Search results for: acetic acid bacteria
3361 Chemical Composition and Antimicrobial Activity of the Essential Oil of Thymus lanceolatus Desf. an Endemic Thyme from Algeria
Authors: Ahmed Nouasri, Tahar Dob, Toumi Mohamed, Dahmane Dahmane, Soumioa Krimat, Lynda Lamari, Chabane Chelghom
Abstract:
The aim of this study is to investigate the chemical composition for the first time, and antimicrobial activities of essential oil (EO) of Thymus lanceolatus Desf., an endemic thyme from Tiaret province of Algeria. The chemical composition of hydrodistilled essential oil from flowering aerial parts has been analyzed by GC and GC/MS techniques, the antimicrobial activity was realised by agar disc diffusion method and MIC was determined in solid medium by direct contact. Essential oil of T. lanceolataus has been yielded of 2.336 (w/w) based on dry weight, the analyses cited above, led to the identification of 29 components, which accounted for 97.34% of the total oil. Oxygenated monoterpenes was the main fraction (88.31%) dominated by thymol (80.2%) as major component of this oil, followed by carvacrol (6.25%). The oil was found effective against all tested strains especially fungus, except Pseudomonas aeruginosa were low activity observed, in addition Gram (+) bacteria found to be more sensitive to the EO than Gram (-) bacteria. This activity was ranging from12±2.65mm to 60.00±0.00mm Ø, with the lowest MIC value of under 0.06mg/ml to 12.53mg/ml. This results provided the evidence that the studied plant might indeed be potential sources of natural antimicrobial agentsKeywords: Thymus lanceolatus Desf., essential oil, chemical composition, antimicrobial activities
Procedia PDF Downloads 4783360 Paenibacillus illinoisensis CX11: A Cellulase- and Xylanase-Producing Bacteria for Saccharification of Lignocellulosic Materials
Authors: Abeer A. Q. Ahmed, Tracey McKay
Abstract:
Biomass can provide a sustainable source for the production of high valued chemicals. Under the uncertain availability of fossil resources biomass could be the only available source for chemicals in future. Cellulose and hemicellulose can be hydrolyzed into their building blocks (hexsoses and pentoses) which can be converted later to the desired high valued chemicals. A cellulase- and xylanase- producing bacterial strain identified as Paenibacillus illinoisensis CX11 by 16S rRNA gene sequencing and phylogenetic analysis was found to have the ability to saccharify different lignocellulosic materials. Cellulase and xylanase activities were evaluated by 3,5-dinitro-salicylic acid (DNS) method using CMC and xylan as substrates. Results showed that P. illinoisensis CX11 have cellulase (2.63± 0.09 mg/ml) and xylanase (3.25 ± 0.2 mg/ml) activities. The ability of P. illinoisensis CX11 to saccharify lignocellulosic materials was tested using wheat straw (WS), wheat bran (WB), saw dust (SD), and corn stover (CS). DNS method was used to determine the amount of reducing sugars that were released from lignocellulosic materials. P. illinoisensis CX11 showed to have the ability to saccharify lignocellulosic materials and producing total reducing sugars as 2.34 ± 0.12, 2.51 ± 0.37, 1.86 ± 0.16, and 3.29 ± 0.20 mg/l from WS, WB, SD, and CS respectively. According to the author's knowledge, current findings are the first to report P. illinoisensis CX11 as a cellulase and xylanase producing species and that it has the ability to saccharify different lignocellulosic materials. This study presents P. illinoisensis CX11 that can be good source for cellulase and xylanase enzymes which could be introduced into lignocellulose bioconversion processes to produce high valued chemicals.Keywords: cellulase, high valued chemicals, lignocellulosic materials, Paenibacillus illinoisensis CX11, Xylanase
Procedia PDF Downloads 2483359 Extracellular Phytase from Lactobacillus fermentum spp KA1: Optimization of Enzyme Production and Its Application for Improving the Nutritional Quality of Rice Bran
Authors: Neha Sharma, Kanthi K. Kondepudi, Naveen Gupta
Abstract:
Phytases are phytate specific phosphatases catalyzing the step-wise dephosphorylation of phytate, which acts as an anti-nutritional factor in food due to its strong binding capacity to minerals. In recent years microbial phytases have been explored for improving nutritional quality of food. But the major limitation is acceptability of phytases from these microorganisms. Therefore, efforts are being made to isolate organisms which are generally regarded as safe for human consumption such as Lactic Acid Bacteria (LAB). Phytases from these organisms will have an edge over other phytase sources due to its probiotic attributes. Only few LAB have been reported to give phytase activity that too is generally seen as intracellular. LAB producing extracellular phytase will be more useful as it can degrade phytate more effectively. Moreover, enzyme from such isolate will have application in food processing also. Only few species of Lactobacillus producing extracellular phytase have been reported so far. This study reports the isolation of a probiotic strain of Lactobacillus fermentum spp KA1 which produces extracellular phytase. Conditions for the optimal production of phytase have been optimized and the enzyme production resulted in an approximately 13-fold increase in yield. The phytate degradation potential of extracellular phytase in rice bran has been explored and conditions for optimal degradation were optimized. Under optimal conditions, there was 43.26% release of inorganic phosphate and 6.45% decrease of phytate content.Keywords: Lactobacillus, phytase, phytate reduction, rice bran
Procedia PDF Downloads 1993358 Characterization of Hyaluronic Acid-Based Injections Used on Rejuvenation Skin Treatments
Authors: Lucas Kurth de Azambuja, Loise Silveira da Silva, Gean Vitor Salmoria, Darlan Dallacosta, Carlos Rodrigo de Mello Roesler
Abstract:
This work provides a physicochemical and thermal characterization assessment of three different hyaluronic acid (HA)-based injections used for rejuvenation skin treatments. The three products analyzed are manufactured by the same manufacturer and commercialized for application on different skin levels. According to the manufacturer, all three HA-based injections are crosslinked and have a concentration of 23 mg/mL of HA, and 0.3% of lidocaine. Samples were characterized by Fourier-transformed infrared (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) techniques. FTIR analysis resulted in a similar spectrum when comparing the different products. DSC analysis demonstrated that the fusion points differ in each product, with a higher fusion temperature observed in specimen A, which is used for subcutaneous applications, when compared with B and C, which are used for the middle dermis and deep dermis, respectively. TGA data demonstrated a considerable mass loss at 100°C, which means that the product has more than 50% of water in its composition. TGA analysis also showed that Specimen A had a lower mass loss at 100°C when compared to Specimen C. A mass loss of around 220°C was observed on all samples, characterizing the presence of hyaluronic acid. SEM images displayed a similar structure on all samples analyzed, with a thicker layer for Specimen A when compared with B and C. This series of analyses demonstrated that, as expected, the physicochemical and thermal properties of the products differ according to their application. Furthermore, to better characterize the crosslinking degree of each product and their mechanical properties, a set of different techniques should be applied in parallel to correlate the results and, thereby, relate injection application with material properties.Keywords: hyaluronic acid, characterization, soft-tissue fillers, injectable gels
Procedia PDF Downloads 903357 Safety Evaluation of Post-Consumer Recycled PET Materials in Chilean Industry by Overall Migration Tests
Authors: Evelyn Ilabaca, Ximena Valenzuela, Alejandra Torres, María José Galotto, Abel Guarda
Abstract:
One of the biggest problems in food packaging industry, especially with the plastic materials, is the fact that these materials are usually obtained from non-renewable resources and also remain as waste after its use, causing environmental issues. This is an international concern and particular attention is given to reduction, reuse and recycling strategies for decreasing the waste from plastic packaging industry. In general, polyethylenes represent most plastic waste and recycling process of post-consumer polyethylene terephthalate (PCR-PET) has been studied. US Food and Drug Administration (FDA), European Food Safety Authority (EFSA) and Southern Common Market (MERCOSUR) have generated different legislative documents to control the use of PCR-PET in the production of plastic packaging intended direct food contact in order to ensure the capacity of recycling process to remove possible contaminants that can migrate into food. Consequently, it is necessary to demonstrate by challenge test that the recycling process is able to remove specific contaminants, obtaining a safe recycled plastic to human health. These documents establish that the concentration limit for substitute contaminants in PET is 220 ppb (ug/kg) and the specific migration limit is 10 ppb (ug/kg) for each contaminant, in addition to assure the sensorial characteristics of food are not affected. Moreover, under the Commission Regulation (EU) N°10/2011 on plastic materials and articles intended to come into contact with food, it is established that overall migration limit is 10 mg of substances per 1 dm2 of surface area of the plastic material. Thus, the aim of this work is to determine the safety of PCR-PET-containing food packaging materials in Chile by measuring their overall migration, and their comparison with the established limits at international level. This information will serve as a basis to provide a regulation to control and regulate the use of recycled plastic materials in the manufacture of plastic packaging intended to be in direct contact with food. The methodology used involves a procedure according to EN-1186:2002 with some modifications. The food simulants used were ethanol 10 % (v/v) and acetic acid 3 % (v/v) as aqueous food simulants, and ethanol 95 % (v/v) and isooctane as substitutes of fatty food simulants. In this study, preliminary results showed that Chilean food packaging plastics with different PCR-PET percentages agree with the European Legislation for food aqueous character.Keywords: contaminants, polyethylene terephthalate, plastic food packaging, recycling
Procedia PDF Downloads 2773356 Optimisation of Wastewater Treatment for Yeast Processing Effluent Using Response Surface Methodology
Authors: Shepherd Manhokwe, Sheron Shoko, Cuthbert Zvidzai
Abstract:
In the present study, the interactive effects of temperature and cultured bacteria on the performance of a biological treatment system of yeast processing wastewater were investigated. The main objective of this study was to investigate and optimize the operating parameters that reduce organic load and colour. Experiments were conducted based on a Central Composite Design (CCD) and analysed using Response Surface Methodology (RSM). Three dependent parameters were either directly measured or calculated as response. These parameters were total Chemical Oxygen Demand (COD) removal, colour reduction and total solids. COD removal efficiency of 26 % and decolourization efficiency of 44 % were recorded for the wastewater treatment. The optimized conditions for the biological treatment were found to be at 20 g/l cultured bacteria and 25 °C for COD reduction. For colour reduction optimum conditions were temperature of 30.35°C and bacterial formulation of 20g/l. Biological treatment of baker’s yeast processing effluent is a suitable process for the removal of organic load and colour from wastewater, especially when the operating parameters are optimized.Keywords: COD reduction, optimisation, response surface methodology, yeast processing wastewater
Procedia PDF Downloads 3453355 A Preliminary Randomized Controlled Trial of Pure L-Ascorbic Acid with Using a Needle-Free and Micro-Needle Mesotherapy in Treatment of Anti-Aging Procedure
Authors: M. Zasada, A. Markiewicz, A. Erkiert-Polguj, E. Budzisz
Abstract:
The epidermis is a keratinized stratified squamous epithelium covered by the hydro-lipid barrier. Therefore, active substances should be able to penetrate through this hydro-lipid coating. L-ascorbic acid is one of the vitamins which plays an important role in stimulation fibroblast to produce collagen type I and in hyperpigmentation lightening. Vitamin C is a water-soluble antioxidant, which protects skin from oxidation damage and rejuvenates photoaged skin. No-needle mesotherapy is a non-invasive rejuvenation technique depending on electric pulses, electroporation, and ultrasounds. These physicals factors result in deeper penetration of cosmetics. It is important to increase the penetration of L-ascorbic acid, thereby increasing the spectrum of its activity. The aim of the work was to assess the effectiveness of pure L-ascorbic acid activity in anti-aging therapy using a needle-free and micro-needling mesotherapy. The study was performed on a group of 35 healthy volunteers in accordance with the Declaration of Helsinki of 1964 and agreement of the Ethics Commissions no RNN/281/16/KE 2017. Women were randomized to mesotherapy or control group. Control group applied topically 2,5 ml serum containing 20% L-ascorbic acid with hydrate from strawberries, every 10 days for a period of 9 weeks. No-needle mesotherapy, on the left half of the face and micro-needling on the right with the same serum, was done in mesotherapy group. The pH of serum was 3.5-4, and the serum was prepared directly prior to the facial treatment. The skin parameters were measured at the beginning and before each treatment. The measurement of the forehead skin was done using Cutometer® (measurement of skin elasticity and firmness), Corneometer® (skin hydration measurement), Mexameter® (skin tone measurement). Also, the photographs were taken by Fotomedicus system. Additionally, the volunteers fulfilled the questionnaire. Serum was tested for microbiological purity and stability after the opening of the cosmetic. During the study, all of the volunteers were taken care of a dermatologist. The regular application of the serum has caused improvement of the skin parameters. Respectively, after 4 and 8 weeks improvement in hydration and elasticity has been seen (Corneometer®, Cutometer® results). Moreover, the number of hyper-pigmentated spots has decreased (Mexameter®). After 8 weeks the volunteers has claimed that the tested product has smoothing and moisturizing features. Subjective opinions indicted significant improvement of skin color and elasticity. The product containing the L-ascorbic acid used with intercellular penetration promoters demonstrates higher anti-aging efficiency than control. In vivo studies confirmed the effectiveness of serum and the impact of the active substance on skin firmness and elasticity, the degree of hydration and skin tone. Mesotherapy with pure L-ascorbic acid provides better diffusion of active substances through the skin.Keywords: anti-aging, l-ascorbic acid, mesotherapy, promoters
Procedia PDF Downloads 2663354 Sulfate Reducing Bacteria Based Bio-Electrochemical System: Towards Sustainable Landfill Leachate and Solid Waste Treatment
Authors: K. Sushma Varma, Rajesh Singh
Abstract:
Non-engineered landfills cause serious environmental damage due to toxic emissions and mobilization of persistent pollutants, organic and inorganic contaminants, as well as soluble metal ions. The available treatment technologies for landfill leachate and solid waste are not effective from an economic, environmental, and social standpoint. The present study assesses the potential of the bioelectrochemical system (BES) integrated with sulfate-reducing bacteria (SRB) in the sustainable treatment and decontamination of landfill wastes. For this purpose, solid waste and landfill leachate collected from different landfill sites were evaluated for long-term treatment using the integrated SRB-BES anaerobic designed bioreactors after pre-treatment. Based on periodic gas composition analysis, physicochemical characterization of the leachate and solid waste, and metal concentration determination, the present system demonstrated significant improvement in volumetric hydrogen production by suppressing methanogenesis. High reduction percentages of Be, Cr, Pb, Cd, Sb, Ni, Cr, COD, and sTOC removal were observed. This mineralization can be attributed to the synergistic effect of ammonia-assisted pre-treatment complexation and microbial sulphide formation. Despite being amended with 0.1N ammonia, the treated leachate level of NO³⁻ was found to be reduced along with SO₄²⁻. This integrated SRB-BES system can be recommended as an eco-friendly solution for landfill reclamation. The BES-treated solid waste was evidently more stabilized, as shown by a five-fold increase in surface area, and potentially useful for leachate immobilization and bio-fortification of agricultural fields. The vector arrangement and magnitude showed similar treatment with differences in magnitudes for both leachate and solid waste. These findings support the efficacy of SRB-BES in the treatment of landfill leachate and solid waste sustainably, inching a step closer to our sustainable development goals. It utilizes low-cost treatment, and anaerobic SRB adapted to landfill sites. This technology may prove to be a sustainable treatment strategy upon scaling up as its outcomes are two-pronged: landfill waste treatment and energy recovery.Keywords: bio-electrochemical system, leachate /solid waste treatment, landfill leachate, sulfate-reducing bacteria
Procedia PDF Downloads 1023353 Electrical Characteristics of SiON/GaAs MOS Capacitor with Various Passivations
Authors: Ming-Kwei Lee, Chih-Feng Yen
Abstract:
The electrical characteristics of liquid phase deposited silicon oxynitride film on ammonium sulfide treated p-type (100) gallium arsenide substrate were investigated. Hydrofluosilicic acid, ammonia and boric acid aqueous solutions were used as precursors. The electrical characteristics of silicon oxynitride film are much improved on gallium arsenide substrate with ammonium sulfide treatment. With post-metallization annealing, hydrogen ions can further passivate defects in SiON/GaAs film and interface. The leakage currents can reach 7.1 × 10-8 and 1.8 × 10-7 at ± 2 V. The dielectric constant and effective oxide charges are 5.6 and -5.3 × 1010 C/cm2, respectively. The hysteresis offset of hysteresis loop is merely 0.09 V.Keywords: liquid phase deposition, SiON, GaAs, PMA, (NH4)2S
Procedia PDF Downloads 6453352 Establish Co-Culture System of Dehalococcoides and Sulfate-Reducing Bacteria to Generate Ferrous Sulfide for Reversing Sulfide-Inhibited Reductive Dechlorination
Authors: Po-Sheng Kuo, Che-Wei Lu, Ssu-Ching Chen
Abstract:
Chlorinated ethenes (CEs) constitute a predominant contaminant in Taiwan's native polluted sites, particularly in groundwater inundated with sulfate salts that substantially impede remediation efforts. The reduction of sulfate by sulfate-reducing bacteria (SRB) impairs the dechlorination efficiency of Dehalococcoides by generating hydrogen sulfide (H₂S), resulting in incomplete chloride degradation and thereby leading to the failure of bioremediation. In order to elucidate interactions between sulfate reduction and dechlorination, this study aims to establish a co-culture system of Dehalococcoides and SRB, overcoming H₂S inhibition by employing the synthesis of ferrous sulfide (FeS), which is commonly utilized in chemical remediation due to its high reduction potential. Initially, the study demonstrates that the addition of ferrous chloride (FeCl₂) effectively removed H₂S production from SRB and enhanced the degradation of trichloroethylene to ethene. This process overcomes the inhibition caused by H₂S produced by SRB in high sulfate environments. Compared to different concentrations of ferrous dosages for the biogenic generation of FeS, the efficiency was optimized by adding FeCl₂ at an equal ratio to the concentration of sulfate in the environment. This was more effective in removing H₂S and crystal particles under 10 times smaller than those synthesized under excessive FeCl₂ dosages, addressing clogging issues in situ remediation. Finally, utilizing Taiwan's indigenous dechlorinating consortium in a simulated high sulfate-contaminated environment, the biodiversity of microbial species was analyzed to reveal a higher species richness within the FeS group, conducive to ecological stability. This study validates the potential of the co-culture system in generating biogenic FeS under sulfate and CEs co-contamination, removing sulfate-reducing products, and improving CE remediation through integrated chemical and biological remediations.Keywords: biogenic ferrous sulfide, chlorinated ethenes, Dehalococcoides, sulfate-reducing bacteria, sulfide inhibition
Procedia PDF Downloads 523351 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating
Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful
Abstract:
A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.Keywords: biomaterial, flame coating, antibacterial activity, stainless steel
Procedia PDF Downloads 983350 Antibacterial and Antioxidant Capacity of Fabric Treated with Purple-Fleshed Sweet Potato Extract
Authors: Kyung Hwa Hong, Eunmi Koh
Abstract:
Wool and cotton fabrics are pretreated by a tannic acid aqueous solution to increase their dyeability and then dyed by Purple-Fleshed Sweet Potato (PSP) extract. The dyed fabrics are then investigated by various analysis techniques. The results revealed that wool and cotton fabrics can be dyed bluish red through the pretreatment and dyeing process. Both wool and cotton fabrics only pretreated with tannic acid display decreased L* value but no significant changes in a* and b* values as the concentration of tannic acid increases. And, as expected, the pretreated fabrics are even darker and show a richer purple color after the dyeing process with the PSP extract. With regard to the colorfastness of wool and cotton fabrics dyed by PSP extract in cleaning circumstances, such as dry-cleaning (for wool) and washing (for cotton), the wool and cotton fabrics had a 4.0 and 4.0 grade of colorfastness to dry-cleaning and washing, respectively. However, they both exhibited significantly inferior colorfastness to light (grade of 1.5). Thus, it was found that there is still a need for improvement with regard to color fastness, particularly against light. On the other hand, the wool and cotton fabrics also showed antibacterial and antioxidant characteristics. In addition, both the wool and cotton fabrics showed potential antibacterial ability (>99%) against Staphylococcus aureus; however, they showed somewhat insufficient antibacterial ability (60.8% for wool and 94.8% for cotton) against Klebsiella pneumoniae. Also, their antioxidant abilities increased up to ca. 90% with an increase in the tannic acid concentration (up to 0.5%). However, after the dyeing process, the antibacterial and antioxidant ability tended to decrease. This is assumed to have occurred because functional moieties such as phenolic acids were detached from the pretreated fabrics into the hot water (the dyeing solution) during the dyeing process. Therefore, further study would be necessary to derive the optimum treatment and dyeing conditions so as to maximize the coloring effect and functionalities of the fabrics.Keywords: antibacterial activity, antioxidant activity, purple-fleshed sweet potato, fabrics
Procedia PDF Downloads 2943349 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains
Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*
Abstract:
Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy
Procedia PDF Downloads 1443348 Photocatalytic Degradation of Naproxen in Water under Solar Irradiation over NiFe₂O₄ Nanoparticle System
Authors: H. Boucheloukh, S. Rouissa, N. Aoun, M. Beloucifa, T. Sehili, F. Parrino, V. Loddo
Abstract:
To optimize water purification and wastewater treatment by heterogeneous photocatalysis, we used NiFe₂O₄ as a catalyst and solar irradiation as a source of energy. In this concept, an organic substance present in many industrial effluents was chosen: naproxen ((S)-6-methoxy-α-methyl-2-naphthaleneacetic acid or 2-(6-methoxynaphthalenyl) propanoic), a non-steroidal anti-inflammatory drug. The main objective of this study is to degrade naproxen by an iron and nickel catalyst, the degradation of this organic pollutant by nickel ferrite has been studied in a heterogeneous aqueous medium, with the study of the various factors influencing photocatalysis such as the concentration of matter and the acidity of the medium. The photocatalytic activity was followed by HPLC-UV andUV-Vis spectroscopy. A first-order kinetic model appropriately fitted the experimental data. The degradation of naproxen was also studied in the presence of H₂O₂ as well as in an aqueous solution. The new hetero-system NiFe₂O₄/oxalic acid is also discussed. The fastest naproxen degradation was obtained with NiFe₂O₄/H₂O₂. In a first-place, we detailed the characteristics of the material NiFe₂O₄, which was synthesized by the sol-gel methods, using various analytical techniques: visible UV spectrophotometry, X-ray diffraction, FTIR, cyclic voltammetry, luminescent discharge optical emission spectroscopy.Keywords: naproxen, nickelate, photocatalysis, oxalic acid
Procedia PDF Downloads 2113347 Effect of Nitrogen Source on Production of CMCase by Bacillus megaterium 1295S Isolated from Sewage Treatment Plants
Authors: Adel A. S. Al-Gheethi, M. O. Abdul-Monem
Abstract:
Cellulase-producing bacteria were isolated from wastewater and sludge, and identified as Bacillus megaterium 1295S, Sporosarcina pasteurii 586S, Bacillus subtilis 117S, Burkholderia cepacia 120S and Staphylococcus xylosus 222W. Among bacteria, B. megaterium 1295S was the best cellulase producer under the catabolic repression and was therefore selected to study the factors affecting cellulase production. The optimum conditions for cellulase production were observed in CMC-Yeast Extract (CYE) agar medium (pH 6.5) inoculated with 0.4 mL of bacterial culture and incubated at 45˚C for 72 h. Twenty amino acids were introduced into the production medium as nitrogen source to investigate the production of cellulase in presence of amino acids in comparison to peptone (as an organic source) and sodium nitrate (as an inorganic source). The results found that the maximum production of cellulase was recorded at 50 ppm when L-hydroxy proline, L-arginine, glycine, L-histidine, L-leucine, DL-isoleucine, DL-β-phenylalanine were used as sole nitrogen sources and at 100 ppm when DL-threonine, L-ornithine 12.29, L-proline were used as sole nitrogen sources. The highest biomass yield was found when glycine 5 ppm and DL-serine 100 ppm used as a nitrogen source.Keywords: CMCase, Bacillus megaterium 1295S, factors, amino acids
Procedia PDF Downloads 4483346 Efficacy Of Tranexamic Acid On Blood Loss After Primary Total Hip Replacement : A Case-control Study In 154 Patients
Authors: Fedili Benamar, Belloulou Mohamed Lamine, Ouahes Hassane, Ghattas Samir
Abstract:
Introduction: Perioperative blood loss is a frequent cause of complications in total hip replacement (THR). The present prospective study assessed the efficacy of tranexamic acid (Exacyl(®)) in reducing blood loss in primary THR. Hypothesis: Tranexamic acid reduces blood loss in THR. Material and method: -This is a prospective randomized study on the effectiveness of Exacyl (tranexamic acid) in total hip replacement surgery performed on a standardized technique between 2019 and September 2022. -It involved 154 patients, of which 84 received a single injection of Exacyl (group 1) at a dosage of 10 mg/kg over 20 minutes during the perioperative period. -All patients received postoperative thromboprophylaxis with enoxaparin 0.4 ml subcutaneously. -All patients were admitted to the post-interventional intensive care unit for a duration of 24 hours for monitoring and pain management as per the service protocol. Results: 154 patients, of which 84 received a single injection of Exacyl (group 1) and 70 patients patients who did not receive Exacyl perioperatively : (Group 2 ) The average age is 57 +/- 15 years The distribution by gender was nearly equal with 56% male and 44% female; "The distribution according to the ASA score was as follows: 20.2% ASA1, 82.3% ASA2, and 17.5% ASA3. "There was a significant difference in the average volume of intraoperative and postoperative bleeding during the 48 hours." The average bleeding volume for group 1 (received Exacyl) was 614 ml +/- 228, while the average bleeding volume for group 2 was 729 +/- 300, with a chi-square test of 6.35 and a p-value < 0.01, which is highly significant. The ANOVA test showed an F-statistic of 7.11 and a p-value of 0.008. A Bartlett test revealed a chi-square of 6.35 and a p-value < 0.01." "In Group 1 (patients who received Exacyl), 73% had bleeding less than 750 ml (Group A), and 26% had bleeding exceeding 750 ml (Group B). In Group 2 (patients who did not receive Exacyl perioperatively), 52% had bleeding less than 750 ml (Group A), and 47% had bleeding exceeding 750 ml (Group B). "Thus, the use of Exacyl reduced perioperative bleeding and specifically decreased the risk of severe bleeding exceeding 750 ml by 43% with a relative risk (RR) of 1.37 and a p-value < 0.01. The transfusion rate was 1.19% in the population of Group 1 (Exacyl), whereas it was 10% in the population of Group 2 (no Exacyl). It can be stated that the use of Exacyl resulted in a reduction in perioperative blood transfusion with an RR of 0.1 and a p-value of 0.02. Conclusions: The use of Exacyl significantly reduced perioperative bleeding in this type of surgery.Keywords: acid tranexamic, blood loss, anesthesia, total hip replacement, surgery
Procedia PDF Downloads 773345 Interventions to Control Listeria Monocytogenes on Sliced Mushrooms
Authors: Alanna Goodman, Kayla Murray, Keith Warriner
Abstract:
The following reports on a comparative study on the efficacy of different decontamination technologies to decrease Listeria monocytogenes inoculated onto white sliced mushrooms and assesses the fate of residual levels during posttreatment storage under aerobic conditions at 8uC. The treatments were chemical (hydrogen peroxide, peroxyacetic acid, ozonated water, electrolyzed water, chitosan, lactic acid), biological (Listeria bacteriophages), and physical (UV-C, UV:hydrogen peroxide). None of the treatments achieved .1.2 log CFU reduction in L. monocytogenes levels; bacteriophages at a multiplicity of infection of 100 and 3% (vol/vol) hydrogen peroxide were the most effective of the treatments tested. However, growth of residual L. monocytogenes during posttreatment storage attained levels equal to or greater than levels in the nontreated controls. The growth of L. monocytogenes was inhibited on mushrooms treated with chitosan, electrolyzed water, peroxyacetic acid, or UV. Yet, L. monocytogenes inoculated onto mushrooms and treated with UV:hydrogen peroxide decreased during posttreatment storage, through a combination of sublethal injury and dehydration of the mushroom surface. Although mushrooms treated with UV:hydrogen peroxide became darker during storage, the samples were visually acceptable relative to controls. In conclusion, of the treatments evaluated, UV:hydrogen peroxide holds promise to control L. monocytogenes on mushroom surfaces.Keywords: listeria monocytogenes, sliced mushrooms, bacteriophages, UV, sanitizers
Procedia PDF Downloads 4783344 Effect of Dietary Supplementation of Allium Hookeri Root and Processed Sulfur on the Growth Performance of Guinea Pigs
Authors: Nayeon, Lee, Won-Young, Cho, Hyun Joo, Jang, Chi-Ho, Lee
Abstract:
This study investigated the effects of the dietary supplementation of the Allium hookeri root, and processed sulfur, on the growth performance of guinea pigs. The guinea pigs were fed a control diet (CON), as well as the control diet including 1% freeze-dried Allium hookeri root (AH), or 0.1% processed sulfur (S), or including both the freeze-dried Allium hookeri root and the processed sulfur (AHS). The weight of perirenal adipose tissue (PAT) and the epididymal adipose tissue (EAT) in the AH were significantly lower than CON (p < 0.05). The serum cholesterols levels of the AH and the AHS were significantly lower than the S (p < 0.05). While the total saturated fatty acid content in the serum of the AH and AHS groups showed a tendency to decrease, the total monounsaturated fatty acid increased. The results of this study suggested that dietary consumption of Allium hookeri root may help to decrease fat accumulation, lower serum cholesterol levels, and control serum free fatty acid contents in the guinea pigs.Keywords: Allium hookeri, dietary supplementation, growth performance, processed sulfur, Guinea pig
Procedia PDF Downloads 2693343 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel
Authors: M. El-haj, Z. Olama, H. Holail
Abstract:
Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi
Procedia PDF Downloads 4113342 Indigo Production in a Fed Batch Bioreactor Using Aqueous-Solvent Two Phase System
Authors: Vaishnavi Unde, Srikanth Mutnuri
Abstract:
Today dye stuff sector is one of the major chemical industries in India. Indigo is a blue coloured dye used all over the world in large quantity. The indigo dye produced and used in textile industries is synthetic having toxic effect, thus there is an increase in interest for natural dyes owing to the environmental concerns. The present study focuses on the use of a strain Pandoraea sp. isolated from garage soil, for the production of indigo in fed batch bioreactor. A comparative study between single phase and two phase production was carried out in this work. The blue colour produced during the experiments was analyzed using, TLC, UV-visible spectrophotometer and FTIR technique. The blue pigment was found to be indigo. The production of bio-indigo was done in a single phase fermentor carrying medium and substrate indole in dissolved form and was found to produce maximum of 0.041 g/L of indigo. Whereas there was an increase in production of indigo to 0.068 g/L in a two phase, water-silicone oil system. In this study the advantage of using second phase as silicone oil has enhanced the indigo production, as the second phase made the substrate available to the bacteria by increasing the surface area as well as it helped to prevent the inhibition effect of the high concentration of substrate, indole. The effect of single and two phases on the growth of bacteria was also studied.Keywords: dyes, fed batch reactor, indole, Indigo
Procedia PDF Downloads 4363341 Physico-chemical and Biological Characterization of Urban Municipal Landfill Leachate and Treatment by Ozone Process
Authors: Ramdani Nadia, Kheddaoui Abdelkrim, Nemmich Said, Tilmatine Amar
Abstract:
The waste production nationwide is increasing every year, on account of therapid urbanization and growing populations, also consumption modes. Algerian political authorities have chosen Technical Landfill Centres (TLC) as a competitive and safe technique of waste management. However, storing these wastes in a bad way poses several environmental challenges, especially in the Department of Saïda, the latter have significant groundwaters. The major problem registered on this Landfill is the leachate resulting from the degradation of buried wastes which were disposed off the outside of the leachate basin and present a source of pollution for the local groundwaters by heavy metals and pathogenic germs. The present paper investigates the leachate treatment ozone process produced by Dielectric Barrier Discharge (DBD) under high potential. The experimental results obtained allowed us to show the efficiency of the treatment process by ozone based on the micro pollutant analysis (DCO, DBO5 , COT, heavy metals) and microbial analysis, after ozonation treatment. The results show that 80% of micro pollutants are eliminated and 100% destruction of all bacteria which reveals the high efficiency of the process.Keywords: landfill, leachate, treatment, ozone, polluants, bacteria, micropolluant
Procedia PDF Downloads 243340 Prevalence and Drug Susceptibility Profiles of Bacterial Urinary Tract Infections Isolated among Diabetes Mellitus Patients at Bosaso Health Centers
Authors: Said Abdirasak Abidrahman, Ibrahim Mohamed
Abstract:
Background: Urinary Tract Infections (UTIs) are the commonest infections described among diabetes mellitus patients. More often, empirical antimicrobial therapy is initiated before the laboratory results are made available with minimal treatment success. The knowledge of the etiology and antibiotic susceptibility patterns of the organisms causing urinary tract infections among diabetes mellitus patients remains scarce, despite its vitality. This study sought to determine the prevalence, bacteria species, and drug susceptibility patterns of common causes of urinary tract infections among diabetes mellitus patients attending Bosaso health centers. Materials and methods: We conducted a cross-sectional study involving adult diabetic patients at Bosaso health centers between the months of May and July 2020. Laboratory assay of mid-stream urine samples was done to isolate bacteria causes of UTIs. These were biochemically identified using Gram stain, Kligler iron agar (KIA), Indole test, citrate, urea, coagulase, catalase, motility agar, and lysine iron agar. Their antibiotic susceptibility pattern for the isolated organisms was made for Ampicillin 10μg, Ciprofloxacin 5μg, Cotrimoxazole 25μg, Gentamycin 10μg, Ceftriaxone 10μg, and determined using the Kirby Bauer Disc Diffusion method. Results: Of 177 participants, 69 (39.0%) were males and 108 (61.0%) were females. Their mean age was 33.1 years (range; 18-67 years). Of these, 14.7% (26/177) of the samples revealed significant growth (>= 105 CFU/mL) giving a prevalence of 14.9 % (95% CI: 10.6 to 16.3). The organisms isolated were Escherichia coli -50% (N=13), Klebsiella pneumonia 30.8% (N=8), Staphylococcus aureus 15.4% (N=4), and unidentified organism 3.8% (N=1), and these were associated with such socio-demographic factors like history of catheterization and sexual activity. Antibiotic susceptibility to the commonly used agents for treating UTIs indicated higher sensitivity to Gentamicin and Ceftriaxone.Keywords: antimicrobials, bacteria, urinary tract infections, diabetes
Procedia PDF Downloads 1013339 Simultaneous Analysis of 25 Trace Elements in Micro Volume of Human Serum by Inductively Coupled Plasma–Mass Spectrometry
Authors: Azmawati Mohammed Nawi, Siok-Fong Chin, Shamsul Azhar Shah, Rahman Jamal
Abstract:
In recent years, trace elements have gained importance as biomarkers in many chronic diseases. Unfortunately, the requirement for sample volume increases according to the extent of investigation for diagnosis or elucidating the mechanism of the disease. Here, we describe the method development and validation for simultaneous determination of 25 trace elements (lithium (Li), beryllium (Be), magnesium (Mg), aluminium (Al), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), selenium (Se), rubidium (Rb), strontium (Sr), silver (Ag), cadmium (Cd), caesium (Cs), barium (Ba), mercury (Hg), thallium (Tl), lead (Pb), uranium (U)) using just 20 µL of human serum. Serum samples were digested with nitric acid and hydrochloric acid (ratio 1:1, v/v) and analysed using inductively coupled plasma–mass spectrometry (ICP-MS). Seronorm®, a human-derived serum control material was used as quality control samples. The intra-day and inter-day precisions were consistently < 15% for all elements. The validated method was later applied to 30 human serum samples to evaluate its suitability. In conclusion, we have successfully developed and validated a precise and accurate analytical method for determining 25 trace elements requiring very low volume of human serum.Keywords: acid digestion, ICP-MS, trace element, serum
Procedia PDF Downloads 1853338 Cholesterol-Lowering Effects of Lactobacillus plantarum Isolated from Northeastern Thai Fermented Vegetable Brassica juncea (L.)
Authors: T. Warinpramote, J. Sanguanjeen, P. Pholphakwaen, S. Kittisorayut, J. Kerdtubtim, S. Palachote, M. Taweechotipatr
Abstract:
Cholesterol is a type of lipid molecule which is the significant risk factor for coronary heart disease. Currently, there are many cholesterol-lowering alternative treatments especially bile salt hydrolase positive lactobacilli. BSH can cleave the peptide linkage of bile salt, which results in removal of the amino acid group from the steroid core and increases production of the new bile acid by using more cholesterol. The purpose of this study was to isolate, and screen probiotic characteristics of lactobacilli from fermented Thai foods and further investigated for their comparative BSH activity. The result showed that 2 of 81 Lactobacillus strains, JPK2-2 and JPK3-2, isolated from Brassica juncea (L.) had significantly exhibited high BSH activity. In addition, these Lactobacillus strains showed their results that the ability to tolerate acid and bile salt. Furthermore, the using of 16S rDNA sequencing for definitive microbial identifications showed that these 2 strains belong to Lactobacillus plantarum. In the future, the L. plantarum with BSH activity strains JPK2-2 and JPK3-2 may be the candidate probiotics for application in functional foods and dairy products to improve in the patient with cardiovascular diseases.Keywords: Lactobacillus plantarum, probiotics, bile salt hydrolase, cholesterol-lowering, fermented Thai food
Procedia PDF Downloads 1573337 An Investigation of Passivation Technology in Stainless Steel Alloy
Authors: Feng-Tsai Weng, Rick Wang, Yan-Cong Liao
Abstract:
Passivation is a kind of surface treatment for material to reinforce the corrosion resistance specially the stainless alloy. Passive film, is to getting more potential compared to their status before passivation. An oxidation film can be formed on the surface of stainless steel, which has a strong corrosion resistance ability after passivation treatment. In this research, a new passivation technology is proposed for a special stainless alloy which contains a 12-14% Chromium. This method includes the A-A-A (alkaline-acid-alkaline) process basically, which was developed by Carpenter that can neutralize trapped acid. Besides, a corrosion resistant coating layer was obtained by immersing the parts in a water bath of mineral oil at high temperature. Salt spray test ASTM B368 was conducted to investigated performance of corrosion resistant of the passivated stainless steel alloy parts. Results show much better corrosion resistant that followed a coating process after A-A-A Passivation process, than only using A-A-A process. The passivation time is with more than 380 hours of salt spray test ASTM B368, which is equal to 3000 hours of Salt spray test ASTM B117. Proposed passivation method of stainless steel can be completed in about 3 hours.Keywords: passivation, alkaline-acid-alkaline, stainless steel, salt spray test
Procedia PDF Downloads 3653336 Potentiometric Determination of Moxifloxacin in Some Pharmaceutical Formulation Using PVC Membrane Sensors
Authors: M. M. Hefnawy, A. M. A. Homoda, M. A. Abounassif, A. M. Alanazia, A. Al-Majed, Gamal A. E. Mostafa
Abstract:
PVC membrane sensors using different approach e.g. ion-pair, ionophore, and Schiff-base has been used as testing membrane sensor. Analytical applications of membrane sensors for direct measurement of variety of different ions in complex biological and environmental sample are reported. The most important step of such PVC membrane sensor is the sensing active material. The potentiometric sensors have some outstanding advantages including simple design, operation, wide linear dynamic range, relative fast response time, and rotational selectivity. The analytical applications of these techniques to pharmaceutical compounds in dosage forms are also discussed. The construction and electrochemical response characteristics of Poly (vinyl chloride) membrane sensors for moxifloxacin HCl (MOX) are described. The sensing membranes incorporate ion association complexes of moxifloxacin cation and sodium tetraphenyl borate (NaTPB) (sensor 1), phosphomolybdic acid (PMA) (sensor 2) or phosphotungstic acid (PTA) (sensor 3) as electroactive materials. The sensors display a fast, stable and near-Nernstian response over a relative wide moxifloxacin concentration range (1 ×10-2-4.0×10-6, 1 × 10-2-5.0×10-6, 1 × 10-2-5.0×10-6 M), with detection limits of 3×10-6, 4×10-6 and 4.0×10-6 M for sensor 1, 2 and 3, respectively over a pH range of 6.0-9.0. The sensors show good discrimination of moxifloxacin from several inorganic and organic compounds. The direct determination of 400 µg/ml of moxifloxacin show an average recovery of 98.5, 99.1 and 98.6 % and a mean relative standard deviation of 1.8, 1.6 and 1.8% for sensors 1, 2, and 3 respectively. The proposed sensors have been applied for direct determination of moxifloxacin in some pharmaceutical preparations. The results obtained by determination of moxifloxacin in tablets using the proposed sensors are comparable favorably with those obtained using the US Pharmacopeia method. The sensors have been used as indicator electrodes for potentiometric titration of moxifloxacin.Keywords: potentiometry, PVC, membrane sensors, ion-pair, ionophore, schiff-base, moxifloxacin HCl, sodium tetraphenyl borate, phosphomolybdic acid, phosphotungstic acid
Procedia PDF Downloads 4423335 Biochemical and Electrochemical Characterization of Glycated Albumin: Clinical Relevance in Diabetes Associated Complications
Authors: Alok Raghav, Jamal Ahmad
Abstract:
Background: Serum albumin glycation and advanced glycation end products (AGE) formation correlates in diabetes and its associated complications. Extensive modified human serum albumin is used to study the biochemical, electrochemical and functional properties in hyperglycemic environment with relevance to diabetes. We evaluate Spectroscopic, side chain modifications, amino acid analysis, biochemical and functional group properties in four glucose modified samples. Methods: A series four human serum albumin samples modified with glucose was characterized in terms of amino acid analysis, spectroscopic properties and side chain modifications. The diagnostic technique employed incorporates UV Spectroscopy, Fluorescence Spectroscopy, biochemical assays for side chain modifications, amino acid estimations. Conclusion: Glucose modified human serum albumin confers AGE formation causes biochemical and functional property that depend on the reactivity of glucose and its concentration used for in-vitro glycation. A biochemical and functional characterization of modified albumin in-vitro produced AGE product that will be useful to interpret the complications and pathophysiological significance in diabetes.Keywords: glycation, diabetes, human serum albumin, biochemical and electrochemical characterization
Procedia PDF Downloads 3753334 Effect of Microencapsulated Butyric Acid Supplementation on Growth Performance, Ileal Digestibility of Protein, Gut Health and Immunity in Broilers
Authors: Saeed Ahmed, Muhammad Imran, Yasir Allah Ditta, Shahid Mehmood, Zahid Rasool
Abstract:
A study was conducted to investigate the effect of different levels of microencapsulated butyric (MEB) on growth performance, gut health and immunity in commercial broiler chickens. In total, 336 day-old Hubbard classic broilers chicks were randomly assigned to 4 dietary treatments (Control, 0.25, 0.35 and 0.45g/kg of butyric acid) under completely randomized design. Each treatment was replicated 3 times with 28 birds in each replicate. Feed intake, body weight gain, feed conversion ratio, intestinal morphology, apparent ileal digestibility of protein and immunity parameters were evaluated. At the end of the experiment (35-d) 3 birds/replicate in each group were randomly selected and slaughtered to collect blood, duodenal samples and ileal digesta. The data were analyzed by using ANOVA technique. The results indicated improved body weight gain (P = 0.0222), feed conversion ratio (P = 0.0056), duodenal villus height (P = 0.0512), AID (P = 0.0098) antibody titer against Newcastle disease improved (P = 0.0326). Treatments remained unresponsive with respect to feed intake (P = 0.9685).Keywords: butyric acid, broilers, gut health, ileal digestibility
Procedia PDF Downloads 3253333 Potential of Entomopathogenic Nematodes to Control Woolly Apple Aphid (Eriosoma lanigerum)
Authors: Nomakholwa F. Stokwe, Antoinette P. Malan
Abstract:
Woolly apple aphid (WAA), Eriosoma lanigerum, is an important pest of apples worldwide. The aphid feeds above ground on buds and leaf axils and the roots of apple trees. Entomopathogenic nematodes (EPNs) of the two families, Steinernematidae and Heterorhabditidae, and their symbiotic bacteria have generated extensive interest as inundative applied biological control agents of insects. With the development of the resistance of WAA to chemicals, export restrictions, and the inability of parasitoids to control the aphid successfully early in the season, considering EPNs as an alternative biocontrol agent is important. Seven EPN species were tested for their pathogenicity against WAA. Laboratory bioassays identified S. yirgalemense and H. zealandica as being the most virulent against the subterranean stage of the WAA, with a mortality rate of 48% and 38%, respectively. Studies on the effect of WAA size showed that the last instar is most susceptible to infection, whereas smaller instars appear to be too small for nematode penetration and infection. Neither increasing the exposure period of the aphids nor increasing the nematode concentration affected the infection rate positively. The haemolymph of WAA showed an inhibitory effect on the development of the symbiotic bacteria, preventing the completion of the nematode’s life cycle.Keywords: apples, biocontrol, entomopathogenic nematodes, woolly apple aphid
Procedia PDF Downloads 2263332 Separation of Copper(II) and Iron(III) by Solvent Extraction and Membrane Processes with Ionic Liquids as Carriers
Authors: Beata Pospiech
Abstract:
Separation of metal ions from aqueous solutions is important as well as difficult process in hydrometallurgical technology. This process is necessary for obtaining of clean metals. Solvent extraction and membrane processes are well known as separation methods. Recently, ionic liquids (ILs) are very often applied and studied as extractants and carriers of metal ions from aqueous solutions due to their good extractability properties for various metals. This work discusses a method to separate copper(II) and iron(III) from hydrochloric acid solutions by solvent extraction and transport across polymer inclusion membranes (PIM) with the selected ionic liquids as extractants/ion carriers. Cyphos IL 101 (trihexyl(tetradecyl)phosphonium chloride), Cyphos IL 104 (trihexyl(tetradecyl)phosphonium bis(2,4,4 trimethylpentyl)phosphi-nate), trioctylmethylammonium thiosalicylate [A336][TS] and trihexyl(tetradecyl)phosphonium thiosalicylate [PR4][TS] were used for the investigations. Effect of different parameters such as hydrochloric acid concentration in aqueous phase on iron(III) and copper(II) extraction has been investigated. Cellulose triacetate membranes with the selected ionic liquids as carriers have been prepared and applied for transport of iron(IIII) and copper(II) from hydrochloric acid solutions.Keywords: copper, iron, ionic liquids, solvent extraction
Procedia PDF Downloads 280