Search results for: microbial enzymes
366 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms
Authors: Irina Mikajlo, Jakub Elbl, Helena Dvořáčková, Antonín Kintl, Jindřich Kynický, Martin Brtnický, Jaroslav Záhora
Abstract:
Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pre-treated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduce may occur.Keywords: fertigation, fertilizers, mineral nitrogen, soil microorganisms
Procedia PDF Downloads 352365 Remodeling of Gut Microbiome of Pakistani Expats in China After Intermittent Fasting/Ramadan Fasting
Authors: Hafiz Arbab Sakandar
Abstract:
Time-restricted intermittent fasting (TRIF) impacts host’s physiology and health. Plenty of health benefits have been reported for TRIF in animal models. However, limited studies have been conducted on humans especially in underdeveloped economies. Here, we designed a study to investigate the impact of TRIF/Ramadan fasting (16:8) on the modulation of gut-microbiome structure, metabolic pathways, and predicted metabolites and explored the correlation among them at different time points (during and after the month of Ramadan) in Pakistani Expats living in China. We observed different trends of Shannon-Wiener index in different subjects; however, all subjects showed substantial change in bacterial diversity with the progression of TRIF. Moreover, the changes in gut microbial structure by the end of TRIF were higher vis-a-vis in the beginning, significant difference was observed among individuals. Additionally, metabolic pathways analysis revealed that amino acid, carbohydrate and energy metabolism, glycan biosynthesis metabolism of cofactors and vitamins were significantly affected by TRIF. Pyridoxamine, glutamate, citrulline, arachidonic acid, and short chain fatty acid showed substantial difference at different time points based on the predicted metabolism. In conclusion, these results contribute to further our understanding about the key relationship among, dietary intervention (TRIF), gut microbiome structure and function. The preliminary results from study demonstrate significant potential for elucidating the mechanisms underlying gut microbiome stability and enhancing the effectiveness of microbiome-tailored interventions among the Pakistani populace. Nonetheless, extensive, and rigorous large-scale research on the Pakistani population is necessary to expound on the association between diet, gut microbiome, and overall health.Keywords: gut microbiome, health, fasting, functionality
Procedia PDF Downloads 75364 Sensitivity of Staphylococcus aureus Isolated from Subclinical Bovine Mastitis to Ciprofloxacin in Dairy Herd in Tabriz during 2013
Authors: Alireza Jafarzadeh, Samad Mosaferi, Mansour Khakpour
Abstract:
Mastitis is an inflammation of the parenchyma of mammary gland regardless of the causes. Mastitis is characterized by a range of physical and chemical changes in the glandular tissue. The most important change in milk includes discoloration, the presence of clots and large number of leucocytes. There is swelling, heat, pain and edema in mammary gland in many clinical cases. Positive coagulase S. aureus is a major pathogen of the bovine mammary gland and a common cause of contagious mastitis in cattle. The aim of this study was to evaluate the outbreaks of Staphylococcus aureus mastitis. This study is conducted in ten dairy herds about one thousand cows. After doing CMT and identifying infected cows, the milk samples obtained from infected teats and transported to microbiological laboratories. After microbial culture of milk samples and isolating S. aureus, antimicrobial, sensitivity test was performed with disk diffusion method by ciprofloxacin, co-amoxiclav, erythromycin, penicillin, oxytetracyclin, sulfonamides, lincomycin and cefquinome. The study defined that the outbreak of subclinical positive coagulase Staphylococcus mastitis in dairy herd was 13.11% (5.6% S. aureus and 7.51% S. intermedicus). The antimicrobial sensitivity test shown that 87.23% of Staphylococcus aureus isolated from bovine mastitis in dairy herd was susceptible to ciprofloxacin, 93.9% to cefquinome, 4.67% to co-amoxiclav, 12.16% to erythromycin 86.11% to sulfonamides (co-trimoxazole), 3.35% lincomycin, 12.7% to oxytetracyclin and 5.98% to penicillin. Results of present defined that ciprofloxacin has a great effect on Staphylococcus aureus isolated from subclinical bovine mastitis dairy herd. It seems that cefquinome sulfonamides has a great effect on isolated Staphylococcus aureus in vivo.Keywords: ciprofloxacin, mastitis, Staphylococcus aureus, dairy herd
Procedia PDF Downloads 634363 Investigating Prostaglandin E2 and Intracellular Oxidative Stress Levels in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages upon Treatment with Strobilanthes crispus
Authors: Anna Pick Kiong Ling, Jia May Chin, Rhun Yian Koh, Ying Pei Wong
Abstract:
Background: Uncontrolled inflammation may cause serious inflammatory diseases if left untreated. Non-steroidal anti-inflammatory drug (NSAIDs) is commonly used to inhibit pro-inflammatory enzymes, thus, reduce inflammation. However, long term administration of NSAIDs leads to various complications. Medicinal plants are getting more attention as it is believed to be more compatible with human body. One of them is a flavonoid-containing medicinal plants, Strobilanthes crispus which has been traditionally claimed to possess anti-inflammatory and antioxidant activities. Nevertheless, its anti-inflammatory activities are yet to be scientifically documented. Objectives: This study aimed to examine the anti-inflammatory activity of S. crispus by investigating its effects on intracellular oxidative stress and prostaglandin E2 (PGE2) levels. Materials and Methods: In this study, the Maximum Non-toxic Dose (MNTD) of methanol extract of both leaves and stems of S. crispus was first determined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenytetrazolium Bromide (MTT) assay. The effects of S. crispus extracts at MNTD and half MNTD (½MNTD) on intracellular ROS as well as PGE2 levels in 1.0 µg/mL LPS-stimulated RAW 264.7 macrophages were then be measured using DCFH-DA and a competitive enzyme immunoassay kit, respectively. Results: The MNTD of leaf extract was determined as 700µg/mL while for stem was as low as 1.4µg/mL. When LPS-stimulated RAW 264.7 macrophages were subjected to the MNTD of S. crispus leaf extract, both intracellular ROS and PGE2 levels were significantly reduced. In contrast, stem extract at both MNTD and ½MNTD did not significantly reduce the PGE2 level, but significantly increased the intracellular ROS level. Conclusion: The methanol leaf extract of S. crispus may possess anti-inflammatory properties as it is able to significantly reduce the intracellular ROS and PGE2 levels of LPS-stimulated cells. Nevertheless, further studies such as investigating the interleukin, nitric oxide and cytokine tumor necrosis factor-α (TNFα) levels has to be conducted to further confirm the anti-inflammatory properties of S. crispus.Keywords: anti-inflammatory, natural products, prostaglandin E2, reactive oxygen species
Procedia PDF Downloads 284362 TAXAPRO, A Streamlined Pipeline to Analyze Shotgun Metagenomes
Authors: Sofia Sehli, Zainab El Ouafi, Casey Eddington, Soumaya Jbara, Kasambula Arthur Shem, Islam El Jaddaoui, Ayorinde Afolayan, Olaitan I. Awe, Allissa Dillman, Hassan Ghazal
Abstract:
The ability to promptly sequence whole genomes at a relatively low cost has revolutionized the way we study the microbiome. Microbiologists are no longer limited to studying what can be grown in a laboratory and instead are given the opportunity to rapidly identify the makeup of microbial communities in a wide variety of environments. Analyzing whole genome sequencing (WGS) data is a complex process that involves multiple moving parts and might be rather unintuitive for scientists that don’t typically work with this type of data. Thus, to help lower the barrier for less-computationally inclined individuals, TAXAPRO was developed at the first Omics Codeathon held virtually by the African Society for Bioinformatics and Computational Biology (ASBCB) in June 2021. TAXAPRO is an advanced metagenomics pipeline that accurately assembles organelle genomes from whole-genome sequencing data. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents organism abundance information in both a tabular and graphical format. TAXAPRO was evaluated using COVID-19 patient gut microbiome data. Analysis performed by TAXAPRO demonstrated a high abundance of Clostridia and Bacteroidia genera and a low abundance of Proteobacteria genera relative to others in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings derived using a different analysis methodology. This provides crucial evidence that the TAXAPRO workflow dispenses reliable organism abundance information overnight without the hassle of performing the analysis manually.Keywords: metagenomics, shotgun metagenomic sequence analysis, COVID-19, pipeline, bioinformatics
Procedia PDF Downloads 221361 Interaction Effects of Dietary Ginger, Zingiber Officinale, on Plasma Protein Fractions in Rainbow Trout, Oncorhynchus Mykiss
Authors: Ali Taheri Mirghaed, Sara Ahani, Ashkan Zargar, Seyyed Morteza Hoseini
Abstract:
Diseases are the major challenges in intensive aquaculture that cause significant annual losses. Antibiotic-therapy is a common way to control bacterial disease in fish, and oxytetracycline (OTC) is the only oral antibiotic in aquaculture approved FDA. OTC has been found to have negative effects on fish, such as oxidative stress and immune-suppression, thus, it is necessary to mitigate such effects. Medicinal herbs have various benefits on fish, including antioxidant, immunostimulant, and anti-microbial effects. Therefore, we hypothesized if dietary ginger meal (GM) interacts with dietary OTC by monitoring plasma protein fractions in rainbow trout. The study was conducted as a 2 × 2 factorial design, including diets containing 0 and 1% GM and 0 and 1.66 % OTC (corresponding to 100 mg/kg fish biomass per day). After ten days treating the fish (60 g individual weight) with these feeds, blood samples were taken from al treatments (n =3). Plasma was separated by centrifugation, and protein fractions were determined by electrophoresis. The results showed that OTC and GM had interaction effects on total protein (P<0.001), albumin (P<0.001), alpha-1 fraction (P=0.010), alpha-2 fraction (P=0.001), beta-2 fraction (P=0.014), and gamma fraction (P<0.001). Beta-1 fraction was significantly (P=0.030) affected by dietary GM. GM decreased plasma total protein, albumin, and beta-2 but increased beta-1 fraction. OTC significantly decreased total protein (P<0.001), albumin (P=0.001), alpha-2 fraction (P<0.001), beta-2 fraction (P=0.004), and gamma fraction (P<0.001) but had no significant effects on alpha-1 and beta-1 fractions. Dietary GM inhibited/suppressed the effects of dietary OTC on the plasma total protein and protein fractions. In conclusion, adding 1% GM to diet can mitigate the negative effects of dietary OTC on plasma proteins. Thus, GM may boost health of rainbow trout during the period of medication with OTC.Keywords: ginger, plasma protein electrophoresis, dietary additive, rainbow trout
Procedia PDF Downloads 90360 The Importance of Storage Period on Biogas Potential of Cattle Manure
Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim
Abstract:
Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.Keywords: storage period, cattle manure, biogas potential, microbial analysis
Procedia PDF Downloads 173359 Phylogenetic Differential Separation of Environmental Samples
Authors: Amber C. W. Vandepoele, Michael A. Marciano
Abstract:
Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.Keywords: DNA isolation, geolocation, non-human, phylogenetic separation
Procedia PDF Downloads 112358 Inhibition of Echis ocellatus Venom Metalloprotease by Flavonoid-Rich Ethyl Acetate Sub-fraction of Moringa oleifera Leaves (Lam.): in vitro and in silico Approaches
Authors: Adeyi Akindele Oluwatosin, Mustapha Kaosarat Keji, Ajisebiola Babafemi Siji, Adeyi Olubisi Esther, Damilohun Samuel Metibemu, Raphael Emuebie Okonji
Abstract:
Envenoming by Echis ocellatus is potentially life-threatening due to severe hemorrhage, renal failure, and capillary leakage. These effects are attributed to snake venom metalloproteinases (SVMPs). Due to drawbacks in the use of antivenom, natural inhibitors from plants are of interest in studies of new antivenom treatment. Antagonizing effects of bioactive compounds of Moringa oleifera, a known antisnake plant, are yet to be tested against SVMPs of E. ocellatus (SVMP-EO). Ethanol crude extract of M. oleifera was partitioned using n-hexane and ethyl acetate. Each partition was fractionated using column chromatography and tested against SVMP-EO purified through ion-exchange chromatography with EchiTab-PLUS polyvalent anti-venom as control. Phytoconstituents of ethyl acetate fraction were screened against the catalytic site of crystal of BaP1-SVMP, while drug-likeness and ADMET toxicity of compound were equally determined. The molecular weight of isolated SVMP-EO was 43.28 kDa, with a specific activity of 245 U/ml, a percentage yield of 62.83 %, and a purification fold of 0.920. The Vmax and Km values are 2 mg/ml and 38.095 μmol/ml/min, respectively, while the optimal pH and temperature are 6.0 and 40°C, respectively. Polyvalent anti-venom, crude extract, and ethyl acetate fraction of M. oleifera exhibited a complete inhibitory effect against SVMP-EO activity. The inhibitions of the P-1 and P-II metalloprotease’s enzymes by the ethyl acetate fraction are largely due to methanol, 6, 8, 9-trimethyl-4-(2-phenylethyl)-3-oxabicyclo[3.3.1]non-6-en-1-yl)- and paroxypropione, respectively. Both compounds are potential drug candidates with little or no concern of toxicity, as revealed from the in-silico predictions. The inhibitory effects suggest that this compound might be a therapeutic candidate for further exploration for treatment of Ocellatus’ envenoming.Keywords: Echis ocellatus, Moringa oleifera, anti-venom, metalloproteases, snakebite, molecular docking
Procedia PDF Downloads 149357 X-Ray Crystallographic Studies on BPSL2418 from Burkholderia pseudomallei
Authors: Mona Alharbi
Abstract:
Melioidosis has emerged as a lethal disease. Unfortunately, the molecular mechanisms of virulence and pathogenicity of Burkholderia pseudomallei remain unknown. However, proteomics research has selected putative targets in B. pseudomallei that might play roles in the B. pseudomallei virulence. BPSL 2418 putative protein has been predicted as a free methionine sulfoxide reductase and interestingly there is a link between the level of the methionine sulfoxide in pathogen tissues and its virulence. Therefore in this work, we describe the cloning expression, purification, and crystallization of BPSL 2418 and the solution of its 3D structure using X-ray crystallography. Also, we aimed to identify the substrate binding and reduced forms of the enzyme to understand the role of BPSL 2418. The gene encoding BPSL2418 from B. pseudomallei was amplified by PCR and reclone in pETBlue-1 vector and transformed into E. coli Tuner DE3 pLacI. BPSL2418 was overexpressed using E. coli Tuner DE3 pLacI and induced by 300μM IPTG for 4h at 37°C. Then BPS2418 purified to better than 95% purity. The pure BPSL2418 was crystallized with PEG 4000 and PEG 6000 as precipitants in several conditions. Diffraction data were collected to 1.2Å resolution. The crystals belonged to space group P2 21 21 with unit-cell parameters a = 42.24Å, b = 53.48Å, c = 60.54Å, α=γ=β= 90Å. The BPSL2418 binding MES was solved by molecular replacement with the known structure 3ksf using PHASER program. The structure is composed of six antiparallel β-strands and four α-helices and two loops. BPSL2418 shows high homology with the GAF domain fRMsrs enzymes which suggest that BPSL2418 might act as methionine sulfoxide reductase. The amino acids alignment between the fRmsrs including BPSL 2418 shows that the three cysteines that thought to catalyze the reduction are fully conserved. BPSL 2418 contains the three conserved cysteines (Cys⁷⁵, Cys⁸⁵ and Cys¹⁰⁹). The active site contains the six antiparallel β-strands and two loops where the disulfide bond formed between Cys⁷⁵ and Cys¹⁰⁹. X-ray structure of free methionine sulfoxide binding and native forms of BPSL2418 were solved to increase the understanding of the BPSL2418 catalytic mechanism.Keywords: X-Ray Crystallography, BPSL2418, Burkholderia pseudomallei, Melioidosis
Procedia PDF Downloads 248356 Utilization of Agro-wastes for Biotechnological Production of Edible Mushroom
Authors: Salami Abiodun Olusola, Bankole Faith Ayobami
Abstract:
Agro-wastes are wastes produced from various agricultural activities and include manures, corncob, plant stalks, hulls, leaves, sugarcane bagasse, oil-palm spadix, and rice bran. In farming situation, the agro-waste is often useless and, thus, discarded. Huge quantities of waste resources generated from Nigerian agriculture could be converted to more useful forms of energy, which could contribute to the country’s primary energy needs and reduce problems associated with waste management. Accumulation of agro-wastes may cause health, safety, and environmental concern. However, biotechnological use of agro-waste could enhance food security through its bioconversion to useful renewable energy. Mushrooms are saprophytes which feed by secreting extracellular enzymes, digesting food externally, and absorb the nutrients in net-like hyphae. Therefore, mushrooms could be exploited for bioconversion of the cheap and numerous agro-wastes for providing nutritious food for animals, human and carbon recycling. The study investigated the bioconversion potentials of Pleurotus florida on agro-wastes using a simple and cost-effective biotechnological method. Four agro-wastes; corncobs, oil-palm spadix, corn straw, and sawdust, were composted and used as substrates while the biological efficiency (BE) and the nutritional composition of P. florida grown on the substrates were determined. Pleurotus florida contained 26.28-29.91% protein, 86.90-89.60% moisture, 0.48-0.91% fat, 19.64-22.82% fibre, 31.37-38.17% carbohydrate and 5.18-6.39% ash. The mineral contents ranged from 342-410 mg/100g Calcium, 1009-1133 mg/100g Phosphorus, 17-21 mg/100g Iron, 277-359 mg/100g Sodium, and 2088-2281 mg/100g Potassium. The highest yield and BE were obtained on corncobs (110 g, 55%), followed by oil-palm spadix (76.05 g, 38%), while the least BE was recorded on corn straw substrate (63.12 g, 31.56%). Utilization of the composted substrates yielded nutritional and edible mushrooms. The study presents biotechnological procedure for bioconversion of agro-wastes to edible and nutritious mushroom for efficient agro-wastes’ management, utilization, and recycling.Keywords: agrowaste, bioconversion, biotechnology, utilization, recycling
Procedia PDF Downloads 78355 Utilization of Extracted Spirogyra sp. Media Fermented by Gluconacetobacter Xylinum for Cellulose Production as Raw Material for Paper Product
Authors: T. S. Desak Ketut, A.n. Isna, A.a. Ayu, D. P. Ririn, Suharjono Hadiatullah
Abstract:
The requirement of paper from year to year rise rapidly. The raising of cellulose requirement in paper production caused increasing of wood requirement with the effect that limited forest areal because of deforestation. Alternative cellulose that can be used for making paper is microbial cellulose. The objective of this research are to know the effectivity fermentation media Spirogyra sp. by Gluconacetobacter xylinum for cellulose production as material for the making of paper and to know effect composition bacterial cellulose composite product of Gluconacetobacter xylinum in Spirogyra sp. The method, was used, is as follow, 1) the effect assay from variation composition of fermentation media to bacterial cellulose production by Gluconacetobacter xylinum. 2) The effect assay of composition bacterial cellulose fermentation producted by Gluconacetobacter xylinum in extracted Spirogyra media to paper quality. The result of this research is variation fermentation media Spirogyra sp. affect to production of cellulose by Gluconacetobacter xylinum. Thus, result showed by the highest value and significantly different in thickness parameter, dry weight and wet weight of nata in sucrose concentration 7,5 % and urea 0,75 %. Composition composite of bacterial cellulose from fermentation product by Gluconacetobacter xylinum in media Spirogyra sp. affect to paper quality from wet nata and dry nata. Parameters thickness, weight, water absorpsion, density and gramatur showed highest result in sucrose concentration 7,5 % and urea concentration 0,75 %, except paper density from dry nata had highest result in sucrose and urea concentration 0%.Keywords: cellulose, fermentation media, , Gluconacetobacter xylinum, paper, Spirogyra sp.
Procedia PDF Downloads 343354 Simultaneous Saccharification and Fermentation for D-Lactic Acid Production from Dried Distillers Grains with Solubles
Authors: Nurul Aqilah Mohd Zaini, Afroditi Chatzifragkou, Dimitris Charalampopoulos
Abstract:
D-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, Polylactic Acid (PLA). In this study, D-lactic acid was produced in microbial cultures using Lactobacillus coryniformis subsp. torquens as D-lactic acid producer and hydrolysates of Dried Distillers Grains with Solubles (DDGS) as fermentation substrate. Prior to fermentation, DDGS was first alkaline pretreated with 5% (w/v) NaOH, for 15 minutes (121oC/ ~16 psi). This led to the generation of DDGS solid residues, rich in carbohydrates and especially cellulose (~52%). The carbohydrate-rich solids were then subjected to enzymatic hydrolysis with Accellerase® 1500. For Separate Hydrolysis and Fermentation (SHF), enzymatic hydrolysis was carried out at 50oC for 24 hours, followed by fermentation of D-lactic acid at 37oC in controlled pH 6. The obtained hydrolysate contained 24 g/l glucose, 5.4 g/l xylose and 0.6 g/l arabinose. In the case of Simultaneous Saccharification and Fermentation (SSF), hydrolysis and fermentation were conducted in a single step process at 37oC in pH 5. The enzymatic hydrolysis of DGGS pretreated solids took place mostly during lag phase of L. coryniformis fermentation, with only a small amount of glucose consumed during the first 6 h. When exponential phase was started, glucose generation reduced as the microorganism started to consume glucose for D-lactic acid production. Higher concentrations of D-lactic acid were produced when SSF approach was applied, with 28 g/l D-lactic acid after 24 h of fermentation (84.5% yield). In contrast, 21.2 g/l D-lactic acid were produced when SHF was used. The optical pu rity of D-lactic acid produced from both experiments was 99.9%. Besides, approximately 2 g/l acetic acid was also generated due to lactic acid degradation after glucose depletion in SHF. SSF was proved an efficient towards DDGS ulilisation and D-lactic acid production, by reducing the overall processing time, yielding sufficient D-lactic acid concentrations without the generation of fermentation by-products.Keywords: DDGS, alkaline pretreatment, SSF, D-lactic acid
Procedia PDF Downloads 340353 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)
Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda
Abstract:
The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity
Procedia PDF Downloads 424352 Biogenic Amines Production during RAS Cheese Ripening
Authors: Amr Amer
Abstract:
Cheeses are among those high-protein-containing foodstuffs in which enzymatic and microbial activities cause the formation of biogenic amines from amino acids decarboxylation. The amount of biogenic amines in cheese may act as a useful indicator of the hygienic quality of the product. In other words, their presence in cheese is related to its spoilage and safety. Formation of biogenic amines during Ras cheese (Egyptian hard cheese) ripening was investigated for 4 months. Three batches of Ras cheese were manufactured using Egyptian traditional method. From each batch, Samples were collected at 1, 7, 15, 30, 60, 90 and 120 days after cheese manufacture. The concentrations of biogenic amines (Tyramine, Histamine, Cadaverine and Tryptamine) were analyzed by high performance liquid chromatography (HPLC). There was a significant increased (P<0.05) in Tyramine levels from 4.34± 0.07 mg|100g in the first day of storage till reached 88.77± 0.14 mg|100g at a 120-day of storage. Also, Histamine and Cadaverine levels had the same increased pattern of Tyramine reaching 64.94± 0.10 and 28.28± 0.08 mg|100g in a 120- day of storage, respectively. While, there was a fluctuation in the concentration of Tryptamine level during ripening period as it decreased from 3.24± 0.06 to 2.66± 0.11 mg|100g at 60-day of storage then reached 5.38±0.08 mg|100g in a 120- day of storage. Biogenic amines can be formed in cheese during production and storage: many variables, as pH, salt concentration, bacterial activity as well as moisture, storage temperature and ripening time, play a relevant role in their formation. Comparing the obtained results with the recommended standard by Food and Drug Administration "FDA" (2001), High levels of biogenic amines in various Ras cheeses consumed in Egypt exceeded the permissible value (10 mg%) which seemed to pose a threat to public health. In this study, presence of high concentrations of biogenic amines (Tyramine, Histamine, cadaverine and Tryptamine) in Egyptian Ras cheeses reflects the bad hygienic conditions under which they produced and stored. Accordingly, the levels of biogenic amines in different cheeses should be come in accordance with the safe permissible limit recommended by FDA to ensure human safety.Keywords: Ras cheese, biogenic amines, tyramine, histamine, cadaverine
Procedia PDF Downloads 436351 A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt
Authors: Ahmed Samy Elnoby
Abstract:
Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin.Keywords: Ailanthus altissima, TLC, HPLC, anti-microbial activity, antifungal activity, antioxidant, cytotoxic activity
Procedia PDF Downloads 174350 Protective Effect of N-Acetyl Cysteine and Alpha Lipoic Acid on Rats Chronically Exposed to Cadmium Chloride
Authors: S. El Ballal, H. El Sabbagh, M. Abd El Gaber, A. Eisa, A. Al Gamal
Abstract:
Cadmium is one of the most harmful heavy metals able to induce severe injury. In this study, sixty four male Sprague Dawley rats weighing (70-80 gm) were used. Rats were divided into 4 groups each group of 16 rats. Group A: served as control and received commercial ration and distilled water Group B: cadmium chloride was administered orally in water at dose of 300 ppm cadmium (560 mg/L as CdCl2). Group C: Animals received cadmium in drinking water in addition to administration of N-acetylcysteine (NAC) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. Group D: Animals received cadmium in drinking water in addition to administration of alpha lipoic acid (ALA) orally at a dose of 150 mg/kg body weight, equivalent to 1500 ppm in food. The experiment was continued for 2 months. Collection of blood and tissue samples was performed at 2, 4, 6, 8 weeks. Blood sample were collected for serum biochemical analysis including malondialdehyde (MDA), total antioxidants, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total protein, albumin, urea and uric acid. Tissue specimens were collected for histopathological examination including liver, kidney, brain and testis. Histopathological examination revealed that cadmium choloride induces pathological alterations which increased in severity with time. The use of NAC and ALA can ameliorate toxic effect of CdCl2. The results showed significant decrease MDA and significant increase total antioxidants in group C and D compared to group B, Liver enzymes include AST and ALT showed significant decrease. Regarding to results of total protein and albumin, they revealed significant increase. Urea and uric acid showed significant decrease. From our study we conclude that NAC and ALA have protective effect against cadmium toxicity.Keywords: ALA, cadmium, histopathology, NAC
Procedia PDF Downloads 338349 Evaluation of Biological Seed Coating Technology On-Field Performance of Wheat in Regenerative Agriculture and Conventional Systems
Authors: S. Brain, P. J. Storer, H. Strydom, Z. M. Solaiman
Abstract:
Increasing farmer awareness of soil health, the impact of agricultural management practices, and the requirement for high-quality agricultural produce are major factors driving the rapid adoption of biological seed treatments - currently valued globally at USD 1.5 billion. Biological seed coatings with multistrain plant beneficial microbial technology have the capability to affect plant establishment, growth, and development positively. These beneficial plant microbes can potentially increase soil health, plant yield, and nutrition – acting as bio fertilisers, rhizoremediators, phytostimulators, and stress modulators, and can ultimately reduce the overall use of agrichemicals. A field trial was conducted on MACE wheat in the central wheat belt of Western Australia to evaluate a proprietary seed coating technology (Langleys Bio-EnergeticTM Microbe blend (BMB)) on a conventional program (+/- BMB microbes) and a Regenerative Biomineral fertiliser program (+/- BMB microbes). The Conventional (+BMB) and Biomineral (+BMB) treated plants had no fungicide treatments and had no disease issues. Control (No fertiliser, No microbes), Conventional (No Microbes), and Biomineral (No Microbes) were treated with fungicides (seed dressing and foliar). From the research findings, compared to control and no microbe treatments, both the Conventional (+ BMB) and Biomineral (+ BMB) showed significant increases in Soil Carbon (SOC), Seed germination, nutrient use efficiency (NUE) of nitrogen, phosphate and mineral nutrients, grain mineral nutrient uptake, protein %, hectolitre weight, and fewer screenings, yield, and gross margins.Keywords: biological seed coating, biomineral fertiliser, plant nutrition, regenerative and conventional agriculture
Procedia PDF Downloads 79348 Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate
Authors: Samuel E. Okere, Anthony E. Ataga
Abstract:
Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms.Keywords: characterization, microorganisms, mushroom, spent substrate
Procedia PDF Downloads 161347 Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing
Authors: Janos Juhasz, Sandor Pongor, Balazs Ligeti
Abstract:
Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy.Keywords: metagenomics, taxonomy binning, pathogens, microbiome, B. anthracis
Procedia PDF Downloads 137346 The Molecular Analysis of Effect of Phytohormones and Spermidine on Tomato Growth under Biotic Stress
Authors: Rumana Keyani, Haleema Sadia, Asia Nosheen, Rabia Naz, Humaira Yasmin, Sidra Zahoor
Abstract:
Tomato is a significant crop of the world and is one of the staple foods of Pakistan. A vast number of plant pathogens from simple viruses to complex parasites cause diseases in tomatoes but fungal infection in our country is quite high. Sometimes the symptoms are too harsh destroying the crop altogether. Countries like our own with continuously increasing massive population and limited resources cannot afford such an economic loss. There is an array of morphological, genetic, biochemical and molecular processes involved in plant resistance mechanisms to biotic stress. The study of different metabolic pathways like Jasmonic acid (JA) pathways and most importantly signaling molecules like ROS/RNS and their redoxin enzymes i.e. TRX and NRX is crucial to disease management, contributing to healthy plant growth. So, improving tolerance in crop plants against biotic stresses is a dire need of our country and world as whole. In the current study, fungal pathogenic strains Alternaria solani and Rhizoctonia solani were used to inoculate tomatoes to check the defense responses of tomato plant against these pathogens at molecular as well as phenotypic level with jasmonic acid and spermidine pretreatment. All the growth parameters (root and shoot length, dry and weight root, shoot weight measured 7 days post-inoculation, exhibited that infection drastically declined the growth of the plant whereas jasmonic acid and spermidine assisted the plants to cope up with the infection. Thus, JA and Spermidine treatments maintained comparatively better growth factors. Antioxidant assays and expression analysis through real time quantitative PCR following time course experiment at 24, 48 and 72 hours intervals also exhibited that activation of JA defense genes and a polyamine Spermidine helps in mediating tomato responses against fungal infection when used alone but the two treatments combined mask the effect of each other.Keywords: fungal infection, jasmonic acid defence, tomato, spermidine
Procedia PDF Downloads 128345 Evaluation of Chemoprotective Effect of NBRIQU16 against N-Methyl-N-Nitro-N-Nitrosoguanidine and NaCl-Induced Gastric Carcinomas in Wistar Rats
Authors: Lubna Azmi, Ila Shukla, Shyam Sundar Gupta, Padam Kant, C. V. Rao
Abstract:
To investigate the chemoprotective potential of NBRIQU16 chemotype isolated from Argyreia speciosa (Family: Convolvulaceae) on N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and NaCl-induced gastric carcinomas in Wistar rats. Forty-six male 6-week-old Wistar rats were divided into two groups. Thirty rats in group A were fed with a diet supplemented with 8 % NaCl for 20 weeks and simultaneously given N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) in drinking water at a concentration of 100 ug/ml for the first 17 weeks. After administration of the carcinogen, 200 and 400 mg/kg of NBRIQU16 were administered orally once a day throughout the study. From week 18, these rats were given normal water. From week 21, these rats were fed with a normal diet for 15 weeks. Group B containing 16 rats was fed standard diet for thirty-five days. It served as control. Ten rats from group A were sacrificed after 20 weeks. Scarification of remaining animals was conducted after 35 weeks. Entire stomach and some part of the duodenum were incised parallel to the greater curvature, and the samples were collected. After opening the stomach location and size of tumors were recorded. The number of tumors with their locations and sizes were recorded. Expression of survivin was examined by recording the Immunohistochemistry of the specimens. The treatment with NBRIQU16 significantly reduced the nodule incidence and nodule multiplicity in the rats after MNNG administration. Surviving expression in glandular stomachs of normal rats, of rats in middle induction period, in adenocarcinomas and NBRIQU16 treated tissues adjacent to tumor were 0, 42.0 %, 79.3%, and 36.4 %, respectively. Expression of survivin was significantly different as compared to the normal rats. Histological observations of stomach tissues too correlated with the biochemical observations.These finding powerfully supports that NBRIQU16 chemopreventive effect by suppressing the tumor burden and restoring the activities of gastric cancer marker enzymes on MNNG and NaCl-induced gastric carcinomas in Wistar rats.Keywords: Argyreia speciosa, gastric carcinoma, immunochemistry, NBRIQU16
Procedia PDF Downloads 298344 Interpersonal Variation of Salivary Microbiota Using Denaturing Gradient Gel Electrophoresis
Authors: Manjula Weerasekera, Chris Sissons, Lisa Wong, Sally Anderson, Ann Holmes, Richard Cannon
Abstract:
The aim of this study was to characterize bacterial population and yeasts in saliva by Polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and measure yeast levels by culture. PCR-DGGE was performed to identify oral bacteria and yeasts in 24 saliva samples. DNA was extracted and used to generate DNA amplicons of the V2–V3 hypervariable region of the bacterial 16S rDNA gene using PCR. Further universal primers targeting the large subunit rDNA gene (25S-28S) of fungi were used to amplify yeasts present in human saliva. Resulting PCR products were subjected to denaturing gradient gel electrophoresis using Universal mutation detection system. DGGE bands were extracted and sequenced using Sanger method. A potential relationship was evaluated between groups of bacteria identified by cluster analysis of DGGE fingerprints with the yeast levels and with their diversity. Significant interpersonal variation of salivary microbiome was observed. Cluster and principal component analysis of the bacterial DGGE patterns yielded three significant major clusters, and outliers. Seventeen of the 24 (71%) saliva samples were yeast positive going up to 10³ cfu/mL. Predominately, C. albicans, and six other species of yeast were detected. The presence, amount and species of yeast showed no clear relationship to the bacterial clusters. Microbial community in saliva showed a significant variation between individuals. A lack of association between yeasts and the bacterial fingerprints in saliva suggests the significant ecological person-specific independence in highly complex oral biofilm systems under normal oral conditions.Keywords: bacteria, denaturing gradient gel electrophoresis, oral biofilm, yeasts
Procedia PDF Downloads 222343 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments
Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob
Abstract:
Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology
Procedia PDF Downloads 157342 Negative Pressure Wound Therapy in Complex Injuries of the Limbs
Authors: Mihail Nagea, Olivera Lupescu, Nicolae Ciurea, Alexandru Dimitriu, Alina Grosu
Abstract:
Introduction: As severe open injuries are more and more frequent in modern traumatology, threatening not only the integrity of the affected limb but even the life of the patients, new methods desired to cope with the consequences of these traumas were described. Vacuum therapy is one such method which has been described as enhancing healing in trauma with extensive soft-tissue injuries, included those with septic complications. Material and methods: Authors prospectively analyze 15 patients with severe lower limb trauma with MESS less than 6, with considerable soft tissue loss following initial debridement and fracture fixation. The patients needed serial debridements and vacuum therapy was applied after delayed healing due to initial severity of the trauma, for an average period of 12 days (7 - 23 days).In 7 cases vacuum therapy was applied for septic complications. Results: Within the study group, there were no local complications; secondary debridements were performed for all the patients and vacuum system was re-installed after these debridements. No amputations were needed. Medical records were reviewed in order to compare the outcome of the patients: the hospital stay, anti-microbial therapy, time to healing of the bone and soft tissues (there is no standard group to be compared with) and the result showed considerable improvements in the outcome of the patients. Conclusion: Vacuum therapy improves healing of the soft tissues, including those infected; hospital stay and the number of secondary necessary procedures are reduced. Therefore it is considered a valuable support in treating trauma of the limbs with severe soft tissue injuries.Keywords: complex injuries, negative pressure, open fractures, wound therapy
Procedia PDF Downloads 295341 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation
Authors: Arezoo Assarian, Reza Javaherdashti
Abstract:
Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)
Procedia PDF Downloads 167340 BRG1 and Ep300 as a Transcriptional Regulators of Breast Cancer Growth
Authors: Maciej Sobczak, Julita Pietrzak, Tomasz Płoszaj, Agnieszka Robaszkiewicz
Abstract:
Brg1, a member of SWI/SNF complex, plays a role in chromatin remodeling, therefore, regulates expression of many genes. Brg1 is an ATPase of SWI/SNF complex, thus its activity requires ATP. Through its bromodomain recognizes acetylated histone residues and evicts them, thus promoting transcriptionally active state of chromatin. One of the enzymes that is responsible for acetylation of histone residues is Ep300. It was previously shown in the literature that cooperation of Brg1 and Ep300 occurs at the promoter regions that have binding sites for E2F-family transcription factors as well as CpG islands. According to literature, approximately 20% of human cancer possess mutation in Brg1 or any other crucial SWI/SNF subunit. That phenomenon makes Brg1-Ep300 a very promising target for anti-cancer therapy. Therefore in our study, we investigated if physical interaction between Brg1 and Ep300 exists and what impact those two proteins have on key for breast cancer cells processes such as DNA damage repair and cell proliferation. Bioinformatical analysis pointed out, that genes involved in cell proliferation and DNA damage repair are overexpressed in MCF7 and MDA-MB-231 cells. Moreover, promoter regions of these genes are highly acetylated, which suggests high transcriptional activity of those sites. Notably, many of those gene possess within their promoters an E2F, Brg1 motives, as well as CpG islands and acetylated histones. Our data show that Brg1 physically interacts with Ep300, and together they regulate expression of genes involved in DNA damage repair and cell proliferation. Upon inhibiting Brg1 or Ep300, expression of vital for cancer cell survival genes such as CDK2/4, BRCA1/2, PCNA, and XRCC1 is decreased in MDA-MB-231 and MCF7 cells. Moreover, inhibition or silencing of either Brg1 or Ep300 leads to cell cycle arrest in G1. After inhibition of BRG1 or Ep300 on tested gene promoters, the repressor complex including Rb, HDAC1, and EZH2 is formed, which inhibits gene expression. These results highlight potentially significant target for targeted anticancer therapy to be introduced as a supportive therapy.Keywords: brg1, ep300, breast cancer, epigenetics
Procedia PDF Downloads 183339 Degradation of Petroleum Hydrocarbons Using Pseudomonas Aeruginosa Isolated from Oil Contaminated Soil Incorporated into E. coli DH5α Host
Authors: C. S. Jeba Samuel
Abstract:
Soil, especially from oil field has posed a great hazard for terrestrial and marine ecosystems. The traditional treatment of oil contaminated soil cannot degrade the crude oil completely. So far, biodegradation proves to be an efficient method. During biodegradation, crude oil is used as the carbon source and addition of nitrogenous compounds increases the microbial growth, resulting in the effective breakdown of crude oil components to low molecular weight components. The present study was carried out to evaluate the biodegradation of crude oil by hydrocarbon-degrading microorganism Pseudomonas aeruginosa isolated from natural environment like oil contaminated soil. Pseudomonas aeruginosa, an oil degrading microorganism also called as hydrocarbon utilizing microorganism (or “HUM” bug) can utilize crude oil as sole carbon source. In this study, the biodegradation of crude oil was conducted with modified mineral basal salt medium and nitrogen sources so as to increase the degradation. The efficacy of the plasmid from the isolated strain was incorporated into E.coli DH5 α host to speed up the degradation of oil. The usage of molecular techniques has increased oil degradation which was confirmed by the degradation of aromatic and aliphatic rings of hydrocarbons and was inferred by the lesser number of peaks in Fourier Transform Infrared Spectroscopy (FTIR). The gas chromatogram again confirms better degradation by transformed cells by the lesser number of components obtained in the oil treated with transformed cells. This study demonstrated the technical feasibility of using direct inoculation of transformed cells onto the oil contaminated region thereby leading to the achievement of better oil degradation in a shorter time than the degradation caused by the wild strain.Keywords: biodegradation, aromatic rings, plasmid, hydrocarbon, Fourier Transform Infrared Spectroscopy (FTIR)
Procedia PDF Downloads 372338 Isolation and Characterisation of Novel Environmental Bacteriophages Which Target the Escherichia coli Lamb Outer Membrane Protein
Authors: Ziyue Zeng
Abstract:
Bacteriophages are viruses which infect bacteria specifically. Over the past decades, phage λ has been extensively studied, especially its interaction with the Escherichia coli LamB (EcLamB) protein receptor. Nonetheless, despite the enormous numbers and near-ubiquity of environmental phages, aside from phage λ, there is a paucity of information on other phages which target EcLamB as a receptor. In this study, to answer the question of whether there are other EcLamB-targeting phages in the natural environment, a simple and convenient method was developed and used for isolating environmental phages which target a particular surface structure of a particular bacterium; in this case, the EcLamB outer membrane protein. From the enrichments with the engineered bacterial hosts, a collection of EcLamB-targeting phages (ΦZZ phages) were easily isolated. Intriguingly, unlike phage λ, an obligate EcLamB-dependent phage in the Siphoviridae family, the newly isolated ΦZZ phages alternatively recognised EcLamB or E. coli OmpC (EcOmpC) as a receptor when infecting E. coli. Furthermore, ΦZZ phages were suggested to represent new species in the Tequatrovirus genus in the Myoviridae family, based on phage morphology and genomic sequences. Most phages are thought to have a narrow host range due to their exquisite specificity in receptor recognition. With the ability to optionally recognise two receptors, ΦZZ phages were considered relatively promiscuous. Via the heterologous expression of EcLamB on the bacterial cell surface, the host range of ΦZZ phages was further extended to three different enterobacterial genera. Besides, an interesting selection of evolved phage mutants with a broader host range was isolated, and the key mutations involved in their evolution to adapt to new hosts were investigated by genomic analysis. Finally, and importantly, two ΦZZ phages were found to be putative generalised transducers, which could be exploited as tools for DNA manipulations.Keywords: environmental microbiology, phage, microbe-host interactions, microbial ecology
Procedia PDF Downloads 100337 Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance
Authors: Mulue Girmay Gebreslasie
Abstract:
Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications.Keywords: integrated pest management, biopesticides, Insect pathology and microbial control, entomology
Procedia PDF Downloads 99