam-break oscillations accurately it is very much needed of at least fourth-order accurate numerical scheme to discretize the third-order dispersion terms present in the extended BEs. The scope of this work is therefore to develop an 1D fourth-order accurate in both space and time Boussinesq model for dam-break flow analysis by using finite-volume / finite difference scheme. The spatial discretization of the flux and dispersion terms achieved through a combination of finite-volume and finite difference approximations. The flux term, was solved using a finite-volume discretization whereas the bed source and dispersion term, were discretized using centered finite-difference scheme. Time integration achieved in two stages, namely the third-order Adams Basforth predictor stage and the fourth-order Adams Moulton corrector stage. Implementation of the 1D Boussinesq model done using PYTHON 2.7.5. Evaluation of the performance of the developed model predicted as compared with the volume of fluid (VOF) based commercial model ANSYS-CFX. The developed model is used to analyze the risk of cascading dam failures similar to the Panshet dam failure in 1961 that took place in Pune, India. Nevertheless, this model can be used to predict wave overtopping accurately compared to shallow water models for designing coastal protection structures.Keywords: Boussinesq equation, Coastal protection, Dam-break flow, One-dimensional model
Procedia PDF Downloads 232613 Studying the Beginnings of Strategic Behavior
Authors: Taher Abofol, Yaakov Kareev, Judith Avrahami, Peter M. Todd
Abstract:
Are children sensitive to their relative strength in competitions against others? Performance on tasks that require cooperation or coordination (e.g. the Ultimatum Game) indicates that early precursors of adult-like notions of fairness and reciprocity, as well as altruistic behavior, are evident at an early age. However, not much is known regarding developmental changes in interactive decision-making, especially in competitive interactions. Thus, it is important to study the developmental aspects of strategic behavior in these situations. The present research focused on cognitive-developmental changes in a competitive interaction. Specifically, it aimed at revealing how children engage in strategic interactions that involve the allocation of limited resources over a number of fields of competition, by manipulating relative strength. Relative strength refers to situations in which player strength changes midway through the game: the stronger player becomes the weaker one, while the weaker player becomes the stronger one. An experiment was conducted to find out if the behavior of children of different age groups differs in the following three aspects: 1. Perception of relative strength. 2. Ability to learn while gaining experience. 3. Ability to adapt to change in relative strength. The task was composed of a resource allocation game. After the players allocated their resources (privately and simultaneously), a competition field was randomly chosen for each player. The player who allocated more resources to the field chosen was declared the winner of that round. The resources available to the two competitors were unequal (or equal, for control). The theoretical solution for this game is that the weaker player should give up on a certain number of fields, depending on the stronger opponent’s relative strength, in order to be able to compete with the opponent on equal footing in the remaining fields. Participants were of three age groups, first-graders (N = 36, mean age = 6), fourth-graders (N = 36, mean age = 10), and eleventh-graders (N = 72, mean age = 16). The games took place between players of the same age and lasted for 16 rounds. There were two experimental conditions – a control condition, in which players were of equal strength, and an experimental condition, in which players differed in strength. In the experimental condition, players' strength was changed midway through the session. Results indicated that players in all age groups were sensitive to their relative strength, and played in line with the theoretical solution: the weaker players gave up on more fields than the stronger ones. This understanding, as well as the consequent difference in allocation between weak and strong players, was more pronounced among older participants. Experience led only to minimal behavioral change. Finally, the children from the two older groups, particularly the eleventh graders adapted quickly to the midway switch in relative strength. In contrast, the first-graders hardly changed their behavior with the change in their relative strength, indicating a limited ability to adapt. These findings highlight young children’s ability to consider their relative strength in strategic interactions and its boundaries.Keywords: children, competition, decision making, developmental changes, strategic behavior
Procedia PDF Downloads 312612 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems
Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour
Abstract:
The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output
Procedia PDF Downloads 322611 Invisible Feminists: An Autonomist Marxist Perspective of Digital Labour and Resistance Within the Online Sex Industry
Authors: Josie West
Abstract:
This paper focuses on the conflicts and utility of Marxist Feminist frames for sex work research, drawing on findings uncovered through in-depth interviews with online sex workers, alongside critical discourse analysis of media and political commentary. It brings the critical perspective of women into digital workerism and gig economy dialogue who, despite their significant presence within online work, have been overlooked. The autonomist Marxist concept of class composition is adopted to unpack the social, technical and political composition of this often-invisible segment of the service sector. Autonomism makes visible the perspective of workers engaged in processes of mobilization and demobilizaiton. This allows researchers to find everyday forms of resistance which occur within and outside trade unions. On the other hand, Marxist feminist arguments about invisibility politics can generate unhelpful allegories about sex work as domestic labour within the reproductive sphere. Nick Srnicek’s development of Marx’s notion of infrastructure rents helps theorize experiences of unpaid labour within online sex work. Moreover, debates about anti-work politics can cause conflict among sex workers fighting for the labour movement and those rejecting the capitalist work ethic. This illuminates’ tensions caused by white privilege and differing experiences of sex work. The monopolistic and competitive nature of sex work platforms within platform capitalism, and the vulnerable position of marginalised workers within stigmatized/criminalised markets, complicates anti-work politics further. This paper is situated within the feminist sex wars and the intensely divisive question of whether sex workers are victims of the patriarchy or symbols of feminist resistance. Camgirls are shown to engage in radical tactics of resistance against their technical composition on popular sex work platforms. They also engage in creative acts of resistance through performance art, in an attempt to draw attention to stigma and anti-criminalization politics. This sector offers a fascinating window onto grassroots class-action, alongside education about ‘whorephobia.’ A case study of resistance against Only Fans, and a small workers co-operative which emerged during the pandemic, showcases how workers engage in socialist and political acts without the aid of unions. Workers are victims of neoliberalism and simultaneous adopters of neoliberal strategies of survival. The complex dynamics within unions are explored, including tensions with grass-roots resistance, financial pressures and intersecting complications of class, gender and race.Keywords: autonomist marxism, digital labor, feminism, neoliberalism, sex work, platform capitalism
Procedia PDF Downloads 92610 Characterization of Main Phenolic Compounds in Eleusine indica L. (Poaceae) by HPLC-DAD and 1H NMR
Authors: E. M. Condori-Peñaloza, S. S. Costa
Abstract:
Eleusine indica L, known as goose-grass, is considered a troublesome weed that can cause important economic losses in the agriculture worldwide. However, this grass is used as a medicinal plant in some regions of Brazil to treat influenza and pneumonia. In Africa and Asia, it is used to treat malaria and as diuretic, anti-helminthic, among other uses. Despite its therapeutic potential, little is known about the chemical composition and bioactive compounds of E. indica. Hitherto, two major flavonoids, schaftoside and vitexin, were isolated from aerial part of the species and showed inhibitory activity on lung neutrophil influxes in mice, suggesting a beneficial effect on airway inflammation. Therefore, the aim of this study was to analyze the chemical profile of aqueous extracts from aerial parts of Eleusine indica specimens using high performance liquid chromatography (HPLC-DAD) and 1H nuclear magnetic resonance spectroscopy (NMR), with emphasis on phenolic compounds. Specimens of E. indica were collected in Minas Gerais state, Brazil. Aerial parts of fresh plants were extracted by decoction (10% p/v). After spontaneous precipitation of the aqueous extract at 10-12°C for 24 hours, the supernatant obtained was frozen and lyophilized. After that, 1 g of the extract was dissolved into 25 mL of water and fractionated on a reverse phase chromatography column (RP-2), eluted with a gradient of H2O/EtOH. Five fractions were obtained. The extract and fractions had their chemical profile analyzed by using HPLC-DAD (C-18 column: 20 μL, 256 -365 nm; gradient water 0.01% phosphoric acid/ acetonitrile. The extract was also analyzed by NMR (1H, 500 MHz, D2O) in order to access its global chemical composition. HPLC-DAD analyses of crude extract allowed the identification of ten phenolic compounds. Fraction 1, eluted with 100% water, was poor in phenolic compounds and no major peak was detected. In fraction 2, eluted with 100% water, it was possible to observe one major peak at retention time (RT) of 23.75 minutes compatible with flavonoid; fraction 3, also eluted with 100% water, showed four peaks at RT= 21.47, 23.52, 24.33 and 25.84 minutes, all of them compatible with flavonoid. In fraction 4, eluted with 50%/ethanol/50% water, it was possible to observe 3 peaks compatible with flavonoids at RT=24.65, 26.81, 27.49 minutes, and one peak (28.83 min) compatible with a phenolic acid derivative. Finally, in fraction 5, eluted with 100% ethanol, no phenolic substance was detected. The UV spectra of all flavonoids detected were compatible with the flavone subclass (λ= 320-345 nm). The 1H NMR spectra of aerial parts extract showed signals in three regions: δ 0.8-3.0 ppm (aliphatic compounds), δ 3.0-5.5 ppm corresponding to carbohydrates (signals most abundant and overlapped), and δ 6.0-8.5 ppm (aromatic compounds). Signals compatible with flavonoids (rings A and B) could also be detected in the crude extract spectra. These results suggest the presence of several flavonoids in E. indica, which reinforces their therapeutic potential. The pharmacological activities of Eleusine indica extracts and fractions will be further evaluated.Keywords: flavonoids, HPLC, NMR, phenolic compounds
Procedia PDF Downloads 319609 Water Infrastructure Asset Management: A Comparative Analysis of Three Urban Water Utilities in South Africa
Authors: Elkington S. Mnguni
Abstract:
Water and sanitation services in South Africa are characterized by both achievements and challenges. After the end of apartheid in 1994 the newly elected government faced the challenge of eradicating backlogs with respect to access to basic services, including water and sanitation. Capital investment made in the development of new water and sanitation infrastructure to provide basic services to previously disadvantaged communities has grown, to a certain extent, at the expense of investment in the operation and maintenance of new and existing infrastructure. Challenges resulting from aging infrastructure and poor plant performance highlight the need for investing in the maintenance, rehabilitation, and replacement of existing infrastructure to optimize the return on investment. Advanced water infrastructure asset management (IAM) is key to achieving adequate levels of service, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution and associated risks. Against this backdrop, this paper presents an appraisal of water and sanitation IAM systems in South Africa’s three utilities, being metropolitan cities in the Gauteng Province. About a quarter of the national population lives in the three rapidly urbanizing cities of Johannesburg, Ekurhuleni and Tshwane, located in a semi-arid region. A literature review has been done and field visits to some of the utility facilities are being conducted. Semi-structured interviews will be conducted with the three utilities. The following critical factors are being analysed in terms of compliance with the national Water Services IAM Strategy (2011) and other applicable legislation: asset registers; capacity of assets; current and predicted demand; funding availability / budget allocations; plans: operation & maintenance, renewal & replacement, and risk management; no-drop status (non-revenue water levels); blue drop status (water quality); green drop status (effluent quality); and skills availability. Some of the key challenges identified in the literature review include: funding constraints, Skills shortage, and wastewater treatment plants operating beyond their design capacities. These challenges will be verified during field visits and research interviews. Gaps between literature and practice will be identified and relevant recommendations made if necessary. The objective of this study is to contribute to the resolution of the challenges brought about by the backlogs in the operation and maintenance of water and sanitation assets in the country in general, and in the three cities in particular, thus improving the sustainability thereof.Keywords: asset management, backlogs, levels of service, sustainability, water and sanitation infrastructure
Procedia PDF Downloads 229