Search results for: bias-enhanced nucleation and growth
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6312

Search results for: bias-enhanced nucleation and growth

5142 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase

Procedia PDF Downloads 367
5141 Evaluation of Sustainable Blue Economy Development Performance: Method and Case

Authors: Mingbao Chen

Abstract:

After Rio+20, the blue economy rises all over the world, and it has become the focus field of national development. At present, the blue economy has become a new growth point in the field of global economy and the direction of the development of ‘green’ in the ocean. However, in fact, the key factors affecting the development of the blue economy have not been explored in depth, and the development policies and performance of the blue economy have not been scientifically evaluated. This cannot provide useful guidance for the development of the blue economy. Therefore, it is urgent to establish a quantitative evaluation framework to measure the performance of the blue economic development. Based on the full understanding of the connotation and elements of the blue economy, and studying the literature, this article has built an universality and operability evaluation index system, including ecological environment, social justice, sustainable growth, policy measures, and so on. And this article also established a sound evaluation framework of blue economic development performance. At the same time, this article takes China as a sample to test the framework of the adaptability, and to assess the performance of China's blue economic.

Keywords: Blue economy, development performance, evaluation framework, assess method

Procedia PDF Downloads 234
5140 Effect of Rice Cultivars and Water Regimes Application as Mitigation Strategy for Greenhouse Gases in Paddy Fields

Authors: Mthiyane Pretty, Mitsui Toshiake, Aycan Murat, Nagano Hirohiko

Abstract:

Methane (CH₄) is one of the most dangerous greenhouse gases (GHG) emitted into the atmosphere by terrestrial ecosystems, with a global warming potential (GWP) 25-34 times that of CO2 on a centennial scale. Paddy rice cultivations are a major source of methane emission and is the major driving force for climate change. Thus, it is necessary to find out GHG emissions mitigation strategies from rice cultivation. A study was conducted at Niigata University. And the prime objective of this research was to determine the effects of rice varieties CH4 lowland (NU1, YNU, Nipponbare, Koshihikari) and upland (Norin 1, Norin 24, Hitachihatamochi) japonica rice varieties using different growth media which was paddy field soil and artificial soil. The treatments were laid out in a split plot design. The soil moisture was kept at 40-50% and 70%, respectively. The CH₄ emission rates were determined by collecting air samples using the closed chamber technique and measuring CH₄ concentrations using a gas chromatograph. CH₄ emission rates varied with the growth, growth media type and development of the rice varieties. The soil moisture was monitored at a soil depth of 5–10 cm with an HydraGO portable soil sensor system every three days for each pot, and temperatures were be recorded by a sensitive thermometer. The lowest cumulative CH4 emission rate was observed in Norin 24, particularly under 40 to 50% soil moisture. Across the rice genotypes, 40-50% significantly reduced the cumulative CH4 , followed by irrigation of 70% soil moisture. During the tillering stage, no significant variation in tillering and plant height was observed between and 70% soil moisture. This study suggests that the cultivation of Norin 24 and Norin 1 under 70% soil irrigation could be effective at reducing the CH4 in rice fields.

Keywords: methane, paddy fields, rice varieties, soil moisture

Procedia PDF Downloads 68
5139 Research of Intrinsic Emittance of Thermal Cathode with Emission Nonuniformity

Authors: Yufei Peng, Zhen Qin, Jianbe Li, Jidong Long

Abstract:

The thermal cathode is widely used in accelerators, FELs and kinds of vacuum electronics. However, emission nonuniformity exists due to surface profile, material distribution, temperature variation, crystal orientation, etc., which will cause intrinsic emittance growth, brightness decline, envelope size augment, device performance deterioration or even failure. To understand how emittance is manipulated by emission nonuniformity, an intrinsic emittance model consisting of contributions from macro and micro surface nonuniformity is developed analytically based on general thermal emission model at temperature limited regime according to a real 3mm cathode. The model shows relative emittance increased about 50% due to temperature variation, and less than 5% from several kinds of micro surface nonuniformity which is much smaller than other research. Otherwise, we also calculated emittance growth combining with Monte Carlo method and PIC simulation, experiments of emission uniformity and emittance measurement are going to be carried out separately.

Keywords: thermal cathode, electron emission fluctuation, intrinsic emittance, surface nonuniformity, cathode lifetime

Procedia PDF Downloads 278
5138 Small Micro and Medium Enterprises Perception-Based Framework to Access Financial Support

Authors: Melvin Mothoa

Abstract:

Small Micro and Medium Enterprises are very significant for the development of their market economies. They are the main creators of the new working places, and they present a vital core of the market economy in countries across the globe. Access to finance is identified as crucial for small, micro, and medium-sized enterprises for their growth and innovation. This paper is conceived to propose a perception-based SMME framework to aid in access to financial support. Furthermore, the study will address issues that impede SMMEs in South Africa from obtaining finance from financial institutions. The framework will be tested against data collected from 200 Small Micro & Medium Enterprises in the Gauteng province of South Africa. The study adopts a quantitative method, and the delivery of self-administered questionnaires to SMMEs will be the primary data collection tool. Structural equation modeling will be used to further analyse the data collected.

Keywords: finance, small business, growth, development

Procedia PDF Downloads 89
5137 Mango (Mangifera indica L.) Lyophilization Using Vacuum-Induced Freezing

Authors: Natalia A. Salazar, Erika K. Méndez, Catalina Álvarez, Carlos E. Orrego

Abstract:

Lyophilization, also called freeze-drying, is an important dehydration technique mainly used for pharmaceuticals. Food industry also uses lyophilization when it is important to retain most of the nutritional quality, taste, shape and size of dried products and to extend their shelf life. Vacuum-Induced during freezing cycle (VI) has been used in order to control ice nucleation and, consequently, to reduce the time of primary drying cycle of pharmaceuticals preserving quality properties of the final product. This procedure has not been applied in freeze drying of foods. The present work aims to investigate the effect of VI on the lyophilization drying time, final moisture content, density and reconstitutional properties of mango (Mangifera indica L.) slices (MS) and mango pulp-maltodextrin dispersions (MPM) (30% concentration of total solids). Control samples were run at each freezing rate without using induced vacuum. The lyophilization endpoint was the same for all treatments (constant difference between capacitance and Pirani vacuum gauges). From the experimental results it can be concluded that at the high freezing rate (0.4°C/min) reduced the overall process time up to 30% comparing process time required for the control and VI of the lower freeze rate (0.1°C/min) without affecting the quality characteristics of the dried product, which yields a reduction in costs and energy consumption for MS and MPM freeze drying. Controls and samples treated with VI at freezing rate of 0.4°C/min in MS showed similar results in moisture and density parameters. Furthermore, results from MPM dispersion showed favorable values when VI was applied because dried product with low moisture content and low density was obtained at shorter process time compared with the control. There were not found significant differences between reconstitutional properties (rehydration for MS and solubility for MPM) of freeze dried mango resulting from controls, and VI treatments.

Keywords: drying time, lyophilization, mango, vacuum induced freezing

Procedia PDF Downloads 395
5136 Investigating the Influence of Solidification Rate on the Microstructural, Mechanical and Physical Properties of Directionally Solidified Al-Mg Based Multicomponent Eutectic Alloys Containing High Mg Alloys

Authors: Fatih Kılıç, Burak Birol, Necmettin Maraşlı

Abstract:

The directional solidification process is generally used for homogeneous compound production, single crystal growth, and refining (zone refining), etc. processes. The most important two parameters that control eutectic structures are temperature gradient and grain growth rate which are called as solidification parameters The solidification behavior and microstructure characteristics is an interesting topic due to their effects on the properties and performance of the alloys containing eutectic compositions. The solidification behavior of multicomponent and multiphase systems is an important parameter for determining various properties of these materials. The researches have been conducted mostly on the solidification of pure materials or alloys containing two phases. However, there are very few studies on the literature about multiphase reactions and microstructure formation of multicomponent alloys during solidification. Because of this situation, it is important to study the microstructure formation and the thermodynamical, thermophysical and microstructural properties of these alloys. The production process is difficult due to easy oxidation of magnesium and therefore, there is not a comprehensive study concerning alloys containing high Mg (> 30 wt.% Mg). With the increasing amount of Mg inside Al alloys, the specific weight decreases, and the strength shows a slight increase, while due to formation of β-Al8Mg5 phase, ductility lowers. For this reason, production, examination and development of high Mg containing alloys will initiate the production of new advanced engineering materials. The original value of this research can be described as obtaining high Mg containing (> 30% Mg) Al based multicomponent alloys by melting under vacuum; controlled directional solidification with various growth rates at a constant temperature gradient; and establishing relationship between solidification rate and microstructural, mechanical, electrical and thermal properties. Therefore, within the scope of this research, some > 30% Mg containing ternary or quaternary Al alloy compositions were determined, and it was planned to investigate the effects of directional solidification rate on the mechanical, electrical and thermal properties of these alloys. Within the scope of the research, the influence of the growth rate on microstructure parameters, microhardness, tensile strength, electrical conductivity and thermal conductivity of directionally solidified high Mg containing Al-32,2Mg-0,37Si; Al-30Mg-12Zn; Al-32Mg-1,7Ni; Al-32,2Mg-0,37Fe; Al-32Mg-1,7Ni-0,4Si; Al-33,3Mg-0,35Si-0,11Fe (wt.%) alloys with wide range of growth rate (50-2500 µm/s) and fixed temperature gradient, will be investigated. The work can be planned as; (a) directional solidification of Al-Mg based Al-Mg-Si, Al-Mg-Zn, Al-Mg-Ni, Al-Mg-Fe, Al-Mg-Ni-Si, Al-Mg-Si-Fe within wide range of growth rates (50-2500 µm/s) at a constant temperature gradient by Bridgman type solidification system, (b) analysis of microstructure parameters of directionally solidified alloys by using an optical light microscopy and Scanning Electron Microscopy (SEM), (c) measurement of microhardness and tensile strength of directionally solidified alloys, (d) measurement of electrical conductivity by four point probe technique at room temperature (e) measurement of thermal conductivity by linear heat flow method at room temperature.

Keywords: directional solidification, electrical conductivity, high Mg containing multicomponent Al alloys, microhardness, microstructure, tensile strength, thermal conductivity

Procedia PDF Downloads 246
5135 Comparative Evaluation on in vitro Bioactivity, Proliferation and Antibacterial Efficiency of Sol-Gel Derived Bioactive Glass Substituted by Li and Mg

Authors: Amirhossein Moghanian, Morteza Elsa, Mehrnaz Aminitabar

Abstract:

Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO2–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂ –(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, the substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well as significant antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA) bacteria.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 130
5134 Impact of Heavy Metal Toxicity on Metabolic Changes in the Diazotrophic Cyanobacterium Anabaena PCC 7120

Authors: Rishi Saxena

Abstract:

Cyanobacteria is a photosynthetic prokaryote, and these obtain their energy through photosynthesis. In this paper, we studied the effect of iron on metabolic changes in the diazotrophic cyanobacterium Anabaena PCC 7120. Nowadays, metal contamination due to natural and anthropogenic sources is a global environment concern. Iron induced changes in growth, N2-fixation, CO2 fixation and photosynthetic activity were studied in a diazotrophic cyanobacterium Anabaena PCC 7120. Iron at 50 uM concentration supported the maximum growth, heterocyst frequency, CO2 fixation, photosystem I (PS I), photosystem II (PS II) and nitrogenase activities in the organism. Higher concentration of iron inhibited these processes. Chl a and PS II activities were more sensitive to iron than the protein and PS I activity. Here, it is also mentioned that heavy metal induced altered macromolecules metabolism and changes in the central dogma of life (DNA→ mRNA → Protein). And also recent advances have been made in understanding heavy metal-cyanobacteria interaction and their application for metal detoxification.

Keywords: cyanobacterium anabaena 7120, nitrogen fixation, photosystem I (PS I), photosystem II (PS II)

Procedia PDF Downloads 119
5133 Generation of Charged Nanoparticles and Their Contribution to the Thin Film and Nanowire Growth during Chemical Vapour Deposition

Authors: Seung-Min Yang, Seong-Han Park, Sang-Hoon Lee, Seung-Wan Yoo, Chan-Soo Kim, Nong-Moon Hwang

Abstract:

The theory of charged nanoparticles suggested that in many Chemical Vapour Depositions (CVD) processes, Charged Nanoparticles (CNPs) are generated in the gas-phase and become a building block of thin films and nanowires. Recently, the nanoparticle-based crystallization has become a big issue since the growth of nanorods or crystals by the building block of nanoparticles was directly observed by transmission electron microscopy observations in the liquid cell. In an effort to confirm charged gas-phase nuclei, that might be generated under conventional processing conditions of thin films and nanowires during CVD, we performed an in-situ measurement using differential mobility analyser and particle beam mass spectrometer. The size distribution and number density of CNPs were affected by process parameters such as precursor flow rate and working temperature. It was shown that many films and nanostructures, which have been believed to grow by individual atoms or molecules, actually grow by the building blocks of such charged nuclei. The electrostatic interaction between CNPs and the growing surface induces the self-assembly into films and nanowires. In addition, the charge-enhanced atomic diffusion makes CNPs liquid-like quasi solid. As a result, CNPs tend to land epitaxial on the growing surface, which results in the growth of single crystalline nanowires with a smooth surface.

Keywords: chemical vapour deposition, charged nanoparticle, electrostatic force, nanostructure evolution, differential mobility analyser, particle beam mass spectrometer

Procedia PDF Downloads 433
5132 Utilizing Mahogany (Swietenia Macrophylla) Fruits, Leaves, and Branches as Biochar for Soil Amendment in Okra (Abelmoschus Esculentus) Plant

Authors: Ayaka A. Matsuo, Gweyneth Victoria I. Maranan, Shawn Mikel Hobayan

Abstract:

In this study, we delve into the application of mahogany fruits as biochar for soil amendment, aiming to evaluate their effectiveness in improving soil quality and influencing the growth parameters of okra plants through a comprehensive analysis employing various multivariate tests. In a more straightforward approach, our results show that biochar derived from isn't just a minor player but emerges as a key contributor to our study. This finding holds profound implications, as it highlights the material significance of biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches in shaping the outcomes. The importance of this discovery lies in its contribution to an enhanced comprehension of the overall effects of biochar on the variables explored in our investigation. Notably, the positive changes observed in height, number of leaves, and width of leaves in okra plants further support the premise that the incorporation of biochar improves soil quality. These findings provide valuable insights for agricultural practices, suggesting that biochar derived from Mahogany (Swietenia macrophylla) fruits, leaves, and branches holds promise as a sustainable soil amendment with positive implications for plant growth. The statistical results from multivariate tests serve to solidify the conclusion that biochar plays a pivotal role in driving the observed outcomes in our study. In essence, this research not only sheds light on the potential of mahogany fruit-derived biochar but also emphasizes its significance in fostering healthier soil conditions and, consequently, enhanced plant growth.

Keywords: soil amendment, biochar, mahogany, soil health

Procedia PDF Downloads 45
5131 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model

Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova

Abstract:

The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.

Keywords: bacteriocins, cross-contamination, mathematical model, temperature

Procedia PDF Downloads 125
5130 Comparison of Transforming Growth Factor-β1 Levels in the Human Gingival Sulcus during Canine Retraction Using Elastic Chain and Closed Coil Spring

Authors: Sri Suparwitri

Abstract:

When an orthodontic force is applied to a tooth, an inflammatory response is initiated then lead to bone remodeling process, and the process accommodates tooth movement. One of cytokine that plays a prominent role in bone remodeling process was transforming growth factor-beta 1 (TGF-β1). The purpose of this study was to identify and compare changes of TGF-β1 in human gingival crevicular fluid during canine retraction using elastic chain and closed coil spring. Ten patients (mean age 20.7 ± 2.9 years) participated. The patients were entering the space closure phase of fixed orthodontic treatment. An upper canine of each patient was retracted using elastic chain, and the contralateral canine was retracted using closed coil spring. Gingival crevicular fluid samples were collected from the canine teeth before and 7 days after the force was applied. Transforming growth factor-beta 1 was determined by enzyme-linked immunosorbent assay (ELISA). The concentrations of TGF-β1 at 7 days were significantly higher compared to before canine retraction in both groups. In the evaluation of between-group difference, before retraction, the difference was insignificant, whereas at 7 days significantly higher values were determined in the closed coil spring group compared to elastic chain group. The result suggests that TGF-β1 is associated with the bone remodeling that occurs during canine distalization movement. Closed coil spring gave higher TGF-β1 concentrations thus more bone remodeling occurred and may be considered the treatment of choice.

Keywords: closed coil spring, elastic chain, gingival crevicular fluid, TGF-β1

Procedia PDF Downloads 158
5129 Effect Mechanisms of Aromatic Plants: Effects on Intestinal Health and Broiler Feeding

Authors: Ozlem Durna Aydin, Gultekin Yildiz

Abstract:

Antibiotics are microbial metabolites with low molecular weight produced by fungi and algae, inhibiting the development of other microorganisms even in low growth. Antibiotics have been used as growth factors in animal feeds for many years. They prohibited; because of increased residue problem and increased resistance to antibiotics in bacteria due to prolonged use. Aromatic plants and extracts have attracted the attention of scientists nowadays due to positive reasons such as confidence of the community to the products those are coming from nature, desire to consume, and no residue problems. Plant extracts are obtained from aromatic plants, and they come forward with antifungal, antibacterial, antiviral, antioxidant and antilipidemic properties. It has been stated that intestinal histomorphology and microbiosis are positively affected by the use of plant extract in feeds. In the present day, aromatic plants and extracts are a remarkable research field with intriguing unknowns in the field of animal nutrition, and they continue to exist in the journal in vitro and in vivo studies.

Keywords: aromatic plant, broilers, extract mechanism of action, intestinal health

Procedia PDF Downloads 147
5128 Management of Municipal Solid Waste in Baghdad, Iraq

Authors: Ayad Sleibi Mustafa, Ahmed Abdulkadhim Mohsin, Layth Noori Ali

Abstract:

The deterioration of solid waste management in Baghdad city is considered as a great challenge in terms of human health and environment. Baghdad city is divided into thirteen districts which are distributed on both Tigris River banks. The west bank is Al-Karkh and the east bank is Al-Rusafa. Municipal Solid Waste Management is one of the most complicated problems facing the environment in Iraq. Population growth led to increase waste production and more load of the waste to the limited capacity infrastructure. The problems of municipal solid waste become more serious after the war in 2003. More waste is disposed in underground landfills in Baghdad with little or no concern for both human health and environment. The results showed that the total annually predicted solid waste is increasing for the period 2015-2030. Municipal solid waste in 2030 will be 6,427,773 tons in Baghdad city according to the population growth rate of 2.4%. This increase is estimated to be approximately 30%.

Keywords: municipal solid waste, solid waste composition and characteristics, Baghdad city, environment, human health

Procedia PDF Downloads 275
5127 Study of the Antimicrobial Activity of Aminoreductone against Pathogenic Bacteria in Comparison with Other Antibiotics

Authors: Vu Thu Trang, Lam Xuan Thanh, Samira Sarter, Tomoko Shimamura, Hiroaki Takeuchi  

Abstract:

Antimicrobial activities of aminoreductone (AR), a product formed in the initial stage of Maillard reaction, were screened against pathogenic bacteria. A significant growth inhibition of AR against all 7 isolates (Staphylococcus aureus ATCC® 25923™, Salmonella Typhimurium ATCC® 14028™, Bacillus cereus ATCC® 13061™, Bacillus subtilis ATCC® 11774™, Escherichia coli ATCC® 25922™, Enterococcus faecalis ATCC® 29212™, Listeria innocua ATCC® 33090™) were observed by the standard disc diffusion methods. The inhibition zone for each isolate by AR (2.5 mg) ranged from 15±0 mm to 28.3±0.4 mm in diameter. The minimum inhibitory concentration (MIC) of AR ranging from 20 mM to 26 mM was proven in the seven isolates tested. AR also showed the similar effect of growth inhibition in comparison with antibiotics frequently used for the treatment of infections bacteria, such as amikacin, ciprofloxacin, meropennem, and levofloxacin. The results indicated that foods containing AR are valuable sources of bioactive compounds towards pathogenic bacteria.

Keywords: pathogenic bacteria, aminoreductone, Maillard reaction, antimicrobial activity

Procedia PDF Downloads 362
5126 Biosynthesis of Titanium Dioxide Nanoparticles and Their Antibacterial Property

Authors: Prachi Singh

Abstract:

This paper presents a low-cost, eco-friendly and reproducible microbe mediated biosynthesis of TiO2 nanoparticles. TiO2 nanoparticles synthesized using the bacterium, Bacillus subtilis, from titanium as a precursor, were confirmed by TEM analysis. The morphological characteristics state spherical shape, with the size of individual or aggregate nanoparticles, around 30-40 nm. Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Here, the antibacterial effect of TiO2 nanoparticles on Escherichia coli was investigated, which was confirmed by CFU (Colony-forming unit). Further, growth curve study of E. coli Hb101 in the presence and absence of TiO2 nanoparticles was done. Optical density decrease was observed with the increase in the concentration of TiO2. It could be attributed to the inactivation of cellular enzymes and DNA by binding to electron-donating groups such as carboxylates, amides, indoles, hydroxyls, thiols, etc. which cause little pores in bacterial cell walls, leading to increased permeability and cell death. This justifies that TiO2 nanoparticles have efficient antibacterial effect and have potential to be used as an antibacterial agent for different purposes.

Keywords: antibacterial effect, CFU, Escherichia coli Hb101, growth curve, TEM, TiO2 nanoparticle, Toxicity, UV-Vis

Procedia PDF Downloads 275
5125 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 53
5124 Effects of Ascophyllum nodosum in Tomato in the Tropical Caribbean Climate: Effects and Molecular Insights into Mechanisms

Authors: Omar Ali, Adesh Ramsubhag, Jayaraj Jayaraman

Abstract:

Seaweed extracts have been reported as plant biostimulants which could be a safer, organic alternative to harsh pesticides. The incentive to use seaweed-based biostimulants is becoming paramount in sustainable agriculture. The current study, therefore, screened a commercial extract of A. nodosum in tomatoes, cultivated in Trinidad to showcase the multiple beneficial effects. Foliar treatment with an A. nodosum commercial extract led to significant increases in fruit yield and a significant reduction of incidence of bacterial spots and early blight diseases under both greenhouse and field conditions. Investigations were carried out to reveal the possible mechanisms of action of this biostimulant through defense enzyme assays and transcriptome profiling via RNA sequencing of tomato. Studies into disease control mechanisms by A. nodosum showed that the extract stimulated the activity of enzymes such as peroxidase, phenylalanine ammonia-lyase, chitinase, polyphenol oxidase, and β-1,3-glucanase. Additionally, the transcriptome survey revealed the upregulation and enrichment of genes responsible for the biosynthesis of growth hormones, defense enzymes, PR proteins and defense-related secondary metabolites, as well as genes involved in the nutrient mobilization, photosynthesis and primary and secondary metabolic pathways. The results of the transcriptome study also demonstrated the cross-talks between growth and defense responses, confirming the bioelicitor and biostimulant value of seaweed extracts in plants. These effects could potentially implicate the benefits of seaweed extract and validate its usage in sustainable crop production.

Keywords: A. nodosum, biostimulants, elicitor, enzymes, growth responses, seaweeds, tomato, transcriptome analysis

Procedia PDF Downloads 145
5123 A Phylogenetic Analysis and Effect of NO₃ Regime on the Level of N-3 Polyunsaturated Fatty Acids in Thalassiosira weissflogii Isolated from Caspian Sea

Authors: Ehsan Etesami, Mostafa Noroozi

Abstract:

Thalassiosira weissflogii with proper size and nutrition value specially PUFA n-3 has been widely used in bivalve shellfish larviculture and shrimp industries. This diatom was isolated from Caspian Sea and identified with morphology and molecular characters. T. weissflogii was cultivated in normal and nitrogen deficiency F2 medium during 18 to 30 days, in addition, the growth indices, total lipid, and EPA-DHA content were elucidated. The growth indices of the cells decreased during the stress experiments while the total lipid levels increased during prolonged culturing (30 days). The maximum level of C20:5 was calculated as 8.8 (%TFA) in normal condition during 30 days; however, the combination of N- deficiency condition with prolonged culturing led to the increase of the level of C22:6 from 3.5 to 12.63 (%TFA). The concept of N-deficiency along with prolonged culturing of Thalassiosira weissflogii can improve PUFA n-3 content in order to use in shellfish and shrimp industries.

Keywords: DHA, Thalassiosira weissflogii, nitrogen deficiency, EPA, fatty acids, aquafeed

Procedia PDF Downloads 127
5122 Transformation of the Relationship Between Tourism Activities and Residential Environment in the Center of a Historical Suburban City of a Tourism Metropolis: A Case Study of Naka-Uji Area, Uji City, Kyoto Prefecture

Authors: Shuailing Cui, Nakajiam Naoto

Abstract:

The tourism industry has experienced significant growth worldwide since the end of World War II. Tourists are drawn to suburban areas during weekends and holidays to explore historical and cultural heritage sites. Since the 1970s, there has been a resurgence in population growth in metropolitan areas, which has fueled the demand for suburban tourism and facilitated its development. The construction of infrastructure, such as railway lines and arterial roads, has also supported the growth of tourism. Tourists engaging in various activities can have a significant impact on the destinations they visit. Tourism has not only affected the local economy but has also begun to alter the social structures, culture, and lifestyle of the destinations visited. In addition, the growing number of tourists has affected the local commercial structure and daily life of suburban residents. Therefore, there is a need to figure out how tourism activities influence the residential environment of the tourist destination and how this influence changes over time. This study aims to analyze the transformation of the relationship between tourism activities and the residential environment in the Naka-Uji area of Uji City, Kyoto Prefecture. Specifically, it investigates how the growth of the tourism industry has influenced the local residential environment and how this influence has changed over time. The findings of the study indicate that the growth of tourism in the Naka-Uji area has had both positive and negative effects on the local residential environment. On the one hand, the tourism industry has created job opportunities and improved local economic conditions. On the other hand, it has also caused environmental degradation, particularly in terms of increased traffic and the construction of parking lots. The study also found that the development of the tourism industry has influenced the social structures, culture, and lifestyle of residents. For instance, the increase in the number of tourists has led to changes in the commercial structure and daily life of suburban residents. The study highlights the importance of collaboration and shared benefits among stakeholders in tourism development, particularly in terms of preserving the cultural and natural heritage of tourist destinations while promoting sustainable development. Overall, this study contributes to the growing body of research on the impact of tourism on suburban areas. It provides insights into the complex relationships between tourism, the natural environment, the local economy, and residential life and emphasizes the need for sustainable tourism development in suburban areas. The findings of this study have important implications for policymakers, urban planners, and other stakeholders involved in promoting regional revitalization and sustainable tourism development.

Keywords: tourism, residential environment, suburban area, metropolis

Procedia PDF Downloads 63
5121 Transformation of the Relationship between Tourism Activities and Residential Environment in the Center of a Historical Suburban City of a Tourism Metropolis: A Case Study of Naka-Uji Area, Uji City, Kyoto Prefecture

Authors: Shuailing CUI, Nakajima Naoto

Abstract:

The tourism industry has experienced significant growth worldwide since the end of World War II. Tourists are drawn to suburban areas during weekends and holidays to explore historical and cultural heritage sites. Since the 1970s, there has been a resurgence in population growth in metropolitan areas, which has fueled the demand for suburban tourism and facilitated its development. The construction of infrastructure, such as railway lines and arterial roads, has also supported the growth of tourism. Tourists engaging in various activities can have a significant impact on the destinations they visit. Tourism has not only affected the local economy but has also begun to alter the social structures, culture, and lifestyle of the destinations visited. In addition, the growing number of tourists has affected the local commercial structure and daily life of suburban residents. Therefore, there is a need to figure out how tourism activities influence the residential environment of the tourist destination and how this influence changes over time. This study aims to analyze the transformation of the relationship between tourism activities and the residential environment in the Naka-Uji area of Uji City, Kyoto Prefecture. Specifically, it investigates how the growth of the tourism industry has influenced the local residential environment and how this influence has changed over time. The findings of the study indicate that the growth of tourism in the Naka-Uji area has had both positive and negative effects on the local residential environment. On the one hand, the tourism industry has created job opportunities and improved local economic conditions. On the other hand, it has also caused environmental degradation, particularly in terms of increased traffic and the construction of parking lots. The study also found that the development of the tourism industry has influenced the social structures, culture, and lifestyle of residents. For instance, the increase in the number of tourists has led to changes in the commercial structure and daily life of suburban residents. The study highlights the importance of collaboration and shared benefits among stakeholders in tourism development, particularly in terms of preserving the cultural and natural heritage of tourist destinations while promoting sustainable development. Overall, this study contributes to the growing body of research on the impact of tourism on suburban areas. It provides insights into the complex relationships between tourism, the natural environment, the local economy, and residential life, and emphasizes the need for sustainable tourism development in suburban areas. The findings of this study have important implications for policymakers, urban planners, and other stakeholders involved in promoting regional revitalization and sustainable tourism development.

Keywords: tourism, residential environment, suburban area, metropolis

Procedia PDF Downloads 53
5120 Sol-Gel Derived 58S Bioglass Substituted by Li and Mg: A Comparative Evaluation on in vitro Bioactivity, MC3T3 Proliferation and Antibacterial Efficiency

Authors: Amir Khaleghipour, Amirhossein Moghanian, Elhamalsadat Ghaffari

Abstract:

Modified bioactive glass has been considered as a promising multifunctional candidate in bone repair and regeneration due to its attractive properties. The present study mainly aims to evaluate how the individual substitution of lithium (L-BG) and magnesium (M-BG) for calcium can affect the in vitro bioactivity of sol-gel derived substituted 58S bioactive glass (BG); and to present one composition in both of the 60SiO₂–(36-x)CaO–4P₂O₅–(x)Li₂O and 60SiO₂–(36-x)CaO–4P₂O₅–(x)MgO quaternary systems (where x= 0, 5, 10 mol.%) with improved biocompatibility, enhanced alkaline phosphatase (ALP) activity, and the most efficient antibacterial activity against methicillin-resistant Staphylococcus aureus bacteria. To address these aims, and study the effect of CaO/Li₂O and CaO/MgO substitution up to 10 mol % in 58S-BGs, the samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry and scanning electron microscopy after immersion in simulated body fluid up to 14 days. Results indicated that substitution of either CaO/ Li₂O and CaO/ MgO had a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium had a more pronounced effect. The 3-(4, 5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alkaline phosphatase (ALP) assays showed that both substitutions of CaO/ Li₂O and CaO/ MgO up to 5mol % in 58s-BGs led to increased biocompatibility and stimulated proliferation of the pre-osteoblast MC3T3 cells with respect to the control. On the other hand, substitution of either Li or Mg for Ca in the 58s BG composition resulted in improved bactericidal efficiency against MRSA bacteria. Taken together, sample 58s-BG with 5 mol % CaO/Li₂O substitution (BG-5L) was considered as a multifunctional biomaterial in bone repair/regeneration with improved biocompatibility, enhanced ALP activity as well enhanced antibacterial efficiency against methicillin-resistant Staphylococcus aureus (MRSA) bacteria among all of the synthesized L-BGs and M-BGs.

Keywords: alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes

Procedia PDF Downloads 171
5119 Inoculation of Cyanobacteria Improves the Lignin Content of Thymus vulgaris L.

Authors: Nasim Rasuli, Akram Ahmadi, Hossein Riahi, Zeinab Shariatmadari, Majid Ghorbani Nohooji, Pooyan Mehraban Joubani

Abstract:

Cyanobacteria are one of the most promising sources of new biostimulants and have received much attention due to their diverse applications in biotechnology. These microorganisms enhance the growth and productivity of plants by producing plant growth stimulants and fixing atmospheric nitrogen. Thymus vulgaris L., a valuable medicinal plant from the Lamiaceae family, is widely distributed across the globe. essential oil of T. vulgaris is best characterized by the prominence of phenols, making them the key compounds in its composition. Lignin biosynthesis as a natural plant polyphenol plays a crucial role in promoting plant growth, strengthening cell walls, and increasing resistance to pathogens. In this study, the bioelicitor activity of five cyanobacterial suspensions including Anabaena torulosa ISB213, Nostoc calcicola ISB215, Nostoc ellipsosporum ISB217, Trichormus doliolum ISB214, and Oscillatoria sp. ISB2116 on the lignin content of the T. vulgaris L. was investigated. Pot experiments were performed by inoculation of a %2 algal extract to the soil of treated plants one week before planting and then every 20 days. After four months, the lignin content in the leaves of both treated and control plants was evaluated. The results demonstrated that the application of cyanobacteria significantly increased the lignin content in the leaves of treated plants compared to the control. The treatment with Oscillatoria sp. ISB216 and N. ellipsosporum ISB217 resulted in the highest lignin content, with an increase of 93.33% and 86.67%, respectively. These findings highlight the potential of cyanobacteria as bioelicitors, offering a viable alternative for enhancing the production of secondary metabolites in T. vulgaris. Consequently, this could contribute to the economic value of this medicinal plant.

Keywords: cyanobacteria, bioelicitor, thymus vulgaris, lignin

Procedia PDF Downloads 67
5118 Application of Arbuscular Mycorrhizal Fungi as Biologically Based Strategy for Mitigation of Adverse Impact of Salt Stress on Wheat

Authors: Abeer Hashem, Khalid F. Almutairi, Ulkar Ibrahimova, Elsayed Fathi Abdallah

Abstract:

Salinity poses a significant challenge to wheat production, necessitating the exploration of strategies to mitigate its adverse effects. The present investigation aims to study the impact of arbuscular mycorrhizal fungi (AMF) application to improve plant tolerance in terms of growth, carbohydrate, photosynthetic characteristics, and antioxidant enzyme activities under salt stress conditions. So, a randomized complete block design with five replications was employed comprising various treatments of AMF application under salinity stress (200mM), and control samples were used for each treatment. The obtained results demonstrated significantly that AMF used in this study showed beneficial impacts in all parameters used as sensitive monitor for relation of plant-salt microbe interaction. The root colonization by AMF showed the highest plant growth criteria, relative water content, soluble sugar, starch, and total non-structural carbohydrates under both control and salinity stress conditions. Moreover, the application of AMF-treated plants showed the highest soluble protein concentration and activity in leaves and antioxidant enzymes (catalase, superoxide dismutase, guaiacol peroxidase). These findings highlight the potential impact of AMF application as a biologically based strategy to manage the mitigation of salt stress on wheat, which increases the availability of many salt marsh habitats for sustainable agriculture of such strategy crops.

Keywords: arbuscular mycorrhizal fungi, salt stress, plant growth criteria, soluble protein, antioxidant enzymes, wheat plant

Procedia PDF Downloads 22
5117 The Effect of Pre-Cracks on Structural Strength of the Nextel Fibers: A Multiscale Modeling Approach

Authors: Seyed Mohammad Mahdi Zamani, Kamran Behdinan

Abstract:

In this study, a multiscale framework is performed to model the strength of Nextel fibers in presence of an atomistic scale pre-crack at finite temperatures. The bridging cell method (BCM) is the multiscale technique applied in this study, which decomposes the system into the atomistic, bridging and continuum domains; solves the whole system in a finite element framework; and incorporates temperature dependent calculations. Since Nextel is known to be structurally stable and retain 70% of its initial strength up to 1100°C; simulations are conducted at both of the room temperatures, 25°C, and fire temperatures, 1200°C. Two cases are modeled for a pre-crack present in either phases of alumina or mullite of the Nextel structure. The materials’ response is studied with respect to deformation behavior and ultimate tensile strength. Results show different crack growth trends for the two cases, and as the temperature increases, the crack growth resistance and material’s strength decrease.

Keywords: Nextel fibers, multiscale modeling, pre-crack, ultimate tensile strength

Procedia PDF Downloads 400
5116 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)

Authors: Farhad Farahvash, Parya Mobaseri

Abstract:

Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.

Keywords: maize, competition, weed, biomass

Procedia PDF Downloads 349
5115 Silicon Nanoparticles and Irradiated Chitosan: Sustainable Elicitors for PS II Activity and Antioxidant Mediated Plant Immunity

Authors: Mohammad Mukarram, M. Masroor A. Khan, Daniel Kurjak, Marek Fabrika

Abstract:

Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO), which has great economic value due to its numerous medicinal, cosmetic, and culinary applications. The present study had the goal to evaluate whether the combined application of silicon nanoparticles (SiNPs) 150 mg L⁻¹ and irradiated chitosan (ICH) 120 mg L⁻¹ can upgrade lemongrass crop and render enhanced growth and productivity. The analyses of growth and photosynthetic parameters, leaf-nitrogen, and reactive oxygen species metabolism, as well as the content of total essential oil, indicated that combined foliar sprays of SiNPs and ICH can significantly (p≤0.05) trigger a general activation of lemongrass metabolism. Overall, the data indicate that concomitant SiNPs and ICH application elicit lemongrass physiology and defence system, and opens new possibilities for their biotechnological application on other related plant species with agronomic potential.

Keywords: photosynthesis, Cymbopogon, antioxidant metabolism, essential oil, ROS, nanoparticles, polysaccharides

Procedia PDF Downloads 66
5114 Direct Growth Rates of the Information Model for Traffic at the Service of Sustainable Development of Tourism in Dubrovacko-Neretvanska County 2014-2020

Authors: Vinko Viducic, Jelena Žanic Mikulicic, Maja Racic, Kristina Sladojevic

Abstract:

The research presented in this paper has been focused on analyzing the impact of traffic on the sustainable development of tourism in Croatia's Dubrovacko-Neretvanska County by the year 2020, based on the figures and trends reported in 2014 and using the relevant variables that characterise the synergy of traffic and tourism in, speaking from the geographic viewpoint, the most problematic county in the Republic of Croatia. The basic hypothesis has been confirmed through scientifically obtained research results, through the quantification of the model's variables and the direct growth rates of the designed model. On the basis of scientific insights into the sustainable development of traffic and tourism in Dubrovacko-Neretvanska County, it is possible to propose a new information model for traffic at the service of the sustainable development of tourism in the County for the period 2014-2020.

Keywords: environment protection, hotel industry, private sector, quantification

Procedia PDF Downloads 264
5113 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-Fed Sesame (Sesamum Indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray, Ethiopia

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu

Abstract:

Sesame is an important oilseed crop in Ethiopia, which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool, which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validate the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates, 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99, and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99 and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, normalized water productivity, nitrogen fertilizer, canopy cover, sesame

Procedia PDF Downloads 54