Search results for: ultra fine grained materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8151

Search results for: ultra fine grained materials

6951 Open Educational Resource in Online Mathematics Learning

Authors: Haohao Wang

Abstract:

Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.

Keywords: online learning, open educational resources, multimedia, technology

Procedia PDF Downloads 376
6950 Using Authentic and Instructional Materials to Support Intercultural Communicative Competence in ELT

Authors: Jana Beresova

Abstract:

The paper presents a study carried out in 2015-2016 within the national scheme of research - VEGA 1/0106/15 based on theoretical research and empirical verification of the concept of intercultural communicative competence. It focuses on the current conception concerning target languages teaching compatible with the Common European Framework of Reference for Languages: Learning, teaching, assessment. Our research had revealed how the concept of intercultural communicative competence had been perceived by secondary-school teachers of English in Slovakia before they were intensively trained. Intensive workshops were based on the use of both authentic and instructional materials with the goal to support interculturally oriented language teaching aimed at challenging thinking. The former concept that supported the development of the students´ linguistic knowledge and the use of a target language to obtain information about the culture of the country whose language learners were learning was expanded by the meaning-making framework which views language as a typical means by which culture is mediated. The goal of the workshop was to influence English teachers to better understand the concept of intercultural communicative competence, combining theory and practice optimally. The results of the study will be presented and analysed, providing particular recommendations for language teachers and suggesting some changes in the National Educational Programme from which English learners should benefit in their future studies or professional careers.

Keywords: authentic materials, English language teaching, instructional materials, intercultural communicative competence

Procedia PDF Downloads 270
6949 Simulation of the Flow in a Circular Vertical Spillway Using a Numerical Model

Authors: Mohammad Zamani, Ramin Mansouri

Abstract:

Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. A circular vertical spillway with various inlet forms is very effective when there is not enough space for the other spillway. Hydraulic flow in a vertical circular spillway is divided into three groups: free, orifice, and under pressure (submerged). In this research, the hydraulic flow characteristics of a Circular Vertical Spillway are investigated with the CFD model. Two-dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k-ε and k-ω, were chosen to model Reynolds shear stress term. The power law scheme was used for the discretization of momentum, k, ε, and ω equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. In this study, three types of computational grids (coarse, intermediate, and fine) were used to discriminate the simulation environment. In order to simulate the flow, the k-ε (Standard, RNG, Realizable) and k-ω (standard and SST) models were used. Also, in order to find the best wall function, two types, standard wall, and non-equilibrium wall function, were investigated. The laminar model did not produce satisfactory flow depth and velocity along the Morning-Glory spillway. The results of the most commonly used two-equation turbulence models (k-ε and k-ω) were identical. Furthermore, the standard wall function produced better results compared to the non-equilibrium wall function. Thus, for other simulations, the standard k-ε with the standard wall function was preferred. The comparison criterion in this study is also the trajectory profile of jet water. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k-ε (Standard) has the most consistent results with experimental results. When the jet gets closer to the end of the basin, the computational results increase with the numerical results of their differences. The mesh with 10602 nodes, turbulent model k-ε standard and the standard wall function, provide the best results for modeling the flow in a vertical circular Spillway. There was a good agreement between numerical and experimental results in the upper and lower nappe profiles. In the study of water level over crest and discharge, in low water levels, the results of numerical modeling are good agreement with the experimental, but with the increasing water level, the difference between the numerical and experimental discharge is more. In the study of the flow coefficient, by decreasing in P/R ratio, the difference between the numerical and experimental result increases.

Keywords: circular vertical, spillway, numerical model, boundary conditions

Procedia PDF Downloads 86
6948 Extrudable Foamed Concrete: General Benefits in Prefabrication and Comparison in Terms of Fresh Properties and Compressive Strength with Classic Foamed Concrete

Authors: D. Falliano, G. Ricciardi, E. Gugliandolo

Abstract:

Foamed concrete belongs to the category of lightweight concrete. It is characterized by a density which is generally ranging from 200 to 2000 kg/m³ and typically comprises cement, water, preformed foam, fine sand and eventually fine particles such as fly ash or silica fume. The foam component mixed with the cement paste give rise to the development of a system of air-voids in the cementitious matrix. The peculiar characteristics of foamed concrete elements are summarized in the following aspects: 1) lightness which allows reducing the dimensions of the resisting frame structure and is advantageous in the scope of refurbishment or seismic retrofitting in seismically vulnerable areas; 2) thermal insulating properties, especially in the case of low densities; 3) the good resistance against fire as compared to ordinary concrete; 4) the improved workability; 5) cost-effectiveness due to the usage of rather simple constituting elements that are easily available locally. Classic foamed concrete cannot be extruded, as the dimensional stability is not permitted in the green state and this severely limits the possibility of industrializing them through a simple and cost-effective process, characterized by flexibility and high production capacity. In fact, viscosity enhancing agents (VEA) used to extrude traditional concrete, in the case of foamed concrete cause the collapsing of air bubbles, so that it is impossible to extrude a lightweight product. These requirements have suggested the study of a particular additive that modifies the rheology of foamed concrete fresh paste by increasing cohesion and viscosity and, at the same time, stabilizes the bubbles into the cementitious matrix, in order to allow the dimensional stability in the green state and, consequently, the extrusion of a lightweight product. There are plans to submit the additive’s formulation to patent. In addition to the general benefits of using the extrusion process, extrudable foamed concrete allow other limits to be exceeded: elimination of formworks, expanded application spectrum, due to the possibility of extrusion in a range varying between 200 and 2000 kg/m³, which allows the prefabrication of both structural and non-structural constructive elements. Besides, this contribution aims to present the significant differences regarding extrudable and classic foamed concrete fresh properties in terms of slump. Plastic air content, plastic density, hardened density and compressive strength have been also evaluated. The outcomes show that there are no substantial differences between extrudable and classic foamed concrete compression resistances.

Keywords: compressive strength, extrusion, foamed concrete, fresh properties, plastic air content, slump.

Procedia PDF Downloads 174
6947 Performance Analysis of BLDC Motors for Flywheel Energy Storage Applications with Nonmagnetic vs. Magnetic Core Stator using Finite Element Time Stepping Method

Authors: Alok Kumar Pasa, Krs Raghavan

Abstract:

This paper presents a comparative analysis of Brushless DC (BLDC) motors for flywheel applications with a focus on the choice of stator core materials. The study employs a Finite Element Method (FEM) in time domain to investigate the performance characteristics of BLDC motors equipped with nonmagnetic and magnetic type stator core materials. Preliminary results reveal significant differences in motor efficiency, torque production, and electromagnetic properties between the two configurations. This research sheds light on the advantages of utilizing nonmagnetic materials in BLDC motors for flywheel applications, offering potential advantages in terms of efficiency, weight reduction and cost-effectiveness.

Keywords: finite element time stepping method, high-speed BLDC motor, flywheel energy storage system, coreless BLDC motors

Procedia PDF Downloads 4
6946 Creation of GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) Nanoparticles Using Pulse Laser Ablation Method

Authors: Yong Pan, Li Wang, Xue Qiong Su, Dong Wen Gao

Abstract:

To date, nanomaterials have received extensive attention over the years because of their wide application. Various nanomaterials such as nanoparticles, nanowire, nanoring, nanostars and other nanostructures have begun to be systematically studied. The preparation of these materials by chemical methods is not only costly, but also has a long cycle and high toxicity. At the same time, preparation of nanoparticles of multi-doped composites has been limited due to the special structure of the materials. In order to prepare multi-doped composites with the same structure as macro-materials and simplify the preparation method, the GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) nanoparticles are prepared by Pulse Laser Ablation (PLA) method. The particle component and structure are systematically investigated by X-ray diffraction (XRD) and Raman spectra, which show that the success of our preparation and the same concentration between nanoparticles (NPs) and target. Morphology of the NPs characterized by Transmission Electron Microscopy (TEM) indicates the circular-shaped particles in preparation. Fluorescence properties are reflected by PL spectra, which demonstrate the best performance in concentration of Ga0.3Co0.3ZnSe0.4. Therefore, all the results suggest that PLA is promising to prepare the multi-NPs since it can modulate performance of NPs.

Keywords: PLA, physics, nanoparticles, multi-doped

Procedia PDF Downloads 170
6945 Experimental Damping Performance of Composite Materials with Different Fibre Orientations

Authors: Ferhat Kadioglu

Abstract:

A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures.

Keywords: composite materials, damping values, dynamic properties, non-contact measurements

Procedia PDF Downloads 348
6944 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by density-based time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., mean value, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one class classifier (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, a new anomaly detector strategy is proposed, namely one class classifier neural network two (OCCNN2), which exploit the classification capability of standard classifiers in an anomaly detection problem, finding the standard class (the boundary of the features space in normal operating conditions) through a two-step approach: coarse and fine boundary estimation. The coarse estimation uses classics OCC techniques, while the fine estimation is performed through a feedforward neural network (NN) trained that exploits the boundaries estimated in the coarse step. The detection algorithms vare then compared with known methods based on principal component analysis (PCA), kernel principal component analysis (KPCA), and auto-associative neural network (ANN). In many cases, the proposed solution increases the performance with respect to the standard OCC algorithms in terms of F1 score and accuracy. In particular, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 96% with the proposed method.

Keywords: anomaly detection, frequencies selection, modal analysis, neural network, sensor network, structural health monitoring, vibration measurement

Procedia PDF Downloads 123
6943 Development of Nanostructured Materials for the Elimination of Emerging Pollutants in Water through Adsorption Processes

Authors: J. Morillo, Otal E., A. Caballero, R. M. Pereñiguez, J. Usero

Abstract:

The present work shows in the first place, the manufacture of the perovskitic material used as adsorbent, by means of two different methods to obtain two types of perovskites (LaFeO₃ and BiFeO₃). The results of this work show the characteristics of this manufactured material, as well as the synthesis yields obtained, achieving a better result for the self-combustion synthesis. Secondly, from the manufactured perovskites, an adsorption system has been developed, at the laboratory level, for the adsorption of the emerging pollutants Trimethoprim, Ciprofloxacin and Ibuprofen.

Keywords: nanostructured materials, emerging pollutants, water, adsorption processes

Procedia PDF Downloads 152
6942 Water Repellent Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, water repellent, textiles, cotton

Procedia PDF Downloads 239
6941 CFD Analysis of Ammonia/Hydrogen Combustion Performance under Partially Premixed and Non-premixed Modes with Varying Inlet Characteristics

Authors: Maria Alekxandra B. Sison, Reginald C. Mallare, Joseph Albert M. Mendoza

Abstract:

Ammonia (NH₃) is the alternative carbon-free fuel of the future for its promising applications. Investigations on NH₃-fuel blends recommend using hydrogen (H₂) to increase the heating value of NH3, promote combustion performance, and improve NOx efflux mitigation. To further examine the effects of this concept, the study analyzed the combustion performance, in terms of turbulence, combustion efficiency (CE), and NOx emissions, of NH3/fuel with variations of combustor diameter ratio, H2 fuel mole fraction, and fuel mass flow rate (ṁ). The simulations were performed using Computational Fluid Dynamics (CFD) modeling to represent a non-premixed (NP) and partially premixed (PP) combustion under a two-dimensional ultra-low NOx Rich-Burn, Quick-Quench, Lean-Burn (RQL) combustor. Governed by the Detached Eddy Simulation model, it was found that the diameter ratio greatly affects the turbulence in PP and NP mode, whereas ṁ in PP should be prioritized when increasing CE. The NOx emission is minimal during PP combustion, but NP combustion suggested modifying ṁ to achieve higher CE and Reynolds number without sacrificing the NO generation from the reaction.

Keywords: combustion efficiency, turbulence, dual-stage combustor, NOx emission

Procedia PDF Downloads 104
6940 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer

Authors: Nirav J. Patel, Kalpesh K. Dudani

Abstract:

Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.

Keywords: acoustic, partial discharge, perfectly matched layer, sensor

Procedia PDF Downloads 527
6939 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 121
6938 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya

Abstract:

The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.

Keywords: laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli

Procedia PDF Downloads 346
6937 Resin Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, resin, textiles, wrinkle

Procedia PDF Downloads 254
6936 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 211
6935 Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Authors: M. Aruna

Abstract:

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fiber-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. The sisal fiber has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18, and 24% by weight of sisal fibres were assessed. Sisal fiber reinforced cement composite slabs with long sisal fibers were manufactured using a cast hand layup technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively.

Keywords: sisal fibre, fiber-reinforced concrete, mechanical behaviour, composite materials

Procedia PDF Downloads 260
6934 Feature Evaluation and Applications of Various Advanced Conductors with High Conductivity and Low Flash in Overhead Lines

Authors: Atefeh Pourshafie, Homayoun Bakhtiari

Abstract:

In power transmission lines, electricity conductors are main tools to carry electric power. Thus, other devices such as shield wires, insulators, towers, foundations etc. should be designed in a way that the conductors be able to successfully do their task which is appropriate power delivery to the customers. Non-stop increase of energy demand has led to saturated capacity of transmission lines which, in turn, causing line flash to exceed acceptable limits in some points. An approach which may be used to solve this issue is replacement of current conductors with new ones having the capability of withstanding higher heating such that reduced flash would be observed when heating increases. These novel conductors are able to transfer higher currents and operate in higher heating conditions while line flash will remain within standard limits. In this paper, we will attempt to introduce three types of advanced overhead conductors and analyze the replacement of current conductors by new ones technically and economically in transmission lines. In this regard, progressive conductors of transmission lines are introduced such as ACC (Aluminum Conductor Composite Core), AAAC-UHC (Ultra High Conductivity, All Aluminum Alloy Conductors), and G(Z)TACSR-Gap Type.

Keywords: ACC, AAAC-UHC, gap type, transmission lines

Procedia PDF Downloads 269
6933 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers

Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong

Abstract:

Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.

Keywords: clad pipe, lamination layer parameters, monel, overlay welding

Procedia PDF Downloads 273
6932 Effect of Particle Size on Sintering Characteristics of Injection Molded 316L Powder

Authors: H. Özkan Gülsoy, Antonyraj Arockiasamy

Abstract:

The application of powder injection molding technology for the fabrication of metallic and non-metallic components is of growing interest as the process considerably saves time and cost. Utilizing this fabrication method, full dense components are being prepared in various sizes. In this work, our effort is focused to study the densification behavior of the parts made using different size 316L stainless steel powders. The metal powders were admixed with an adequate amount of polymeric compounds and molded as standard tensile bars. Solvent and thermal debinding was carried out followed by sintering in ultra pure hydrogen atmosphere based on the differential scanning calorimetry (DSC) cycle. Mechanical property evaluation and microstructural characterization of the sintered specimens was performed using universal Instron tensile testing machine, Vicker’s microhardness tester, optical (OM) and scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction were used. The results are compared and analyzed to predict the strength and weakness of the test conditions.

Keywords: powder injection molding, sintering, particle size, stainless steels

Procedia PDF Downloads 365
6931 Utilization of Waste Crushed Tile as Coarse Aggregate in Concrete

Authors: Harkaranjit Singh, Arun Kumar

Abstract:

Depletion of natural resources is a common phenomenon in developing countries like India due to rapid urbanization and industrialization involving construction of infrastructure and other amenities. In view of this, people have started searching for suitable other viable alternative materials for concrete so that the existing natural resources could be preserved to the possible extent for the future generation. In this process, different industrial waste materials such as fly ash, blast furnace slag, quarry dust, tile waste, bricks, broken glass waste, waste aggregate from demolition of structures, ceramic insulator waste, etc. have been tried as a viable substitute material to the conventional materials in concrete and has also been succeeded. This paper describes the studies conducted on strength characteristics of concrete made with utilizing of crushed tiles as a coarse aggregate. The waste crushed tiles can be used as coarse aggregates with the replacement ratio of 0, 50, 75 and 100% were used. Mechanical and physical tests were conducted on specimens. It was found that, the concrete made of waste ceramic tile aggregate produced more strength in compression, and flexure.

Keywords: compressive strength, flexural strength, waste crushed tile, concrete

Procedia PDF Downloads 405
6930 Load Bearing Capacity and Operational Effectiveness of Single Shear Joints of CFRP Composite Laminate with Spread Tow Thin Plies

Authors: Tabrej Khan, Tamer A. Sebaey, Balbir Singh, M. A. Umarfarooq

Abstract:

Spread-tow thin-ply-based technology has resulted in the progress of optimized reinforced composite plies with ultra-low thicknesses. There is wide use of composite bolted joints in the aircraft industry for load-bearing structures, and they are regarded as the primary source of stress concentration. The purpose of this study is to look into the bearing strength and structural performance of single shear bolt joint configurations in composite laminates, which are basically a combination of conventional thin-plies and thick-plies in some specific stacking sequence. The placement effect of thin-ply within the configured stack on bearing strength, as well as the potential damages, were investigated. Mechanical tests were used to understand the disfigurement mechanisms of the plies and their reciprocity, as well as to reflect on the single shear bolt joint properties and its load-bearing capacity. The results showed that changing the configuration of laminates by inserting the thin plies inside improved the bearing strength by up to 19%.

Keywords: hybrid composites, delamination, stress concentrations, mechanical testing, single bolt joint, thin-plies

Procedia PDF Downloads 64
6929 The Effect of Nanoclay on Long Term Performance of Asphalt Concrete Pavement

Authors: A. Khodadadi, Hasani, Salehi

Abstract:

The advantages of using modified asphalt binders are widely recognized—primarily, improved rutting resistance, reduced fatigue cracking and less cold-temperature cracking. Nanoclays are known to enhance the properties of many polymers. Nanoclays are used to improve modulus and tensile strength, flame resistance and thermal and structural properties of many materials. This paper intends to investigate the application and development of nano-technological concepts for bituminous materials and asphalt pavements. The application of nano clay on the fatigue life of asphalt pavement have not been yet thoroughly understood. In this research, two type of highway asphalt materials, dense Marshall specimens, with 2% nano clay and without nano clay, were employed for the fatigue behavior of the asphalt pavement.The effect of nano additive on the performance of flexible pavements has been investigated through the indirect tensile test for the samples prepared with 2% nano clay and without nano clay in four stress levels from 200–500 kPa. The primary results indicated samples with 2% nano clay have almost double or even more fatigue life in most of stress levels.

Keywords: Nano clay, Asphalt, fatigue life, pavement

Procedia PDF Downloads 455
6928 Deformation and Strength of Heat-Shielding Materials in a Long-Term Storage of Aircraft

Authors: Lyudmila L. Gracheva

Abstract:

Thermal shield is a multi-layer structure that consists of layers made of different materials. The use of composite materials (CM) reinforced with carbon fibers in rocket technologies (shells, bearings, wings, fairings, inter-step compartments, etc.) is due to a possibility of reducing the weight while increasing a structural strength. Structures made of a unidirectional carbon fiber reinforced plastic based on an epoxy resin are used as load-bearing skins for aircraft fairings. The results of an experimental study of the physical and mechanical properties of epoxy carbon fiber reinforced plastics depending on temperature for different storage times of products are presented. With an increasing temperature, the physical and mechanical properties of CM are determined by the thermal and deformation properties of the components and the geometry of their distribution. Samples for the study were cut from natural skins of the head fairings.

Keywords: composite material, thermal deformation, carbon fiber, heat shield, epoxy resin, thermal expansion

Procedia PDF Downloads 57
6927 Characterization of Thixoformed AlSi12 Alloy with the Addition of Trace Amounts of Silver

Authors: Nursen Saklakoglu, Adnan Turker

Abstract:

The main objective of this study is to reveal the effect of the Thixoforming process on the microstructure and mechanical properties of the AlSi12 alloy with trace amounts of silver. It is concluded that Thixoforming has an important effect on the morphology of intermetallics and Si formation, as well as globular α-Al morphology. The intermetallics have been fractured during thixoforming. It is believed that the fine distribution of the intermetallics is one mechanism for the improved mechanical properties of Thixoformed alloys. The discrete Si particles have been observed during both isothermal heating to the semi-solid range and Thixoforming, also have an important effect on mechanical properties. The Thixoforming process has a greater effect on hardness than the addition of Ag does.

Keywords: AlSi alloys, intermetallic phases, mechanical properties trace element, silver, thixoforming

Procedia PDF Downloads 326
6926 Effects of Fermentation Techniques on the Quality of Cocoa Beans

Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi

Abstract:

Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.

Keywords: fermentation, effects, fermentation materials, period, quality

Procedia PDF Downloads 207
6925 Extractive Desulfurization of Fuels Using Choline Chloride-Based Deep Eutectic Solvents

Authors: T. Zaki, Fathi S. Soliman

Abstract:

Desulfurization process is required by most, if not all refineries, to achieve ultra-low sulfur fuel, that contains less than 10 ppm sulfur. A lot of research works and many effective technologies have been studied to achieve deep desulfurization process in moderate reaction environment, such as adsorption desulfurization (ADS), oxidative desulfurization (ODS), biodesulfurization and extraction desulfurization (EDS). Extraction desulfurization using deep eutectic solvents (DESs) is considered as simple, cheap, highly efficient and environmentally friend process. In this work, four DESs were designed and synthesized. Choline chloride (ChCl) was selected as typical hydrogen bond acceptors (HBA), and ethylene glycol (EG), glycerol (Gl), urea (Ur) and thiourea (Tu) were selected as hydrogen bond donors (HBD), from which a series of deep eutectic solvents were synthesized. The experimental data showed that the synthesized DESs showed desulfurization affinities towards the thiophene species in cyclohexane solvent. Ethylene glycol molecules showed more affinity to create hydrogen bond with thiophene instead of choline chloride. Accordingly, ethylene glycol choline chloride DES has the highest extraction efficiency.

Keywords: DES, desulfurization, green solvent, extraction

Procedia PDF Downloads 288
6924 U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling

Authors: Regina M. Chiechio, Rémi Leguevél, Helene Solhi, Marie Madeleine Gueguen, Stephanie Dutertre, Xavier, Jean-Pierre Bazureau, Olivier Mignen, Pascale Even-Hernandez, Paolo Musumeci, Maria Jose Lo Faro, Valerie Marchi

Abstract:

Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization.

Keywords: gold nanoclusters, luminescence, biomarkers, pancreatic cancer, biomedical applications, bioimaging, fluorescent probes, drug delivery

Procedia PDF Downloads 151
6923 Determinants of Smallholder Farmers' Intention to Adopt Jatropha as Raw Material for Biodiesel Production: A Proposed Model for Nigeria

Authors: Abdulsalam Mas’ud

Abstract:

Though Nigerian Biofuel Policy and Incentive was introduced in 2007, however, little if any is known about the impact of such policy for biodiesel development in Nigeria. It can be argued that lack of raw materials is one of the important factors that hinder the proper implementation of the policy. In line with this argument, this study aims to explore the determinants of smallholder farmers’ intention to adopt Jatropha as raw materials for biodiesel development in northern Nigeria, with Jigawa State as area of study. The determinants proposed for investigation covers personal factors, physical factors, institutional factors, economic factors, risk and uncertainty factors as well as social factors. The validation of the proposed model will have the implication of guiding policymakers towards enhancement of farmers’ participation in the Jatropha project for biodiesel raw materials production. The eventual byproducts of the proposed model validation and implementation will be employment generation, poverty reduction, combating dessert encroachment, economic diversification to renewable energy sources and electricity generation.

Keywords: adoption, biodiesel, factors, jatropha

Procedia PDF Downloads 308
6922 Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding

Authors: Fatiha Teklal, Bachir Kacimi, Arezki Djebbar

Abstract:

The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first "compression indentation" and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding.

Keywords: Fiber, Interface, Matrix, Micromechanics, Pull-out

Procedia PDF Downloads 118