Search results for: mental health detection
11564 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures
Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski
Abstract:
Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems
Procedia PDF Downloads 35311563 Automatic Seizure Detection Using Weighted Permutation Entropy and Support Vector Machine
Authors: Noha Seddik, Sherine Youssef, Mohamed Kholeif
Abstract:
The automated epileptic seizure detection research field has emerged in the recent years; this involves analyzing the Electroencephalogram (EEG) signals instead of the traditional visual inspection performed by expert neurologists. In this study, a Support Vector Machine (SVM) that uses Weighted Permutation Entropy (WPE) as the input feature is proposed for classifying normal and seizure EEG records. WPE is a modified statistical parameter of the permutation entropy (PE) that measures the complexity and irregularity of a time series. It incorporates both the mapped ordinal pattern of the time series and the information contained in the amplitude of its sample points. The proposed system utilizes the fact that entropy based measures for the EEG segments during epileptic seizure are lower than in normal EEG.Keywords: electroencephalogram (EEG), epileptic seizure detection, weighted permutation entropy (WPE), support vector machine (SVM)
Procedia PDF Downloads 37611562 Disentangling the Sources and Context of Daily Work Stress: Study Protocol of a Comprehensive Real-Time Modelling Study Using Portable Devices
Authors: Larissa Bolliger, Junoš Lukan, Mitja Lustrek, Dirk De Bacquer, Els Clays
Abstract:
Introduction and Aim: Chronic workplace stress and its health-related consequences like mental and cardiovascular diseases have been widely investigated. This project focuses on the sources and context of psychosocial daily workplace stress in a real-world setting. The main objective is to analyze and model real-time relationships between (1) psychosocial stress experiences within the natural work environment, (2) micro-level work activities and events, and (3) physiological signals and behaviors in office workers. Methods: An Ecological Momentary Assessment (EMA) protocol has been developed, partly building on machine learning techniques. Empatica® wristbands will be used for real-life detection of stress from physiological signals; micro-level activities and events at work will be based on smartphone registrations, further processed according to an automated computer algorithm. A field study including 100 office-based workers with high-level problem-solving tasks like managers and researchers will be implemented in Slovenia and Belgium (50 in each country). Data mining and state-of-the-art statistical methods – mainly multilevel statistical modelling for repeated data – will be used. Expected Results and Impact: The project findings will provide novel contributions to the field of occupational health research. While traditional assessments provide information about global perceived state of chronic stress exposure, the EMA approach is expected to bring new insights about daily fluctuating work stress experiences, especially micro-level events and activities at work that induce acute physiological stress responses. The project is therefore likely to generate further evidence on relevant stressors in a real-time working environment and hence make it possible to advise on workplace procedures and policies for reducing stress.Keywords: ecological momentary assessment, real-time, stress, work
Procedia PDF Downloads 16811561 An Autopilot System for Static Zone Detection
Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo
Abstract:
Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement
Procedia PDF Downloads 10711560 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score
Procedia PDF Downloads 20311559 Identification of Babesia ovis Through Polymerase Chain Reaction in Sheep and Goat in District Muzaffargarh, Pakistan
Authors: Muhammad SAFDAR, Mehmet Ozaslan, Musarrat Abbas Khan
Abstract:
Babesiosis is a haemoparasitic disease due to the multiplication of protozoan’s parasite, Babesia ovis in the red blood cells of the host, and contributes numerous economical losses, including sheep and goat ruminants. The early identification and successful treatment of Babesia Ovis spp. belong to the key steps of control and health management of livestock resources. The objective of this study was to construct a polymerase chain reaction (PCR) based method for the detection of Babesia spp. in small ruminants and to determine the risk factors involved in the spreading of babesiosis infections. A total of 100 blood samples were collected from 50 sheep and 50 goats along with different areas of Muzaffargarh, Pakistan, from randomly selected herds. Data on the characteristics of sheep and goats were collected through questionnaires. Of 100 blood samples examined, 18 were positive for Babesia ovis upon microscopic studies, whereas 11 were positive for the presence of Babesia spp. by PCR assay. For the recognition of parasitic DNA, a set of 500bp oligonucleotide was designed by PCR amplification with sequence 18S rRNA gene for B. ovis. The prevalence of babesiosis in small ruminant’s sheep and goat detected by PCR was significantly higher in female animals (28%) than male herds (08%). PCR analysis of the reference samples showed that the detection limit of the PCR assay was 0.01%. Taken together, all data indicated that this PCR assay was a simple, fast, specific detection method for Babesia ovis species in small ruminants compared to other available methods.Keywords: Babesia ovis, PCR amplification, 18S rRNA, sheep and goat
Procedia PDF Downloads 13411558 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis
Procedia PDF Downloads 37211557 Practices Supporting the Wellbeing of Healthcare Staff: Findings From a Narrative Inquiry
Authors: Julaine Allan, Katarzyna Olcon, Padmini Pai, Lynne Keevers, Mim Fox, Maria Mackay, Ruth Everingham, Sue Cutmore, Chris Degeling, Kristine Falzon, Summer Finlay
Abstract:
Effective local responses to community needs are grounded in contextual knowledge and built on existing resources. The SEED Wellbeing Program was created in 2020 in response to cumulative disasters, bushfires, floods and COVID experienced by healthcare staff in the Illawarra Shoalhaven Local Health District, NSW, Australia. SEED used a participatory action methodology to bring healthcare staff teams together to engage in restorative activities in the workplace. Guided by Practice Theory, this study identified the practices that supported the recovery of healthcare staff.Keywords: mental health and wellbeing, workplace wellness, healthcare providers, natural disasters, COVID-19, burnout, occupational trauma
Procedia PDF Downloads 14811556 CsPbBr₃@MOF-5-Based Single Drop Microextraction for in-situ Fluorescence Colorimetric Detection of Dechlorination Reaction
Authors: Yanxue Shang, Jingbin Zeng
Abstract:
Chlorobenzene homologues (CBHs) are a category of environmental pollutants that can not be ignored. They can stay in the environment for a long period and are potentially carcinogenic. The traditional degradation method of CBHs is dechlorination followed by sample preparation and analysis. This is not only time-consuming and laborious, but the detection and analysis processes are used in conjunction with large-scale instruments. Therefore, this can not achieve rapid and low-cost detection. Compared with traditional sensing methods, colorimetric sensing is simpler and more convenient. In recent years, chromaticity sensors based on fluorescence have attracted more and more attention. Compared with sensing methods based on changes in fluorescence intensity, changes in color gradients are easier to recognize by the naked eye. Accordingly, this work proposes to use single drop microextraction (SDME) technology to solve the above problems. After the dechlorination reaction was completed, the organic droplet extracts Cl⁻ and realizes fluorescence colorimetric sensing at the same time. This method was integrated sample processing and visual in-situ detection, simplifying the detection process. As a fluorescence colorimetric sensor material, CsPbBr₃ was encapsulated in MOF-5 to construct CsPbBr₃@MOF-5 fluorescence colorimetric composite. Then the fluorescence colorimetric sensor was constructed by dispersing the composite in SDME organic droplets. When the Br⁻ in CsPbBr₃ exchanges with Cl⁻ produced by the dechlorination reactions, it is converted into CsPbCl₃. The fluorescence color of the single droplet of SDME will change from green to blue emission, thereby realizing visual observation. Therein, SDME can enhance the concentration and enrichment of Cl⁻ and instead of sample pretreatment. The fluorescence color change of CsPbBr₃@MOF-5 can replace the detection process of large-scale instruments to achieve real-time rapid detection. Due to the absorption ability of MOF-5, it can not only improve the stability of CsPbBr₃, but induce the adsorption of Cl⁻. Simultaneously, accelerate the exchange of Br- and Cl⁻ in CsPbBr₃ and the detection process of Cl⁻. The absorption process was verified by density functional theory (DFT) calculations. This method exhibits exceptional linearity for Cl⁻ in the range of 10⁻² - 10⁻⁶ M (10000 μM - 1 μM) with a limit of detection of 10⁻⁷ M. Whereafter, the dechlorination reactions of different kinds of CBHs were also carried out with this method, and all had satisfactory detection ability. Also verified the accuracy by gas chromatography (GC), and it was found that the SDME we developed in this work had high credibility. In summary, the in-situ visualization method of dechlorination reaction detection was a combination of sample processing and fluorescence colorimetric sensing. Thus, the strategy researched herein represents a promising method for the visual detection of dechlorination reactions and can be extended for applications in environments, chemical industries, and foods.Keywords: chlorobenzene homologues, colorimetric sensor, metal halide perovskite, metal-organic frameworks, single drop microextraction
Procedia PDF Downloads 14911555 Structural Damage Detection via Incomplete Model Data Using Output Data Only
Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan
Abstract:
Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation
Procedia PDF Downloads 36711554 Nanomaterials Based Biosensing Chip for Non-Invasive Detection of Oral Cancer
Authors: Suveen Kumar
Abstract:
Oral cancer (OC) is the sixth most death causing cancer in world which includes tumour of lips, floor of the mouth, tongue, palate, cheeks, sinuses, throat, etc. Conventionally, the techniques used for OC detection are toluidine blue staining, biopsy, liquid-based cytology, visual attachments, etc., however these are limited by their highly invasive nature, low sensitivity, time consumption, sophisticated instrument handling, sample processing and high cost. Therefore, we developed biosensing chips for non-invasive detection of OC via CYFRA-21-1 biomarker. CYFRA-21-1 (molecular weight: 40 kDa) is secreted in saliva of OC patients which is a non-invasive biological fluid with a cut-off value of 3.8 ng mL-1, above which the subjects will be suffering from oral cancer. Therefore, in first work, 3-aminopropyl triethoxy silane (APTES) functionalized zirconia (ZrO2) nanoparticles (APTES/nZrO2) were used to successfully detect CYFRA-21-1 in a linear detection range (LDR) of 2-16 ng mL-1 with sensitivity of 2.2 µA mL ng-1. Successively, APTES/nZrO2-RGO was employed to prevent agglomeration of ZrO2 by providing high surface area reduced graphene oxide (RGO) support and much wider LDR (2-22 ng mL-1) was obtained with remarkable limit of detection (LOD) as 0.12 ng mL-1. Further, APTES/nY2O3/ITO platform was used for oral cancer bioseneor development. The developed biosensor (BSA/anti-CYFRA-21-1/APTES/nY2O3/ITO) have wider LDR (0.01-50 ng mL-1) with remarkable limit of detection (LOD) as 0.01 ng mL-1. To improve the sensitivity of the biosensing platform, nanocomposite of yattria stabilized nanostructured zirconia-reduced graphene oxide (nYZR) based biosensor has been developed. The developed biosensing chip having ability to detect CYFRA-21-1 biomolecules in the range of 0.01-50 ng mL-1, LOD of 7.2 pg mL-1 with sensitivity of 200 µA mL ng-1. Further, the applicability of the fabricated biosensing chips were also checked through real sample (saliva) analysis of OC patients and the obtained results showed good correlation with the standard protein detection enzyme linked immunosorbent assay (ELISA) technique.Keywords: non-invasive, oral cancer, nanomaterials, biosensor, biochip
Procedia PDF Downloads 13311553 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 18911552 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 23311551 Two-Way Reminder Systems to Support Activities of Daily Living for Adults with Cognitive Impairments: A Scoping Review
Authors: Julia Brudzinski, Ashley Croswell, Jade Mardin, Hannah Shilling, Jennifer Berg-Carnegie
Abstract:
Adults with brain injuries and mental illnesses commonly experience cognitive impairments that interfere with their participation in activities of daily living (ADLs). Prior research states that electronic reminder systems can support adults with cognitive impairments; however, previous studies focus primarily on one-way reminder systems. Research on adults with chronic diseases reported that two-way reminder systems yield better health outcomes and disease self-management compared to one-way reminder systems. Literature was identified through systematically searching 7 databases and hand-searching relevant reference lists. Retrieved studies were independently screened and reviewed by at least two members of the research team. Data was extracted on study design, participant characteristics, intervention details, study objectives, outcome measures, and important results. 574 articles were screened and reviewed. Nine articles met all inclusion criteria and were included. The literature focused on three main areas: system feasibility (n=8), stakeholder satisfaction (n=6), and efficacy of the two-way reminder systems (n=6). Participants in eight of the studies had brain injuries, with participants in only one study having a mental illness (i.e., schizophrenia). Two-way reminder systems were used to support participation in a wide range of ADLs. The current literature on two-way reminder systems to support ADLs for adults with cognitive impairments focuses on feasibility, stakeholder satisfaction, and system efficacy. Future research should focus on addressing the barriers to accessing and implementing two-way reminder systems and identifying specific client characteristics that would benefit most from using these systems.Keywords: brain injury, digital health, occupational therapy, activities of daily living, two-way reminder systems
Procedia PDF Downloads 8111550 Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water
Authors: Temesgen Geremew
Abstract:
This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications.Keywords: polythiophene, Pb2+, SERS, nanoparticles
Procedia PDF Downloads 6111549 Nutrition, Dental Status and Post-Traumatic Stress Disorder among Underage Refugees in Germany
Authors: Marios Loucas, Rafael Loucas, Oliver Muensterer
Abstract:
Aim of the Study: Over the last two years, there has been a substantial rise of refugees entering Germany, of which approximately one-third are underage. Little is known about the general state of health such as nutrition, dental status and post-traumatic stress disorder among underage refugees. Our study assesses the general health status of underage refugees based on a large sample cohort. Methods: After ethics board approval, we used a structured questionnaire to collect demographic information and health-related elements in 3 large refugee accommodation centers, focusing on nutritional and dental status, as well as symptoms of posttraumatic stress disorder. Main results: A total of 461 minor refugees were included. The majority were boys (54.5%), average age was 8 years. Out of the 8 recorded countries of origin, most children came from Syria (33.6%), followed by Afghanistan (23.2%). Of the participants, 50.3% reported DSM-5 criteria of Posttraumatic stress disorder and presented mental health-related problems. The most frequently reported mental abnormalities were concentration disturbances (15.2%), sleep disorders (6.9%), unclear headaches (5.4%). The majority of the participants showed an unfavorable nutritional and dental status. According to the family, the majority of the children rarely eat healthy foods such as fruits, vegetables and fish. However, the majority of these children (over 90%) consume a large quantity of sugary foods and sweetened drinks such as soft drinks and confectionery at least daily. Caries was found in 63% of the minor children included in the study. A large proportion (47%) reported never brushing their teeth. According to the family, 78.3% of refugee children have never been evaluated by a dentist in Germany. The remainder visited a dentist mainly because of unbearable toothache. Conclusions: Minor refugees have specific psychological, nutritional and dental problems that must be considered in order to ensure appropriate medical care. Posttraumatic stress disorder is mainly caused by physical and emotional trauma suffered either during the flight or in the refugee camp in Germany. These data call for widespread screening of psychological, dental and nutritional problems in underage refugees. Dental care of this cohort is completely inadequate. Nutritional programs should focus on educating the families and providing the means to obtain healthy foods for these children.Keywords: children, nutrition, posttraumatic stress disorder, refugee
Procedia PDF Downloads 17611548 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 23811547 The Impact of Covid-19 on Anxiety Levels in the General Population of the United States: An Exploratory Survey
Authors: Amro Matyori, Fatimah Sherbeny, Askal Ali, Olayiwola Popoola
Abstract:
Objectives: The study evaluated the impact of COVID-19 on anxiety levels in the general population in the United States. Methods: The study used an online questionnaire. It adopted the Generalized Anxiety Disorder Assessment (GAD-7) instrument. It is a self-administered scale with seven items used as a screening tool and severity measure for generalized anxiety disorder. The participants rated the frequency of anxiety symptoms in the last two weeks on a Likert scale, which ranges from 0-3. Then the item points are summed to provide the total score. Results: Thirty-two participants completed the questionnaire. Among them, 24 (83%) females and 5 (17%) males. The age range of 18-24-year-old represented the most respondents. Only one of the participants tested positive for the COVID-19, and 39% of them, one of their family members, friends, or colleagues, tested positive for the coronavirus. Moreover, 10% have lost a family member, a close friend, or a colleague because of COVID-19. Among the respondents, there were ten who scored approximately five points on the GAD-7 scale, which indicates mild anxiety. Furthermore, eight participants scored 10 to 14 points, which put them under the category of moderate anxiety, and one individual who was categorized under severe anxiety scored 15 points. Conclusions: It is identified that most of the respondents scored the points that put them under the mild anxiety category during the COVID-19 pandemic. It is also noticed that severe anxiety was the lowest among the participants, and people who tested positive and/or their family members, close friends, and colleagues were more likely to experience anxiety. Additionally, participants who lost friends or family members were also at high risk of anxiety. It is obvious the COVID-19 outcomes and too much thinking about the pandemic put people under stress which led to anxiety. Therefore, continuous assessment and monitoring of psychological outcomes during pandemics will help to establish early well-informed interventions.Keywords: anxiety and covid-19, covid-19 and mental health outcomes, influence of covid-19 on anxiety, population and covid-19 impact on mental health
Procedia PDF Downloads 21111546 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 14911545 Convolutional Neural Network and LSTM Applied to Abnormal Behaviour Detection from Highway Footage
Authors: Rafael Marinho de Andrade, Elcio Hideti Shiguemori, Rafael Duarte Coelho dos Santos
Abstract:
Relying on computer vision, many clever things are possible in order to make the world safer and optimized on resource management, especially considering time and attention as manageable resources, once the modern world is very abundant in cameras from inside our pockets to above our heads while crossing the streets. Thus, automated solutions based on computer vision techniques to detect, react, or even prevent relevant events such as robbery, car crashes and traffic jams can be accomplished and implemented for the sake of both logistical and surveillance improvements. In this paper, we present an approach for vehicles’ abnormal behaviors detection from highway footages, in which the vectorial data of the vehicles’ displacement are extracted directly from surveillance cameras footage through object detection and tracking with a deep convolutional neural network and inserted into a long-short term memory neural network for behavior classification. The results show that the classifications of behaviors are consistent and the same principles may be applied to other trackable objects and scenarios as well.Keywords: artificial intelligence, behavior detection, computer vision, convolutional neural networks, LSTM, highway footage
Procedia PDF Downloads 17111544 Hit-Or-Miss Transform as a Tool for Similar Shape Detection
Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer
Abstract:
This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.Keywords: hit-or-miss operator transform, HMT, binary morphological operation, shape detection, binary images processing
Procedia PDF Downloads 33811543 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters
Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu
Abstract:
Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs
Procedia PDF Downloads 20311542 Covid-19 Associated Stress and Coping Strategies
Authors: Bar Shapira-Youngster, Sima Amram-Vaknin, Yuliya Lipshits-Braziler
Abstract:
The study examined how 811 Israelis experienced and coped with the COVID-19 lockdown. Stress, uncertainty, and loss of control were reported as common emotional experiences. Two main difficulties were reported: Loneliness and health and emotional concerns. Frequent explanations for the virus's emergence were: scientific or faith reasoning. The most prevalent coping strategies were distraction activities and acceptance. Reducing the use of maladaptive coping strategies has important implications for mental health outcomes. Objectives: COVID-19 has been recognized as a collective, continuous traumatic stressor. The present study examined how individuals experienced, perceived, and coped with this traumatic event during the lockdown in Israel in April 2020. Method: 811 Israelis (71.3% were women; mean age 43.7, SD=13.3)completed an online semi-structured questionnaire consisting two sections: In the first section, participants were asked to report background information. In the second section, they were asked to answer 8 open-ended questions about their experience, perception, and coping with the covid-19 lockdown. Participation was voluntary, and anonymity was assured, they were not offered compensation of any kind. The data were subjected to qualitative content analysis that seeks to classify the participants` answers into an effective number of categories that represent similar meanings. Our content analysis of participants’ answers extended far beyond simple word counts; our objective was to try to identify recurrent categories that characterized participants’ responses to each question. We sought to ensure that the categories regarding the different questions are as mutually exclusive and exhaustive as possible. To ensure robust analysis, the data were initially analyzed by the first author, and a second opinion was then sought from research colleagues. Contribution: The present research expands our knowledge of individuals' experiences, perceptions, and coping mechanisms with continuous traumatic events. Reducing the use of maladaptive coping strategies has important implications for mental health outcomes.Keywords: Covid-19, emotional distress, coping, continuous traumatic event
Procedia PDF Downloads 13411541 Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode
Authors: Mohamad Syahrizal Ahmad, Illyas M. Isa
Abstract:
In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%.Keywords: 1, 4-dihydroxybenzene, hydroquinone, multiwall carbon nanotubes, square wave voltammetry
Procedia PDF Downloads 23311540 The Shape of the Sculptor: Exploring Psychologist’s Perceptions of a Model of Parenting Ability to Guide Intervention in Child Custody Evaluations in South Africa
Authors: Anthony R. Townsend, Robyn L. Fasser
Abstract:
This research project provides an interpretative phenomenological analysis of a proposed conceptual model of parenting ability that has been designed to offer recommendations to guide intervention in child custody evaluations in South Africa. A recent review of the literature on child custody evaluations reveals that while there have been significant and valuable shifts in the capacity of the legal system aided by mental health professionals in understanding children and family dynamics, there remains a conceptual gap regarding the nature of parenting ability. With a view to addressing this paucity of a theoretical basis for considering parenting ability, this research project reviews a dimensional model for the assessment of parenting ability by conceiving parenting ability as a combination of good parenting and parental fitness. This model serves as a conceptual framework to guide child-custody evaluation and refine intervention in such cases to better meet the best interests of the child in a manner that bridges the professional gap between parties, legal entities, and mental health professionals. Using a model of good parenting as a point of theoretical departure, this model incorporates both intra-psychic and interpersonal attributes and behaviours of parents to form an impression of parenting ability and identify areas for potential enhancement. This research, therefore, hopes to achieve the following: (1) to provide nuanced descriptions of parents’ parenting ability; (2) to describe parents’ parenting potential; (3) to provide a parenting assessment tool for investigators in forensic family matters that will enable more useful recommendations and interventions; (4) to develop a language of consensus for investigators, attorneys, judges and parents, in forensic family matters, as to what comprises parenting ability and how this can be assessed; and (5) that all of the aforementioned will serve to advance the best interests of the children involved in such litigious matters. The evaluative promise and post-assessment prospects of this model are illustrated through three interlinking data sets: (1) the results of interviews with South African psychologists about the model, (2) retrospective analysis of care and contact evaluation reports using the model to determine if different conclusions or more specific recommendations are generated with its use and (3) the results of an interview with a psychologist who piloted this model by using it in care and contact evaluation.Keywords: alienation, attachment, best interests of the child, care and contact evaluation, children’s act (38 of 2005), child custody evaluation, civil forensics, gatekeeping, good parenting, good-enough parenting, health professions council of South Africa, family law, forensic mental healthcare practitioners, parental fitness, parenting ability, parent management training, parenting plan, problem-determined system, psychotherapy, support of other child-parent relationship, voice of the child
Procedia PDF Downloads 12011539 A Novel Breast Cancer Detection Algorithm Using Point Region Growing Segmentation and Pseudo-Zernike Moments
Authors: Aileen F. Wang
Abstract:
Mammography has been one of the most reliable methods for early detection and diagnosis of breast cancer. However, mammography misses about 17% and up to 30% of breast cancers due to the subtle and unstable appearances of breast cancer in their early stages. Recent computer-aided diagnosis (CADx) technology using Zernike moments has improved detection accuracy. However, it has several drawbacks: it uses manual segmentation, Zernike moments are not robust, and it still has a relatively high false negative rate (FNR)–17.6%. This project will focus on the development of a novel breast cancer detection algorithm to automatically segment the breast mass and further reduce FNR. The algorithm consists of automatic segmentation of a single breast mass using Point Region Growing Segmentation, reconstruction of the segmented breast mass using Pseudo-Zernike moments, and classification of the breast mass using the root mean square (RMS). A comparative study among the various algorithms on the segmentation and reconstruction of breast masses was performed on randomly selected mammographic images. The results demonstrated that the newly developed algorithm is the best in terms of accuracy and cost effectiveness. More importantly, the new classifier RMS has the lowest FNR–6%.Keywords: computer aided diagnosis, mammography, point region growing segmentation, pseudo-zernike moments, root mean square
Procedia PDF Downloads 45711538 Relationship between Functionality and Cognitive Impairment in Older Adult Women from the Southeast of Mexico
Authors: Estrella C. Damaris, Ingrid A. Olais, Gloria P. Uicab
Abstract:
This study explores the relationship between the level of functionality and cognitive impairment in older adult women from the south-east of Mexico. It is a descriptive, cross-sectional study; performed with 172 participants in total who attended a health institute and live in Merida, Yucatan Mexico. After a non-probabilistic sampling, Barthel and Pfeiffer scales were applied. The results show statistically significant correlation between the cognitive impairment (Pfeiffer) and the levels of independence and function (Barthel) (r =0.489; p =0.001). Both determine a dependence level so they need either a little or a lot of help. Society needs that the older woman be healthy and that the professionals of mental health develop activities to prevent and rehabilitate because cognitive impairment and function are directly related with the quality of life.Keywords: functionality, cognition, routine activities, cognitive impairment
Procedia PDF Downloads 29711537 The Impact of Cognitive Load on Deceit Detection and Memory Recall in Children’s Interviews: A Meta-Analysis
Authors: Sevilay Çankaya
Abstract:
The detection of deception in children’s interviews is essential for statement veracity. The widely used method for deception detection is building cognitive load, which is the logic of the cognitive interview (CI), and its effectiveness for adults is approved. This meta-analysis delves into the effectiveness of inducing cognitive load as a means of enhancing veracity detection during interviews with children. Additionally, the effectiveness of cognitive load on children's total number of events recalled is assessed as a second part of the analysis. The current meta-analysis includes ten effect sizes from search using databases. For the effect size calculation, Hedge’s g was used with a random effect model by using CMA version 2. Heterogeneity analysis was conducted to detect potential moderators. The overall result indicated that cognitive load had no significant effect on veracity outcomes (g =0.052, 95% CI [-.006,1.25]). However, a high level of heterogeneity was found (I² = 92%). Age, participants’ characteristics, interview setting, and characteristics of the interviewer were coded as possible moderators to explain variance. Age was significant moderator (β = .021; p = .03, R2 = 75%) but the analysis did not reveal statistically significant effects for other potential moderators: participants’ characteristics (Q = 0.106, df = 1, p = .744), interview setting (Q = 2.04, df = 1, p = .154), and characteristics of interviewer (Q = 2.96, df = 1, p = .086). For the second outcome, the total number of events recalled, the overall effect was significant (g =4.121, 95% CI [2.256,5.985]). The cognitive load was effective in total recalled events when interviewing with children. All in all, while age plays a crucial role in determining the impact of cognitive load on veracity, the surrounding context, interviewer attributes, and inherent participant traits may not significantly alter the relationship. These findings throw light on the need for more focused, age-specific methods when using cognitive load measures. It may be possible to improve the precision and dependability of deceit detection in children's interviews with the help of more studies in this field.Keywords: deceit detection, cognitive load, memory recall, children interviews, meta-analysis
Procedia PDF Downloads 6211536 Learning Grammars for Detection of Disaster-Related Micro Events
Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev
Abstract:
Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter
Procedia PDF Downloads 48411535 Prevalence of Cognitive Decline in Major Depressive Illness
Authors: U. B. Zubair, A. Kiyani
Abstract:
Introduction: Depressive illness predispose individuals to a lot of physical and mental health issues. Anxiety and substance use disorders have been studied widely as comorbidity. Biological symptoms also now considered part of the depressive spectrum. Cognitive abilities also decline or get affected and need to be looked into in detail in depressed patients. Objective: To determine the prevalence of cognitive decline among patients with major depressive illness and analyze the associated socio-demographic factors. Methods: 190 patients of major depressive illness were included in our study to determine the presence of cognitive decline among them. Depression was diagnosed by a consultant psychiatrist by using the ICD-10 criteria for major depressive disorder. British Columbia Cognitive Complaints Inventory (BC-CCI) was the psychometric tool used to determine the cognitive decline. Sociodemographic profile was recorded and the relationship of various factors with cognitive decline was also ascertained. Findings: 70% of the patients suffering from depression included in this study showed the presence of some degree of cognitive decline, while 30% did not show any evidence of cognitive decline when screened through BCCCI. Statistical testing revealed that the female gender was the only socio-demographic parameter linked significantly with the presence of cognitive decline. Conclusion: Decline in cognitive abilities was found in a significant number of patients suffering from major depression in our sample population. Screening for this parameter f mental function should be done in depression clinics to pick it early.Keywords: depression, cognitive decline, prevalence, socio-demographic factors
Procedia PDF Downloads 150