Search results for: the health improvement network (THIN)
16736 Integration Network ASI in Lab Automation and Networks Industrial in IFCE
Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro
Abstract:
The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.Keywords: automation, industrial networks, SCADA systems, lab automation
Procedia PDF Downloads 55016735 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 31616734 Health Expenditure and its Place in Economy: The Case of Turkey
Authors: Ayşe Coban, Orhan Coban, Haldun Soydal, Sükrü Sürücü
Abstract:
While health is a source of prosperity for individuals, it is also one of the most important determinants of economic growth for a country. Health, by increasing the productivity of labor, contributes to economic growth. Therefore, countries should give the necessary emphasis to health services. The primary aim of this study is to analyze the changes occurring in health services in Turkey by examining the developments in the sector. In this scope, the second aim of the study is to reveal the place of health expenditures in the Turkish economy. As a result of the analysis in the dataset, in which the 1999-2013 periods is considered, it was determined that some increase in health expenditures took place and that the increase in the share of health expenditures in GDP was too small. Furthermore, analysis of the results points out that in financing health expenditures, the public sector is prominent compared to the private sector.Keywords: health, health service, health expenditures, Turkey
Procedia PDF Downloads 37116733 Analyzing Keyword Networks for the Identification of Correlated Research Topics
Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita
Abstract:
The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics
Procedia PDF Downloads 26016732 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection
Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner
Abstract:
Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.
Procedia PDF Downloads 22716731 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 20616730 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses
Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson
Abstract:
This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies
Procedia PDF Downloads 14816729 The Effect of Environmental Assessment Learning in Evacuation Centers on the COVID-19 Situation
Authors: Hiromi Kawasaki, Satoko Yamasaki, Mika Iwasa, Tomoko Iki, Akiko Takaki
Abstract:
In basic nursing, the conditions necessary for maintaining human health -temperature, humidity, illumination, distance from others, noise, moisture, meals, and excretion- were explained. Nursing students often think of these conditions in the context of a hospital room. In order to make students think of these conditions in terms of an environment necessary for maintaining health and preventing illness for residents, in the third year of community health nursing, students learned how to assess and improve the environment -particularly via the case of shelters in the event of a disaster. The importance of environmental management has increased in 2020 as a preventive measure against COVID-19 infection. We verified the effect of the lessons, which was decided to be conducted through distance learning. Sixty third-year nursing college students consented to participate in this study. Environmental standard knowledge for conducting environmental assessment was examined before and after class, and the percentage of correct answers was compared. The χ² test was used for the test, with a 5% significance level employed. Measures were evaluated via a report submitted by the students after class. Student descriptions were analyzed both qualitatively and descriptively with respect to expected health problems and suggestions for improvement. Students have already learned about the environment in terms of basic nursing in their second year. The correct answers for external environmental values concerning interpersonal distance, illumination, noise, and room temperature (p < 0.001) increased significantly after taking the class. Humidity was registered 83.3% before class and 93.3% after class (p = 0.077). Regarding the body, the percentage of students who answered correctly was 70% or more, both before and after the class. The students’ reports included overcrowding, high humidity/high temperature, and the number of toilets as health hazards. Health disorders to be prevented were heat stroke, infectious diseases, and economy class syndrome; improvement methods were recommended for hyperventilation, stretching, hydration, and waiting at home. After the public health nursing class, the students were able to not only propose environmental management of a hospital room but also had an understanding of the environment in terms of the lives of individuals, environmental assessment, and solutions to health problems. The response rate for basic items learned in the second year was already high before and after class, and interpersonal distance and ventilation were described by students. Students were able to use what they learned in basic nursing about the standards of the human mind and body. In the external environment, the memory of specific numerical values was ambiguous. The environment of the hospital room is controlled, and interest in numerical values may decrease. Nursing staff needs to maintain and improve human health as well as hospital rooms. With COVID-19, it was thought that students would continue to not only consider this point in reference to hospital rooms but also in regard to places where people gather. Even in distance learning, students were able to learn the important issues and lessons.Keywords: environmental assessment, evacuation center, nursing education, nursing students
Procedia PDF Downloads 10416728 Factors of Influence in Software Process Improvement: An ISO/IEC 29110 for Very-Small Entities
Authors: N. Wongsai, R. Wetprasit, V. Siddoo
Abstract:
The recently introduced ISO/IEC 29110 standard Lifecycle profile for Very Small Entities (VSE) has been adopted and practiced in many small and medium software companies, including in Thailand’s software industry. Many Thai companies complete their software process improvement (SPI) initiative program and have been certified. There are, however, a number of participants fail to success. This study was concerned with the factors that influence the accomplishment of the standard implementation in various VSE characteristics. In order to achieve this goal, exploring and extracting critical factors from prior studies were carried out and then the obtained factors were validated by the standard experts. Data analysis of comments and recommendations was performed using a qualitative content analysis method. This paper presents the initial set of influence factors in both positive and negative impact the ISO/IEC 29110 implementation with an aim at helping such SPI practitioners with some considerations to manage appropriate adoption approach in order to achieve its implementation.Keywords: barriers, critical success factors, ISO/IEC 29110, Software Process Improvement, SPI, Very-Small Entity, VSE
Procedia PDF Downloads 31616727 Barriers and Facilitators of Community Based Mental Health Intervention (CMHI) in Rural Bangladesh: Findings from a Descriptive Study
Authors: Rubina Jahan, Mohammad Zayeed Bin Alam, Sazzad Chowdhury, Sadia Chowdhury
Abstract:
Access to mental health services in Bangladesh is a tale of urban privilege and rural struggle. Mental health services in the country are primarily centered in urban medical hospitals, with only 260 psychiatrists for a population of more than 162 million, while rural populations face far more severe and daunting challenges. In alignment with the World Health Organization's perspective on mental health as a basic human right and a crucial component for personal, community, and socioeconomic development; SAJIDA Foundation a value driven non-government organization in Bangladesh has introduced a Community Based Mental Health (CMHI) program to fill critical gaps in mental health care, providing accessible and affordable community-based services to protect and promote mental health, offering support for those grappling with mental health conditions. The CMHI programme is being implemented in 3 districts in Bangladesh, 2 of them are remote and most climate vulnerable areas targeting total 6,797 individual. The intervention plan involves a screening of all participants using a 10-point vulnerability assessment tool to identify vulnerable individuals. The assumption underlying this is that individuals assessed as vulnerable is primarily due to biological, psychological, social and economic factors and they are at an increased risk of developing common mental health issues. Those identified as vulnerable with high risk and emergency conditions will receive Mental Health First Aid (MHFA) and undergo further screening with GHQ-12 to be identified as cases and non-cases. The identified cases are then referred to community lay counsellors with basic training and knowledge in providing 4-6 sessions on problem solving or behavior activation. In situations where no improvement occurs post lay counselling or for individuals with severe mental health conditions, a referral process will be initiated, directing individuals to ensure appropriate mental health care. In our presentation, it will present the findings from 6-month pilot implementation focusing on the community-based screening versus outcome of the lay counseling session and barriers and facilitators of implementing community based mental health care in a resource constraint country like Bangladesh.Keywords: community-based mental health, lay counseling, rural bangladesh, treatment gap
Procedia PDF Downloads 4416726 Analysis and Performance of Handover in Universal Mobile Telecommunications System (UMTS) Network Using OPNET Modeller
Authors: Latif Adnane, Benaatou Wafa, Pla Vicent
Abstract:
Handover is of great significance to achieve seamless connectivity in wireless networks. This paper gives an impression of the main factors which are being affected by the soft and the hard handovers techniques. To know and understand the handover process in The Universal Mobile Telecommunications System (UMTS) network, different statistics are calculated. This paper focuses on the quality of service (QoS) of soft and hard handover in UMTS network, which includes the analysis of received power, signal to noise radio, throughput, delay traffic, traffic received, delay, total transmit load, end to end delay and upload response time using OPNET simulator.Keywords: handover, UMTS, mobility, simulation, OPNET modeler
Procedia PDF Downloads 32216725 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime
Procedia PDF Downloads 15116724 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms
Authors: A. Majidian
Abstract:
The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.Keywords: life prediction, condenser tube, neural network, fuzzy logic
Procedia PDF Downloads 35416723 Improving Data Completeness and Timely Reporting: A Joint Collaborative Effort between Partners in Health and Ministry of Health in Remote Areas, Neno District, Malawi
Authors: Wiseman Emmanuel Nkhomah, Chiyembekezo Kachimanga, Moses Banda Aron, Julia Higgins, Manuel Mulwafu, Kondwani Mpinga, Mwayi Chunga, Grace Momba, Enock Ndarama, Dickson Sumphi, Atupere Phiri, Fabien Munyaneza
Abstract:
Background: Data is key to supporting health service delivery as stakeholders, including NGOs rely on it for effective service delivery, decision-making, and system strengthening. Several studies generated debate on data quality from national health management information systems (HMIS) in sub-Saharan Africa. This limits the utilization of data in resource-limited settings, which already struggle to meet standards set by the World Health Organization (WHO). We aimed to evaluate data quality improvement of Neno district HMIS over a 4-year period (2018 – 2021) following quarterly data reviews introduced in January 2020 by the district health management team and Partners In Health. Methods: Exploratory Mixed Research was used to examine report rates, followed by in-depth interviews using Key Informant Interviews (KIIs) and Focus Group Discussions (FGDs). We used the WHO module desk review to assess the quality of HMIS data in the Neno district captured from 2018 to 2021. The metrics assessed included the completeness and timeliness of 34 reports. Completeness was measured as a percentage of non-missing reports. Timeliness was measured as the span between data inputs and expected outputs meeting needs. We computed T-Test and recorded P-values, summaries, and percentage changes using R and Excel 2016. We analyzed demographics for key informant interviews in Power BI. We developed themes from 7 FGDs and 11 KIIs using Dedoose software, from which we picked perceptions of healthcare workers, interventions implemented, and improvement suggestions. The study was reviewed and approved by Malawi National Health Science Research Committee (IRB: 22/02/2866). Results: Overall, the average reporting completeness rate was 83.4% (before) and 98.1% (after), while timeliness was 68.1% and 76.4 respectively. Completeness of reports increased over time: 2018, 78.8%; 2019, 88%; 2020, 96.3% and 2021, 99.9% (p< 0.004). The trend for timeliness has been declining except in 2021, where it improved: 2018, 68.4%; 2019, 68.3%; 2020, 67.1% and 2021, 81% (p< 0.279). Comparing 2021 reporting rates to the mean of three preceding years, both completeness increased from 88% to 99% (in 2021), while timeliness increased from 68% to 81%. Sixty-five percent of reports have maintained meeting a national standard of 90%+ in completeness while only 24% in timeliness. Thirty-two percent of reports met the national standard. Only 9% improved on both completeness and timeliness, and these are; cervical cancer, nutrition care support and treatment, and youth-friendly health services reports. 50% of reports did not improve to standard in timeliness, and only one did not in completeness. On the other hand, factors associated with improvement included improved communications and reminders using internal communication, data quality assessments, checks, and reviews. Decentralizing data entry at the facility level was suggested to improve timeliness. Conclusion: Findings suggest that data quality in HMIS for the district has improved following collaborative efforts. We recommend maintaining such initiatives to identify remaining quality gaps and that results be shared publicly to support increased use of data. These results can inform Ministry of Health and its partners on some interventions and advise initiatives for improving its quality.Keywords: data quality, data utilization, HMIS, collaboration, completeness, timeliness, decision-making
Procedia PDF Downloads 8516722 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks
Procedia PDF Downloads 38816721 Optimal Sortation Strategy for a Distribution Network in an E-Commerce Supply Chain
Authors: Pankhuri Dagaonkar, Charumani Singh, Poornima Krothapalli, Krishna Karthik
Abstract:
The backbone of any retail e-commerce success story is a unique design of supply chain network, providing the business an unparalleled speed and scalability. Primary goal of the supply chain strategy is to meet customer expectation by offering fastest deliveries while keeping the cost minimal. Meeting this objective at the large market that India provides is the problem statement that we have targeted here. There are many models and optimization techniques focused on network design to identify the ideal facility location and size, optimizing cost and speed. In this paper we are presenting a tactical approach to optimize cost of an existing network for a predefined speed. We have considered both forward and reverse logistics of a retail e-commerce supply chain consisting of multiple fulfillment (warehouse) and delivery centers, which are connected via sortation nodes. The mathematical model presented here determines if the shipment from a node should get sorted directly for the last mile delivery center or it should travel as consolidated package to another node for further sortation (resort). The objective function minimizes the total cost by varying the resort percentages between nodes and provides the optimal resource allocation and number of sorts at each node.Keywords: distribution strategy, mathematical model, network design, supply chain management
Procedia PDF Downloads 29816720 Challenges to Quality Primary Health Care in Saudi Arabia and Potential Improvements Implemented by Other Systems
Authors: Hilal Al Shamsi, Abdullah Almutairi
Abstract:
Introduction: As primary healthcare centres play an important role in implementing Saudi Arabia’s health strategy, this paper offers a review of publications on the quality of the country’s primary health care. With the aim of deciding on solutions for improvement, it provides an overview of healthcare quality in this context and indicates barriers to quality. Method: Using two databases, ProQuest and Scopus, data extracted from published articles were systematically analysed for determining the care quality in Saudi primary health centres and obstacles to achieving higher quality. Results: Twenty-six articles met the criteria for inclusion in this review. The components of healthcare quality were examined in terms of the access to and effectiveness of interpersonal and clinical care. Good access and effective care were identified in such areas as maternal health care and the control of epidemic diseases, whereas poor access and effectiveness of care were shown for chronic disease management programmes, referral patterns (in terms of referral letters and feedback reports), health education and interpersonal care (in terms of language barriers). Several factors were identified as barriers to high-quality care. These included problems with evidence-based practice implementation, professional development, the use of referrals to secondary care and organisational culture. Successful improvements have been implemented by other systems, such as mobile medical units, electronic referrals, online translation tools and mobile devices and their applications; these can be implemented in Saudi Arabia for improving the quality of the primary healthcare system in this country. Conclusion: The quality of primary health care in Saudi Arabia varies among the different services. To improve quality, management programmes and organisational culture must be promoted in primary health care. Professional development strategies are also needed for improving the skills and knowledge of healthcare professionals. Potential improvements can be implemented to improve the quality of the primary health system.Keywords: quality, primary health care, Saudi Arabia, health centres, general medical
Procedia PDF Downloads 19416719 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 22816718 Strengthening by Assessment: A Case Study of Rail Bridges
Authors: Evangelos G. Ilias, Panagiotis G. Ilias, Vasileios T. Popotas
Abstract:
The United Kingdom has one of the oldest railway networks in the world dating back to 1825 when the world’s first passenger railway was opened. The network has some 40,000 bridges of various construction types using a wide range of materials including masonry, steel, cast iron, wrought iron, concrete and timber. It is commonly accepted that the successful operation of the network is vital for the economy of the United Kingdom, consequently the cost effective maintenance of the existing infrastructure is a high priority to maintain the operability of the network, prevent deterioration and to extend the life of the assets. Every bridge on the railway network is required to be assessed every eighteen years and a structured approach to assessments is adopted with three main types of progressively more detailed assessments used. These assessment types include Level 0 (standardized spreadsheet assessment tools), Level 1 (analytical hand calculations) and Level 2 (generally finite element analyses). There is a degree of conservatism in the first two types of assessment dictated to some extent by the relevant standards which can lead to some structures not achieving the required load rating. In these situations, a Level 2 Assessment is often carried out using finite element analysis to uncover ‘latent strength’ and improve the load rating. If successful, the more sophisticated analysis can save on costly strengthening or replacement works and avoid disruption to the operational railway. This paper presents the ‘strengthening by assessment’ achieved by Level 2 analyses. The use of more accurate analysis assumptions and the implementation of non-linear modelling and functions (material, geometric and support) to better understand buckling modes and the structural behaviour of historic construction details that are not specifically covered by assessment codes are outlined. Metallic bridges which are susceptible to loss of section size through corrosion have largest scope for improvement by the Level 2 Assessment methodology. Three case studies are presented, demonstrating the effectiveness of the sophisticated Level 2 Assessment methodology using finite element analysis against the conservative approaches employed for Level 0 and Level 1 Assessments. One rail overbridge and two rail underbridges that did not achieve the required load rating by means of a Level 1 Assessment due to the inadequate restraint provided by U-Frame action are examined and the increase in assessed capacity given by the Level 2 Assessment is outlined.Keywords: assessment, bridges, buckling, finite element analysis, non-linear modelling, strengthening
Procedia PDF Downloads 31116717 Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling
Authors: Kious Mecheri, Hadjadj Abdechafik, Ameur Aissa
Abstract:
The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions.Keywords: flank wear, cutting forces, high speed milling, signal processing, neural network
Procedia PDF Downloads 39416716 Optical Characterization of Anisotropic Thiophene-Phenylene Co-Oligomer Micro Crystals by Spectroscopic Imaging Ellipsometry
Authors: Christian Röling, Elena Y. Poimanova, Vladimir V. Bruevich
Abstract:
Here we demonstrate a non-destructive optical technique to localize and characterize single crystals of semiconductive organic materials – Spectroscopic Imaging Ellipsometry. With a combination of microscopy and ellipsometry, it is possible to characterize even micro-sized thin film crystals on plane surface regarding anisotropy, optical properties, crystalline domains and thickness. The semiconducting thiophene-phenylene co-oligomer 1,4-bis(5'-hexyl-[2,2'-bithiophen]-5-yl)benzene (dHex-TTPTT) crystals were grown by solvent based self-assembly technique on silicon substrate with 300 nm thermally silicon dioxide. The ellipsometric measurements were performed with an Ep4-SE (Accurion). In an ellipsometric high-contrast image of the complete sample, we have localized high-quality single crystals. After demonstrating the uniaxial anisotropy of the crystal by using Müller-Matrix imaging ellipsometry, we determined the optical axes by rotating the sample and performed spectroscopic measurements (λ = 400-700 nm) in 5 nm intervals. The optical properties were described by using a Lorentz term in the Ep4-Model. After determining the dispersion of the crystals, we converted a recorded Delta and Psi-map into a 2D thickness image. Based on a quantitative analysis of the resulting thickness map, we have calculated the height of a molecular layer (3.49 nm).Keywords: anisotropy, ellipsometry, SCFET, thin film
Procedia PDF Downloads 25116715 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model
Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili
Abstract:
Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. By-products such as ferronickel slags (FNS), fly ash (FA), and Crepidula fornicata (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype was utilized to build an artificial neural network.Keywords: artificial neural network, cement, circular economy, concrete, by products
Procedia PDF Downloads 11416714 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener
Authors: Wenhao Li, Shijun Guo
Abstract:
Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring
Procedia PDF Downloads 16316713 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink
Authors: Mohammad Arif Khan
Abstract:
This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network
Procedia PDF Downloads 45416712 An Efficient Proxy Signature Scheme Over a Secure Communications Network
Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi
Abstract:
Proxy signature scheme permits an original signer to delegate his/her signing capability to a proxy signer, and then the proxy signer generates a signing message on behalf of the original signer. The two parties must be able to authenticate one another and agree on a secret encryption key, in order to communicate securely over an unreliable public network. Authenticated key agreement protocols have an important role in building secure communications network between the two parties. In this paper, we present a secure proxy signature scheme over an efficient and secure authenticated key agreement protocol based on the discrete logarithm problem.Keywords: proxy signature, warrant partial delegation, key agreement, discrete logarithm
Procedia PDF Downloads 34816711 Examination of Occupational Health and Safety Practices in Ghana
Authors: Zakari Mustapha, Clinto Aigbavboa, Wellinton Didi Thwala
Abstract:
Occupational Health and Safety (OHS) issues has been a major challenge to the Ghanaian government. The purpose of the study was to examine OHS practices in Ghana. The study looked at various views from different scholars about OHS practices in order to achieve the objective of the study. Literature review was conducted on OHS in Ghana. Findings from the study shows Ministry of Roads and Transport (MRT) and Ministry of Water Resources, Works and Housing (MWRWH) are two government ministries in charge of construction and implementation of the construction sector policy. The Factories, Offices and Shops Act 1970, Act 328 and the Mining Regulations 1970 LI 665 are the two major edicts. The study presents a strong background on OHS practices in Ghana and contribute to the body of knowledge on the solution to the current trends and challenges of OHS in the construction sector.Keywords: ILO convention, OHS challenges, OHS practices, OHS improvement
Procedia PDF Downloads 36816710 The Effectiveness of the Orem Self-Care Model on Single Parent Women’s General Health
Authors: Sahar Esmaeili, Ramezanali Ghaderi sanavi, Masoomeh Maarefvand, Samaneh Hosseinzadeh
Abstract:
Introduction: Conducted researches reveal that nowadays, 60 percent of women around the world are the households. The adverse economic condition causes female-headed households and their children to be the most vulnerable people against social harm. Mainly a symptoms of mental illness such as depression, anxiety, obsession and aggression can be seen in female-headed households and their children are potentially exposed to issues such as crime-work, child labor in the black and informal jobs, education deprivation and malnutrition. The aim of this study is to evaluate the effect of Orem self-care education with the FGC technique on the public health of female-headed households. Methods: Sixty-four Female-headed householders who were supported by Saleh Foundation participated in a clinical trial study and were assigned to the case (n=32) and control (n=32) groups. The case group received 4-session Orem’s self-care education with family group conferencing technique. Data were collected using the demographic questionnaire and General Health Questionnaire (GHQ-28) prior to intervention and post-intervention. ANOVA was used to evaluate outcomes. Results: The results showed significant improvement of the intervention group in GHQ (P<0.001) and subscales of Physical Health (P<0.001) Agitation and Insomnia (P<0.001) and Social disorder (P<0.001) and Depression (P<0.001) compared with the control group after the intervention. Conclusion: The intervention of Orem’s self-care education with family group conferencing technique was effective in improving the General Health of Female-headed householdsKeywords: orem’s self-care, female-headed households, general health, group
Procedia PDF Downloads 17216709 Simulation of Forest Fire Using Wireless Sensor Network
Authors: Mohammad F. Fauzi, Nurul H. Shahba M. Shahrun, Nurul W. Hamzah, Mohd Noah A. Rahman, Afzaal H. Seyal
Abstract:
In this paper, we proposed a simulation system using Wireless Sensor Network (WSN) that will be distributed around the forest for early forest fire detection and to locate the areas affected. In Brunei Darussalam, approximately 78% of the nation is covered by forest. Since the forest is Brunei’s most precious natural assets, it is very important to protect and conserve our forest. The hot climate in Brunei Darussalam can lead to forest fires which can be a fatal threat to the preservation of our forest. The process consists of getting data from the sensors, analyzing the data and producing an alert. The key factors that we are going to analyze are the surrounding temperature, wind speed and wind direction, humidity of the air and soil.Keywords: forest fire monitor, humidity, wind direction, wireless sensor network
Procedia PDF Downloads 45416708 Building Green Infrastructure Networks Based on Cadastral Parcels Using Network Analysis
Authors: Gon Park
Abstract:
Seoul in South Korea established the 2030 Seoul City Master Plan that contains green-link projects to connect critical green areas within the city. However, the plan does not have detailed analyses for green infrastructure to incorporate land-cover information to many structural classes. This study maps green infrastructure networks of Seoul for complementing their green plans with identifying and raking green areas. Hubs and links of main elements of green infrastructure have been identified from incorporating cadastral data of 967,502 parcels to 135 of land use maps using geographic information system. Network analyses were used to rank hubs and links of a green infrastructure map with applying a force-directed algorithm, weighted values, and binary relationships that has metrics of density, distance, and centrality. The results indicate that network analyses using cadastral parcel data can be used as the framework to identify and rank hubs, links, and networks for the green infrastructure planning under a variable scenarios of green areas in cities.Keywords: cadastral data, green Infrastructure, network analysis, parcel data
Procedia PDF Downloads 20916707 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 150