Search results for: multiple%20sclerosis
3601 Bivariate Time-to-Event Analysis with Copula-Based Cox Regression
Authors: Duhania O. Mahara, Santi W. Purnami, Aulia N. Fitria, Merissa N. Z. Wirontono, Revina Musfiroh, Shofi Andari, Sagiran Sagiran, Estiana Khoirunnisa, Wahyudi Widada
Abstract:
For assessing interventions in numerous disease areas, the use of multiple time-to-event outcomes is common. An individual might experience two different events called bivariate time-to-event data, the events may be correlated because it come from the same subject and also influenced by individual characteristics. The bivariate time-to-event case can be applied by copula-based bivariate Cox survival model, using the Clayton and Frank copulas to analyze the dependence structure of each event and also the covariates effect. By applying this method to modeling the recurrent event infection of hemodialysis insertion on chronic kidney disease (CKD) patients, from the AIC and BIC values we find that the Clayton copula model was the best model with Kendall’s Tau is (τ=0,02).Keywords: bivariate cox, bivariate event, copula function, survival copula
Procedia PDF Downloads 863600 Overview and Pathophysiology of Radiation-Induced Breast Changes as a Consequence of Radiotherapy Toxicity
Authors: Monika Rezacova
Abstract:
Radiation-induced breast changes are a consequence of radiotherapy toxicity over the breast tissues either related to targeted breast cancer treatment or other thoracic malignancies (eg. lung cancer). This study has created an overview of different changes and their pathophysiology. The main conditions included were skin thickening, interstitial oedema, fat necrosis, dystrophic calcifications, skin retractions, glandular atrophy, breast fibrosis and radiation induced breast cancer. This study has performed focused literature search through multiple databases including pubmed, medline and embase. The study has reviewed English as well as non English publications. As a result of the literature the study provides comprehensive overview of radiation-induced breast changes and their pathophysiology with small focus on new development and prevention.Keywords: radiotherapy toxicity, breast tissue changes, breast cancer treatment, radiation-induced breast changes
Procedia PDF Downloads 1633599 Constructing the Density of States from the Parallel Wang Landau Algorithm Overlapping Data
Authors: Arman S. Kussainov, Altynbek K. Beisekov
Abstract:
This work focuses on building an efficient universal procedure to construct a single density of states from the multiple pieces of data provided by the parallel implementation of the Wang Landau Monte Carlo based algorithm. The Ising and Pott models were used as the examples of the two-dimensional spin lattices to construct their densities of states. Sampled energy space was distributed between the individual walkers with certain overlaps. This was made to include the latest development of the algorithm as the density of states replica exchange technique. Several factors of immediate importance for the seamless stitching process have being considered. These include but not limited to the speed and universality of the initial parallel algorithm implementation as well as the data post-processing to produce the expected smooth density of states.Keywords: density of states, Monte Carlo, parallel algorithm, Wang Landau algorithm
Procedia PDF Downloads 4173598 USE-Net: SE-Block Enhanced U-Net Architecture for Robust Speaker Identification
Authors: Kilari Nikhil, Ankur Tibrewal, Srinivas Kruthiventi S. S.
Abstract:
Conventional speaker identification systems often fall short of capturing the diverse variations present in speech data due to fixed-scale architectures. In this research, we propose a CNN-based architecture, USENet, designed to overcome these limitations. Leveraging two key techniques, our approach achieves superior performance on the VoxCeleb 1 Dataset without any pre-training. Firstly, we adopt a U-net-inspired design to extract features at multiple scales, empowering our model to capture speech characteristics effectively. Secondly, we introduce the squeeze and excitation block to enhance spatial feature learning. The proposed architecture showcases significant advancements in speaker identification, outperforming existing methods, and holds promise for future research in this domain.Keywords: multi-scale feature extraction, squeeze and excitation, VoxCeleb1 speaker identification, mel-spectrograms, USENet
Procedia PDF Downloads 773597 Decision Trees Constructing Based on K-Means Clustering Algorithm
Authors: Loai Abdallah, Malik Yousef
Abstract:
A domain space for the data should reflect the actual similarity between objects. Since objects belonging to the same cluster usually share some common traits even though their geometric distance might be relatively large. In general, the Euclidean distance of data points that represented by large number of features is not capturing the actual relation between those points. In this study, we propose a new method to construct a different space that is based on clustering to form a new distance metric. The new distance space is based on ensemble clustering (EC). The EC distance space is defined by tracking the membership of the points over multiple runs of clustering algorithm metric. Over this distance, we train the decision trees classifier (DT-EC). The results obtained by applying DT-EC on 10 datasets confirm our hypotheses that embedding the EC space as a distance metric would improve the performance.Keywords: ensemble clustering, decision trees, classification, K nearest neighbors
Procedia PDF Downloads 1983596 The Intention to Use E-Money Transaction: The Moderating Effect of Security in Conceptual Frammework
Authors: Husnil Khatimah, Fairol Halim
Abstract:
This research examines the moderating impact of security on intention to use e-money that adapted from some variables of the TAM (Technology Acceptance Model) and TPB (Theory of Planned Behavior). This study will use security as moderating variable and finds these relationship depends on customer intention to use e-money as payment tools. The conceptual framework of e-money transactions was reviewed to understand behavioral intention of consumers from perceived usefulness, perceived ease of use, perceived behavioral control and security. Quantitative method will be utilized as sources of data collection. A total of one thousand respondents will be selected using quota sampling method in Medan, Indonesia. Descriptive analysis and Multiple Regression analysis will be conducted to analyze the data. The article ended with suggestion for future studies.Keywords: e-money transaction, TAM & TPB, moderating variable, behavioral intention, conceptual paper
Procedia PDF Downloads 4593595 Unravelling the Impact of Job Resources: Alleviating Job-Related Anxiety to Forster Employee Creativity Within the Oil and Gas Industry
Authors: Nana Kojo Ayimadu Baafi, Kwesi Amponsah-Tawiah
Abstract:
The study investigated the relationship between job-related anxiety and employee creativity. The study further explored the role of job resources in moderating the relationship between job-related anxiety and employee creativity within the oil and gas industries. The study utilized a cross-sectional survey design. A non-probability sampling technique, specifically convenience sampling, was used to sample 1200 participants from multiple companies within the oil and gas industries. The collected data were analyzed using Regression analysis and PROCESS macro for the moderation analysis. The study empirically demonstrated a negative significant relationship between job-related anxiety and employee creativity. It also exhibited that job resources moderated the relationship between job-related anxiety and creativity. This study addresses gaps in previous studies by highlighting the significance of job resources in how job-related anxiety affects employee creativity.Keywords: employee creativity, job-related anxiety, job resource, human resources
Procedia PDF Downloads 563594 Using AI for Analysing Political Leaders
Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu
Abstract:
This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence
Procedia PDF Downloads 893593 Design and Implementation of a Cross-Network Security Management System
Authors: Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai
Abstract:
In recent years, the emerging network worms and attacks have distributive characteristics, which can spread globally in a very short time. Security management crossing networks to co-defense network-wide attacks and improve the efficiency of security administration is urgently needed. We propose a hierarchical distributed network security management system (HD-NSMS), which can integrate security management across multiple networks. First, we describe the system in macrostructure and microstructure; then discuss three key problems when building HD-NSMS: device model, alert mechanism, and emergency response mechanism; lastly, we describe the implementation of HD-NSMS. The paper is valuable for implementing NSMS in that it derives from a practical network security management system (NSMS).Keywords: network security management, device organization, emergency response, cross-network
Procedia PDF Downloads 1723592 Item Response Calibration/Estimation: An Approach to Adaptive E-Learning System Development
Authors: Adeniran Adetunji, Babalola M. Florence, Akande Ademola
Abstract:
In this paper, we made an overview on the concept of adaptive e-Learning system, enumerates the elements of adaptive learning concepts e.g. A pedagogical framework, multiple learning strategies and pathways, continuous monitoring and feedback on student performance, statistical inference to reach final learning strategy that works for an individual learner by “mass-customization”. Briefly highlights the motivation of this new system proposed for effective learning teaching. E-Review literature on the concept of adaptive e-learning system and emphasises on the Item Response Calibration, which is an important approach to developing an adaptive e-Learning system. This paper write-up is concluded on the justification of item response calibration/estimation towards designing a successful and effective adaptive e-Learning system.Keywords: adaptive e-learning system, pedagogical framework, item response, computer applications
Procedia PDF Downloads 6043591 The Lighthouse Project: Recent Initiatives to Navigate Australian Families Safely Through Parental Separation
Authors: Kathryn McMillan
Abstract:
A recent study of 8500 adult Australians aged 16 and over revealed 62% had experienced childhood maltreatment. In response to multiple recommendations by bodies such as the Australian Law Reform Commission, parliamentary reports and stakeholder input, a number of key initiatives have been developed to grapple with the difficulties of a federal-state system and to screen and triage high-risk families navigating their way through the court system. The Lighthouse Project (LHP) is a world-first initiative of the Federal Circuit and Family Courts in Australia (FCFOCA) to screen family law litigants for major risk factors, including family violence, child abuse, alcohol or substance abuse and mental ill-health at the point of filing in all applications that seek parenting orders. It commenced on 7 December 2020 on a pilot basis but has now been expanded to 15 registries across the country. A specialist risk screen, Family DOORS, Triage has been developed – focused on improving the safety and wellbeing of families involved in the family law system safety planning and service referral, and ¬ differentiated case management based on risk level, with the Evatt List specifically designed to manage the highest risk cases. Early signs are that this approach is meeting the needs of families with multiple risks moving through the Court system. Before the LHP, there was no data available about the prevalence of risk factors experienced by litigants entering the family courts and it was often assumed that it was the litigation process that was fueling family violence and other risks such as suicidality. Data from the 2022 FCFCOA annual report indicated that in parenting proceedings, 70% alleged a child had been or was at risk of abuse, 80% alleged a party had experienced Family Violence, 74 % of children had been exposed to Family Violence, 53% alleged through substance misuse by party children had caused or was at risk of causing harm to children and 58% of matters allege mental health issues of a party had caused or placed a child at risk of harm. Those figures reveal the significant overlap between child protection and family violence, both of which are under the responsibility of state and territory governments. Since 2020, a further key initiative has been the co-location of child protection and police officials amongst a number of registries of the FCFOCA. The ability to access in a time-effective way details of family violence or child protection orders, weapons licenses, criminal convictions or proceedings is key to managing issues across the state and federal divide. It ensures a more cohesive and effective response to family law, family violence and child protection systems.Keywords: child protection, family violence, parenting, risk screening, triage.
Procedia PDF Downloads 843590 Using Machine Learning to Enhance Win Ratio for College Ice Hockey Teams
Authors: Sadixa Sanjel, Ahmed Sadek, Naseef Mansoor, Zelalem Denekew
Abstract:
Collegiate ice hockey (NCAA) sports analytics is different from the national level hockey (NHL). We apply and compare multiple machine learning models such as Linear Regression, Random Forest, and Neural Networks to predict the win ratio for a team based on their statistics. Data exploration helps determine which statistics are most useful in increasing the win ratio, which would be beneficial to coaches and team managers. We ran experiments to select the best model and chose Random Forest as the best performing. We conclude with how to bridge the gap between the college and national levels of sports analytics and the use of machine learning to enhance team performance despite not having a lot of metrics or budget for automatic tracking.Keywords: NCAA, NHL, sports analytics, random forest, regression, neural networks, game predictions
Procedia PDF Downloads 1213589 Teacher Education and the Impact of Higher Education Foreign Language Requirements on Students with Learning Disabilities
Authors: Joao Carlos Koch Junior, Risa Takashima
Abstract:
Learning disabilities have been extensively and increasingly studied in recent times. In spite of this, there is arguably a scarce number of studies addressing a key issue, which is the impact of foreign-language requirements on students with learning disabilities in higher education, and the lack of training or awareness of teachers regarding language learning disabilities. This study is an attempt to address this issue. An extensive review of the literature in multiple fields will be summarised. This, paired with a case-analysis of a university adopting a more inclusive approach towards special-needs students in its foreign-language programme, this presentation aims to establish a link between different studies and propose a number of suggestions to make language classrooms more inclusive.Keywords: foreign language teaching, higher education, language teacher education, learning disabilities
Procedia PDF Downloads 4543588 Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach
Authors: Nada Souissi, Mourad Mroua
Abstract:
The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index.Keywords: Financial asset return predictability, Economic factors, Investor's psychology index, Bayesian approach, Probabilistic networks, Parametric learning
Procedia PDF Downloads 1553587 Willingness to Pay for Improvements of MSW Disposal: Views from Online Survey
Authors: Amornchai Challcharoenwattana, Chanathip Pharino
Abstract:
Rising amount of MSW every day, maximizing material diversions from landfills via recycling is a prefer method to land dumping. Characteristic of Thai MSW is classified as 40 -60 per cent compostable wastes while potentially recyclable materials in waste streams are composed of plastics, papers, glasses, and metals. However, rate of material recovery from MSW, excluding composting or biogas generation, in Thailand is still low. Thailand’s recycling rate in 2010 was only 20.5 per cent. Central government as well as local governments in Thailand have tried to curb this problem by charging some of MSW management fees at the users. However, the fee is often too low to promote MSW minimization. The objective of this paper is to identify levels of willingness-to-pay (WTP) for MSW recycling in different social structures with expected outcome of sustainable MSW managements for different town settlements to maximize MSW recycling pertaining to each town’s potential. The method of eliciting WTP is a payment card. The questionnaire was deployed using online survey during December 2012. Responses were categorized into respondents living in Bangkok, living in other municipality areas, or outside municipality area. The responses were analysed using descriptive statistics, and multiple linear regression analysis to identify relationships and factors that could influence high or low WTP. During the survey period, there were 168 filled questionnaires from total 689 visits. However, only 96 questionnaires could be usable. Among respondents in the usable questionnaires, 36 respondents lived in within the boundary of Bangkok Metropolitan Administration while 45 respondents lived in the chartered areas that were classified as other municipality but not in BMA. Most of respondents were well-off as 75 respondents reported positive monthly cash flow (77.32%), 15 respondents reported neutral monthly cash flow (15.46%) while 7 respondent reported negative monthly cash flow (7.22%). For WTP data including WTP of 0 baht with valid responses, ranking from the highest means of WTP to the lowest WTP of respondents by geographical locations for good MSW management were Bangkok (196 baht/month), municipalities (154 baht/month), and non-urbanized towns (111 baht/month). In-depth analysis was conducted to analyse whether there are additional room for further increase of MSW management fees from the current payment that each correspondent is currently paying. The result from multiple-regression analysis suggested that the following factors could impacts the increase or decrease of WTP: incomes, age, and gender. Overall, the outcome of this study suggests that survey respondents are likely to support improvement of MSW treatments that are not solely relying on landfilling technique. Recommendations for further studies are to obtain larger sample sizes in order to improve statistical powers and to provide better accuracy of WTP study.Keywords: MSW, willingness to pay, payment card, waste seperation
Procedia PDF Downloads 2963586 DEKA-1 a Dose-Finding Phase 1 Trial: Observing Safety and Biomarkers using DK210 (EGFR) for Inoperable Locally Advanced and/or Metastatic EGFR+ Tumors with Progressive Disease Failing Systemic Therapy
Authors: Spira A., Marabelle A., Kientop D., Moser E., Mumm J.
Abstract:
Background: Both interleukin-2 (IL-2) and interleukin-10 (IL-10) have been extensively studied for their stimulatory function on T cells and their potential to obtain sustainable tumor control in RCC, melanoma, lung, and pancreatic cancer as monotherapy, as well as combination with PD-1 blockers, radiation, and chemotherapy. While approved, IL-2 retains significant toxicity, preventing its widespread use. The significant efforts undertaken to uncouple IL-2 toxicity from its anti-tumor function have been unsuccessful, and early phase clinical safety observed with PEGylated IL-10 was not met in a blinded Phase 3 trial. Deka Biosciences has engineered a novel molecule coupling wild-type IL-2 to a high affinity variant of Epstein Barr Viral (EBV) IL-10 via a scaffold (scFv) that binds to epidermal growth factor receptors (EGFR). This patented molecule, termed DK210 (EGFR), is retained at high levels within the tumor microenvironment for days after dosing. In addition to overlapping and non-redundant anti-tumor function, IL-10 reduces IL-2 mediated cytokine release syndrome risks and inhibits IL-2 mediated T regulatory cell proliferation. Methods: DK210 (EGFR) is being evaluated in an open-label, dose-escalation (Phase 1) study with 5 (0.025-0.3 mg/kg) monotherapy dose levels and (expansion cohorts) in combination with PD-1 blockers, or radiation or chemotherapy in patients with advanced solid tumors overexpressing EGFR. Key eligibility criteria include 1) confirmed progressive disease on at least one line of systemic treatment, 2) EGFR overexpression or amplification documented in histology reports, 3) at least a 4 week or 5 half-lives window since last treatment, and 4) excluding subjects with long QT syndrome, multiple myeloma, multiple sclerosis, myasthenia gravis or uncontrolled infectious, psychiatric, neurologic, or cancer disease. Plasma and tissue samples will be investigated for pharmacodynamic and predictive biomarkers and genetic signatures associated with IFN-gamma secretion, aiming to select subjects for treatment in Phase 2. Conclusion: Through successful coupling of wild-type IL-2 with a high affinity IL-10 and targeting directly to the tumor microenvironment, DK210 (EGFR) has the potential to harness IL-2 and IL-10’s known anti-cancer promise while reducing immunogenicity and toxicity risks enabling safe concomitant cytokine treatment with other anti-cancer modalities.Keywords: cytokine, EGFR over expression, interleukine-2, interleukine-10, clinical trial
Procedia PDF Downloads 903585 Hydrological-Economic Modeling of Two Hydrographic Basins of the Coast of Peru
Authors: Julio Jesus Salazar, Manuel Andres Jesus De Lama
Abstract:
There are very few models that serve to analyze the use of water in the socio-economic process. On the supply side, the joint use of groundwater has been considered in addition to the simple limits on the availability of surface water. In addition, we have worked on waterlogging and the effects on water quality (mainly salinity). In this paper, a 'complex' water economy is examined; one in which demands grow differentially not only within but also between sectors, and one in which there are limited opportunities to increase consumptive use. In particular, high-value growth, the growth of the production of irrigated crops of high value within the basins of the case study, together with the rapidly growing urban areas, provides a rich context to examine the general problem of water management at the basin level. At the same time, the long-term aridity of nature has made the eco-environment in the basins located on the coast of Peru very vulnerable, and the exploitation and immediate use of water resources have further deteriorated the situation. The presented methodology is the optimization with embedded simulation. The wide basin simulation of flow and water balances and crop growth are embedded with the optimization of water allocation, reservoir operation, and irrigation scheduling. The modeling framework is developed from a network of river basins that includes multiple nodes of origin (reservoirs, aquifers, water courses, etc.) and multiple demand sites along the river, including places of consumptive use for agricultural, municipal and industrial, and uses of running water on the coast of Peru. The economic benefits associated with water use are evaluated for different demand management instruments, including water rights, based on the production and benefit functions of water use in the urban agricultural and industrial sectors. This work represents a new effort to analyze the use of water at the regional level and to evaluate the modernization of the integrated management of water resources and socio-economic territorial development in Peru. It will also allow the establishment of policies to improve the process of implementation of the integrated management and development of water resources. The input-output analysis is essential to present a theory about the production process, which is based on a particular type of production function. Also, this work presents the Computable General Equilibrium (CGE) version of the economic model for water resource policy analysis, which was specifically designed for analyzing large-scale water management. As to the platform for CGE simulation, GEMPACK, a flexible system for solving CGE models, is used for formulating and solving CGE model through the percentage-change approach. GEMPACK automates the process of translating the model specification into a model solution program.Keywords: water economy, simulation, modeling, integration
Procedia PDF Downloads 1583584 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approachesKeywords: pollens identification, features extraction, pollens classification, automated palynology
Procedia PDF Downloads 1413583 Generalized Model Estimating Strength of Bauxite Residue-Lime Mix
Authors: Sujeet Kumar, Arun Prasad
Abstract:
The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength.Keywords: bauxite residue, curing time, porosity/volumetric lime ratio, unconfined compressive strength
Procedia PDF Downloads 2393582 Restructuring of Embedded System Design Course: Making It Industry Compliant
Authors: Geetishree Mishra, S. Akhila
Abstract:
Embedded System Design, the most challenging course of electronics engineering has always been appreciated and well acclaimed by the students of electronics and its related branches of engineering. Embedded system, being a product of multiple application domains, necessitates skilled man power to be well designed and tested in every important aspect of both hardware and software. In the current industrial scenario, the requirements are even more rigorous and highly demanding and needs to be to be on par with the advanced technologies. Fresh engineers are expected to be thoroughly groomed by the academic system and the teaching community. Graduates with the ability to understand both complex technological processes and technical skills are increasingly sought after in today's embedded industry. So, the need of the day is to restructure the under-graduate course- both theory and lab practice along with the teaching methodologies to meet the industrial requirements. This paper focuses on the importance of such a need in the present education system.Keywords: embedded system design, industry requirement, syllabus restructuring, project-based learning, teaching methodology
Procedia PDF Downloads 6683581 Synchronization of Bus Frames during Universal Serial Bus Transfer
Authors: Petr Šimek
Abstract:
This work deals with the problem of synchronization of bus frames during transmission using USB (Universal Serial Bus). The principles for synchronization between USB and the non-deterministic CAN (Controller Area Network) bus will be described here. Furthermore, the work deals with ensuring the time sequence of communication frames when receiving from multiple communication bus channels. The structure of a general object for storing frames from different types of communication buses, such as CAN and LIN (Local Interconnect Network), will be described here. Finally, an evaluation of the communication throughput of bus frames for USB High speed will be performed. The creation of this architecture was based on the analysis of the communication of control units with a large number of communication buses. For the design of the architecture, a test HW with a USB-HS interface was used, which received previously known messages, which were compared with the received result. The result of this investigation is the block architecture of the control program for test HW ensuring correct data transmission via the USB bus.Keywords: analysis, CAN, interface, LIN, synchronization, USB
Procedia PDF Downloads 693580 Response of Concrete Panels Subjected to Compression-Tension State of Stresses
Authors: Mohammed F. Almograbi
Abstract:
For reinforced concrete panels the risk of failure due to compression -tension state of stresses, results from pure shear or torsion, can be a major problem. The present calculation methods for such stresses from multiple influences are without taking into account the softening of cracked concrete remains conservative. The non-linear finite element method has become an important and increasingly used tool for the analysis and assessment of the structures by including cracking softening and tension-stiffening. The aim of this paper is to test a computer program refined recently and to simulate the compression response of cracked concrete element and to compare with the available experimental results.Keywords: reinforced concrete panels, compression-tension, shear, torsion, compression softening, tension stiffening, non-linear finite element analysis
Procedia PDF Downloads 3403579 Students’ Opinions Related to Virtual Classrooms within the Online Distance Education Graduate Program
Authors: Secil Kaya Gulen
Abstract:
Face to face and virtual classrooms that came up with different conditions and environments, but similar purposes have different characteristics. Although virtual classrooms have some similar facilities with face-to-face classes such as program, students, and administrators, they have no walls and corridors. Therefore, students can attend the courses from a distance and can control their own learning spaces. Virtual classrooms defined as simultaneous online environments where students in different places come together at the same time with the guidance of a teacher. Distance education and virtual classes require different intellectual and managerial skills and models. Therefore, for effective use of virtual classrooms, the virtual property should be taken into consideration. One of the most important factors that affect the spread and effective use of the virtual classrooms is the perceptions and opinions of students -as one the main participants-. Student opinions and recommendations are important in terms of providing information about the fulfillment of expectation. This will help to improve the applications and contribute to the more efficient implementations. In this context, ideas and perceptions of the students related to the virtual classrooms, in general, were determined in this study. Advantages and disadvantages of virtual classrooms expected contributions to the educational system and expected characteristics of virtual classrooms have examined in this study. Students of an online distance education graduate program in which all the courses offered by virtual classrooms have asked for their opinions. Online Distance Education Graduate Program has totally 19 students. The questionnaire that consists of open-ended and multiple choice questions sent to these 19 students and finally 12 of them answered the questionnaire. Analysis of the data presented as frequencies and percentages for each item. SPSS for multiple-choice questions and Nvivo for open-ended questions were used for analyses. According to the results obtained by the analysis, participants stated that they did not get any training on virtual classes before the courses; but they emphasize that newly enrolled students should be educated about the virtual classrooms. In addition, all participants mentioned that virtual classroom contribute their personal development and they want to improve their skills by gaining more experience. The participants, who mainly emphasize the advantages of virtual classrooms, express that the dissemination of virtual classrooms will contribute to the Turkish Education System. Within the advantages of virtual classrooms, ‘recordable and repeatable lessons’ and ‘eliminating the access and transportation costs’ are most common advantages according to the participants. On the other hand, they mentioned ‘technological features and keyboard usage skills affect the attendance’ is the most common disadvantage. Participants' most obvious problem during virtual lectures is ‘lack of technical support’. Finally ‘easy to use’, ‘support possibilities’, ‘communication level’ and ‘flexibility’ come to the forefront in the scope of expected features of virtual classrooms. Last of all, students' opinions about the virtual classrooms seems to be generally positive. Designing and managing virtual classrooms according to the prioritized features will increase the students’ satisfaction and will contribute to improve applications that are more effective.Keywords: distance education, virtual classrooms, higher education, e-learning
Procedia PDF Downloads 2693578 Calculation of Organ Dose for Adult and Pediatric Patients Undergoing Computed Tomography Examinations: A Software Comparison
Authors: Aya Al Masri, Naima Oubenali, Safoin Aktaou, Thibault Julien, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: The increased number of performed 'Computed Tomography (CT)' examinations raise public concerns regarding associated stochastic risk to patients. In its Publication 102, the ‘International Commission on Radiological Protection (ICRP)’ emphasized the importance of managing patient dose, particularly from repeated or multiple examinations. We developed a Dose Archiving and Communication System that gives multiple dose indexes (organ dose, effective dose, and skin-dose mapping) for patients undergoing radiological imaging exams. The aim of this study is to compare the organ dose values given by our software for patients undergoing CT exams with those of another software named "VirtualDose". Materials and methods: Our software uses Monte Carlo simulations to calculate organ doses for patients undergoing computed tomography examinations. The general calculation principle consists to simulate: (1) the scanner machine with all its technical specifications and associated irradiation cases (kVp, field collimation, mAs, pitch ...) (2) detailed geometric and compositional information of dozens of well identified organs of computational hybrid phantoms that contain the necessary anatomical data. The mass as well as the elemental composition of the tissues and organs that constitute our phantoms correspond to the recommendations of the international organizations (namely the ICRP and the ICRU). Their body dimensions correspond to reference data developed in the United States. Simulated data was verified by clinical measurement. To perform the comparison, 270 adult patients and 150 pediatric patients were used, whose data corresponds to exams carried out in France hospital centers. The comparison dataset of adult patients includes adult males and females for three different scanner machines and three different acquisition protocols (Head, Chest, and Chest-Abdomen-Pelvis). The comparison sample of pediatric patients includes the exams of thirty patients for each of the following age groups: new born, 1-2 years, 3-7 years, 8-12 years, and 13-16 years. The comparison for pediatric patients were performed on the “Head” protocol. The percentage of the dose difference were calculated for organs receiving a significant dose according to the acquisition protocol (80% of the maximal dose). Results: Adult patients: for organs that are completely covered by the scan range, the maximum percentage of dose difference between the two software is 27 %. However, there are three organs situated at the edges of the scan range that show a slightly higher dose difference. Pediatric patients: the percentage of dose difference between the two software does not exceed 30%. These dose differences may be due to the use of two different generations of hybrid phantoms by the two software. Conclusion: This study shows that our software provides a reliable dosimetric information for patients undergoing Computed Tomography exams.Keywords: adult and pediatric patients, computed tomography, organ dose calculation, software comparison
Procedia PDF Downloads 1703577 A Dynamic Panel Model to Evaluate the Impact of Debt Relief on Poverty
Authors: Loujaina Abdelwahed
Abstract:
Debt relief granted to low-and middle-income countries effectively provides additional funds for governments that can be used to increase public investment on poverty-reducing services to alleviate poverty and boost economic growth. However, little is known about the extent to which the poor benefit from the increased public investment. This study aims to assess the impact of debt relief granted through multiple initiatives during the 1990s on poverty reduction. In particular, it assesses the impact on the level, depth and severity of poverty in 76 low-and middle income countries over the period 1990-2011. Debt relief is found to have a significant impact on reducing the level, the depth and the severity of poverty. Analysis of the different types of debt relief reveals that debt service relief reduces poverty, whereas debt principle relief does not have a significant impact.Keywords: debt relief, developing countries, HIPC, poverty, system GMM estimator
Procedia PDF Downloads 4033576 Assessment of Noise Pollution in the City of Biskra, Algeria
Authors: Tallal Abdel Karim Bouzir, Nourdinne Zemmouri, Djihed Berkouk
Abstract:
In this research, a quantitative assessment of the urban sound environment of the city of Biskra, Algeria, was conducted. To determine the quality of the soundscape based on in-situ measurement, using a Landtek SL5868P sound level meter in 47 points, which have been identified to represent the whole city. The result shows that the urban noise level varies from 55.3 dB to 75.8 dB during the weekdays and from 51.7 dB to 74.3 dB during the weekend. On the other hand, we can also note that 70.20% of the results of the weekday measurements and 55.30% of the results of the weekend measurements have levels of sound intensity that exceed the levels allowed by Algerian law and the recommendations of the World Health Organization. These very high urban noise levels affect the quality of life, the acoustic comfort and may even pose multiple risks to people's health.Keywords: road traffic, noise pollution, sound intensity, public health
Procedia PDF Downloads 2723575 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1353574 Comprehensive Risk Assessment Model in Agile Construction Environment
Authors: Jolanta Tamošaitienė
Abstract:
The article focuses on a developed comprehensive model to be used in an agile environment for the risk assessment and selection based on multi-attribute methods. The model is based on a multi-attribute evaluation of risk in construction, and the determination of their optimality criterion values are calculated using complex Multiple Criteria Decision-Making methods. The model may be further applied to risk assessment in an agile construction environment. The attributes of risk in a construction project are selected by applying the risk assessment condition to the construction sector, and the construction process efficiency in the construction industry accounts for the agile environment. The paper presents the comprehensive risk assessment model in an agile construction environment. It provides a background and a description of the proposed model and the developed analysis of the comprehensive risk assessment model in an agile construction environment with the criteria.Keywords: assessment, environment, agile, model, risk
Procedia PDF Downloads 2593573 Design of Bayesian MDS Sampling Plan Based on the Process Capability Index
Authors: Davood Shishebori, Mohammad Saber Fallah Nezhad, Sina Seifi
Abstract:
In this paper, a variable multiple dependent state (MDS) sampling plan is developed based on the process capability index using Bayesian approach. The optimal parameters of the developed sampling plan with respect to constraints related to the risk of consumer and producer are presented. Two comparison studies have been done. First, the methods of double sampling model, sampling plan for resubmitted lots and repetitive group sampling (RGS) plan are elaborated and average sample numbers of the developed MDS plan and other classical methods are compared. A comparison study between the developed MDS plan based on Bayesian approach and the exact probability distribution is carried out.Keywords: MDS sampling plan, RGS plan, sampling plan for resubmitted lots, process capability index (PCI), average sample number (ASN), Bayesian approach
Procedia PDF Downloads 3023572 Triple Case Phantom Tumor of Lungs
Authors: Angelis P. Barlampas
Abstract:
Introduction: The term phantom lung mass describes the ovoid collection of fluid within the interlobular fissure, which initially creates the impression of a mass. The problem of correct differential diagnosis is great, especially in plain radiography. A case is presented with three nodular pulmonary foci, the shape, location, and density of which, as well as the presence of chronic loculated pleural effusions, suggest the presence of multiple phantom tumors of the lung. Purpose: The aim of this paper is to draw the attention of non-experienced and non-specialized physicians to the existence of benign findings that mimic pathological conditions and vice versa. The careful study of a radiological examination and the comparison with previous exams or further control protect against quick wrong conclusions. Methods: A hospitalized patient underwent a non-contrast CT scan of the chest as part of the general control of her situation. Results: Computed tomography revealed pleural effusions, some of them loculated, increased cardiothoracic index, as well as the presence of three nodular foci, one in the left lung and two in the right with a maximum density of up to 18 Hounsfield units and a mean diameter of approximately five centimeters. Two of them are located in the characteristical anatomical position of the major interlobular fissure. The third one is located in the area of the right lower lobe’s posterior basal part, and it presents the same characteristics as the previous ones and is likely to be a loculated fluid collection, within an auxiliary interlobular fissure or a cyst, in the context of the patient's more general pleural entrapments and loculations. The differential diagnosis of nodular foci based on their imaging characteristics includes the following: a) rare metastatic foci with low density (liposarcoma, mucous tumors of the digestive or genital system, necrotic metastatic foci, metastatic renal cancer, etc.), b) necrotic multiple primary lung tumor locations (squamous epithelial cancer, etc. ), c) hamartomas of the lung, d) fibrotic tumors of the interlobular fissures, e) lipoid pneumonia, f) fluid concentrations within the interlobular fissures, g) lipoma of the lung, h) myelolipomas of the lung. Conclusions: The collection of fluid within the interlobular fissure of the lung can give the false impression of a lung mass, particularly on plain chest radiography. In the case of computed tomography, the ability to measure the density of a lesion, combined with the provided high anatomical details of the location and characteristics of the lesion, can lead relatively easily to the correct diagnosis. In cases of doubt or image artifacts, comparison with previous or subsequent examinations can resolve any disagreements, while in rare cases, intravenous contrast may be necessary.Keywords: phantom mass, chest CT, pleural effusion, cancer
Procedia PDF Downloads 58