Search results for: metastatic breast cancer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2307

Search results for: metastatic breast cancer

2217 Gene Expression Profile Reveals Breast Cancer Proliferation and Metastasis

Authors: Nandhana Vivek, Bhaskar Gogoi, Ayyavu Mahesh

Abstract:

Breast cancer metastasis plays a key role in cancer progression and fatality. The present study examines the potential causes of metastasis in breast cancer by investigating the novel interactions between genes and their pathways. The gene expression profile of GSE99394, GSE1246464, and GSE103865 was downloaded from the GEO data repository to analyze the differentially expressed genes (DEGs). Protein-protein interactions, target factor interactions, pathways and gene relationships, and functional enrichment networks were investigated. The proliferation pathway was shown to be highly expressed in breast cancer progression and metastasis in all three datasets. Gene Ontology analysis revealed 11 DEGs as gene targets to control breast cancer metastasis: LYN, DLGAP5, CXCR4, CDC6, NANOG, IFI30, TXP2, AGTR1, MKI67, and FTH1. Upon studying the function, genomic and proteomic data, and pathway involvement of the target genes, DLGAP5 proved to be a promising candidate due to it being highly differentially expressed in all datasets. The study takes a unique perspective on the avenues through which DLGAP5 promotes metastasis. The current investigation helps pave the way in understanding the role DLGAP5 plays in metastasis, which leads to an increased incidence of death among breast cancer patients.

Keywords: genomics, metastasis, microarray, cancer

Procedia PDF Downloads 96
2216 Mapping the Pain Trajectory of Breast Cancer Survivors: Results from a Retrospective Chart Review

Authors: Wilfred Elliam

Abstract:

Background: Pain is a prevalent and debilitating symptom among breast cancer patients, impacting their quality of life and overall well-being. The experience of pain in this population is multifaceted, influenced by a combination of disease-related factors, treatment side effects, and individual characteristics. Despite advancements in cancer treatment and pain management, many breast cancer patients continue to suffer from chronic pain, which can persist long after the completion of treatment. Understanding the progression of pain in breast cancer patients over time and identifying its correlates is crucial for effective pain management and supportive care strategies. The purpose of this research is to understand the patterns and progression of pain experienced by breast cancer survivors over time. Methods: Data were collected from breast cancer patients at Hartford Hospital at four time points: baseline, 3, 6 and 12 weeks. Key variables measured include pain, body mass index (BMI), fatigue, musculoskeletal pain, sleep disturbance, and demographic variables (age, employment status, cancer stage, and ethnicity). Binomial generalized linear mixed models were used to examine changes in pain and symptoms over time. Results: A total of 100 breast cancer patients aged  18 years old were included in the analysis. We found that the effect of time on pain (p = 0.024), musculoskeletal pain (p= <0.001), fatigue (p= <0.001), and sleep disturbance (p-value = 0.013) were statistically significant with pain progression in breast cancer patients. Patients using aromatase inhibitors have worse fatigue (<0.05) and musculoskeletal pain (<0.001) compared to patients with Tamoxifen. Patients who are obese (<0.001) and overweight (<0.001) are more likely to report pain compared to patients with normal weight. Conclusion: This study revealed the complex interplay between various factors such as time, pain, sleep disturbance in breast cancer patient. Specifically, pain, musculoskeletal pain, sleep disturbance, fatigue exhibited significant changes across the measured time points, indicating a dynamic pain progression in these patients. The findings provide a foundation for future research and targeted interventions aimed at improving pain in breast cancer patient outcomes.

Keywords: breast cancer, chronic pain, pain management, quality of life

Procedia PDF Downloads 29
2215 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 75
2214 The Role Of Diallyl Trisulfide As A Suppressor In Activated-Platelets Induced Human Breast Cancer MDA-MB-435s Cells Hematogenous Metastasis

Authors: Yuping Liu, Li Tao, Yin Lu

Abstract:

Accumulating evidence has been shown that diallyl trisulfide (DATS) from garlic may reduce the risk of developing several types of cancer. In view of the dynamic crosstalk interplayed by tumor cells and platelets in hematogenous metastasis, we demonstrate the effectiveness of DATS on the metastatic behaviors of MDA-MB-435s human breast cancer cell line co-incubated with activated platelets. Indeed, our data identified that DATS significantly blocked platelets fouction induced by PAF, followed by the decreased production of TXB2. DATS was found to dose-dependently suppressed MDA-MB-435s cell migration and invasion in presence of activated platelets by PAF in vitro. Furthermore, the expression, secretion and enzymatic activity of matrix metalloproteinase (MMP)-2/9, as well as the luciferase activity of upstream regulator NF-κB in MDA-MB-435s, were obviously diminished by DATS. In parallel, DATS blocked upstream NF-κB activation signaling complexes composed of extracellular signal-related kinase (ERK) as assessed by measuring the levels of the phosphorylated forms.

Keywords: DATS, ERK, metastasis, MMPs, NF-κB, platelet

Procedia PDF Downloads 386
2213 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 290
2212 lncRNA Gene Expression Profiling Analysis by TCGA RNA-Seq Data of Breast Cancer

Authors: Xiaoping Su, Gabriel G. Malouf

Abstract:

Introduction: Breast cancer is a heterogeneous disease that can be classified in 4 subgroups using transcriptional profiling. The role of lncRNA expression in human breast cancer biology, prognosis, and molecular classification remains unknown. Methods and results: Using an integrative comprehensive analysis of lncRNA, mRNA and DNA methylation in 900 breast cancer patients from The Cancer Genome Atlas (TCGA) project, we unraveled the molecular portraits of 1,700 expressed lncRNA. Some of those lncRNAs (i.e, HOTAIR) are previously reported and others are novel (i.e, HOTAIRM1, MAPT-AS1). The lncRNA classification correlated well with the PAM50 classification for basal-like, Her-2 enriched and luminal B subgroups, in contrast to the luminal A subgroup which behaved differently. Importantly, estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Gene set enrichment analysis for cis- and trans-acting lncRNA showed enrichment for breast cancer signatures driven by breast cancer master regulators. Almost two third of those lncRNA were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that lncRNA expression may result in increased activity of neighboring genes. Differential analysis of gene expression profiling data showed that lncRNA HOTAIRM1 was significantly down-regulated in basal-like subtype, and DNA methylation profiling data showed that lncRNA HOTAIRM1 was highly methylated in basal-like subtype. Thus, our integrative analysis of gene expression and DNA methylation strongly suggested that lncRNA HOTAIRM1 should be a tumor suppressor in basal-like subtype. Conclusion and significance: Our study depicts the first lncRNA molecular portrait of breast cancer and shows that lncRNA HOTAIRM1 might be a novel tumor suppressor.

Keywords: lncRNA profiling, breast cancer, HOTAIRM1, tumor suppressor

Procedia PDF Downloads 104
2211 Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells

Authors: Hirowati Ali, Aisyah Ellyanti, Dewi Rusnita, Septelia Inawati Wanandi

Abstract:

Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes.

Keywords: breast cancer cells, inhibition of cancer cells, mesenchymal stem cells, SCUBE2

Procedia PDF Downloads 339
2210 Expression of DNMT Enzymes-Regulated miRNAs Involving in Epigenetic Event of Tumor and Margin Tissues in Patients with Breast Cancer

Authors: Fatemeh Zeinali Sehrig

Abstract:

Background: miRNAs play an important role in the post-transcriptional regulation of genes, including genes involved in DNA methylation (DNMTs), and are also important regulators of oncogenic pathways. The study of microRNAs and DNMTs in breast cancer allows the development of targeted treatments and early detection of this cancer. Methods and Materials: Clinical Patients and Samples: Institutional guidelines, including ethical approval and informed consent, were followed by the Ethics Committee (Ethics code: IR.IAU.TABRIZ.REC.1401.063) of Tabriz Azad University, Tabriz, Iran. In this study, tissues of 100 patients with breast cancer and tissues of 100 healthy women were collected from Noor Nejat Hospital in Tabriz. The basic characteristics of the patients with breast cancer included: 1)Tumor grade(Grade 3 = 5%, Grade 2 = 87.5%, Grade 1 = 7.5%), 2)Lymph node(Yes = 87.5%, No = 12.5%), 3)Family cancer history(Yes = 47.5%, No = 41.3%, Unknown = 11.2%), 4) Abortion history(Yes = 36.2%).In silico methods (data gathering, process, and build networks): Gene Expression Omnibus (GEO), a high-throughput genomic database, was queried for miRNAs expression profiles in breast cancer. For Experimental protocol Tissue Processing, Total RNA isolation, complementary DNA(cDNA) synthesis, and quantitative real time PCR (QRT-PCR) analysis were performed. Results: In the present study, we found significant (p.value<0.05) changes in the expression level of miRNAs and DNMTs in patients with breast cancer. In bioinformatics studies, the GEO microarray data set, similar to qPCR results, showed a decreased expression of miRNAs and increased expression of DNMTs in breast cancer. Conclusion: According to the results of the present study, which showed a decrease in the expression of miRNAs and DNMTs in breast cancer, it can be said that these genes can be used as important diagnostic and therapeutic biomarkers in breast cancer.

Keywords: gene expression omnibus, microarray dataset, breast cancer, miRNA, DNMT (DNA methyltransferases)

Procedia PDF Downloads 33
2209 Identification of New Familial Breast Cancer Susceptibility Genes: Are We There Yet?

Authors: Ian Campbell, Gillian Mitchell, Paul James, Na Li, Ella Thompson

Abstract:

The genetic cause of the majority of multiple-case breast cancer families remains unresolved. Next generation sequencing has emerged as an efficient strategy for identifying predisposing mutations in individuals with inherited cancer. We are conducting whole exome sequence analysis of germ line DNA from multiple affected relatives from breast cancer families, with the aim of identifying rare protein truncating and non-synonymous variants that are likely to include novel cancer predisposing mutations. Data from more than 200 exomes show that on average each individual carries 30-50 protein truncating mutations and 300-400 rare non-synonymous variants. Heterogeneity among our exome data strongly suggest that numerous moderate penetrance genes remain to be discovered, with each gene individually accounting for only a small fraction of families (~0.5%). This scenario marks validation of candidate breast cancer predisposing genes in large case-control studies as the rate-limiting step in resolving the missing heritability of breast cancer. The aim of this study is to screen genes that are recurrently mutated among our exome data in a larger cohort of cases and controls to assess the prevalence of inactivating mutations that may be associated with breast cancer risk. We are using the Agilent HaloPlex Target Enrichment System to screen the coding regions of 168 genes in 1,000 BRCA1/2 mutation-negative familial breast cancer cases and 1,000 cancer-naive controls. To date, our interim analysis has identified 21 genes which carry an excess of truncating mutations in multiple breast cancer families versus controls. Established breast cancer susceptibility gene PALB2 is the most frequently mutated gene (13/998 cases versus 0/1009 controls), but other interesting candidates include NPSR1, GSN, POLD2, and TOX3. These and other genes are being validated in a second cohort of 1,000 cases and controls. Our experience demonstrates that beyond PALB2, the prevalence of mutations in the remaining breast cancer predisposition genes is likely to be very low making definitive validation exceptionally challenging.

Keywords: predisposition, familial, exome sequencing, breast cancer

Procedia PDF Downloads 491
2208 Quality of Life of Women with Breast Cancer and Its Correlation with Depression and Anxiety

Authors: Maria Malliarou, Efrossini Lyraraki, Pavlos Sarafis, Theodosios Paralikas, Styliani Kotrotsiou, Evangelia Kotrotsiou, Mairy Gouva

Abstract:

Women with breast cancer have to adapt to physical malformations, side effects of chemotherapy, emotional insecurity, and changes in social roles. Inability to recognize the co-morbidity of psychiatric conditions can have an aggravating effect on patient compliance in therapeutic interventions, resulting in treatment delays and an impact on overall survival. The purpose of this study was to identify the quality of life of breast cancer patients undergoing external radiation therapy and to correlate it with depression and anxiety. Patients were asked to respond to an anonymous questionnaire with general demographic and clinical questions, followed by the EORTCQLQ-C30 questionnaire for assessing the quality of life of patients with breast cancer. Hospital Anxiety and Depression Scale (HADS) as well as the Depression, Anxiety and Stress Scale (DASS-21) was also administered. The statistical analysis of the data was done in IBM SPSS. Results indicated that the incidence of anxiety and depression in breast cancer patients is high both in HADS (37.5 % with mild to moderate depression and 62.5 % with significant to severe depression) and DASS - 21 (39.2 % mild to moderate depression and 60.8 % significant to severe) scales. The correlation of anxiety and depression with life quality was negative for HADS (r = -, 810, p = .000) as well as for DASS-21 (r = -, 682, p = .000). The psychological impact of breast cancer on patients is important. Its correlation with the quality of life may lead to better tolerance to treatment and better effectiveness of the therapeutic approach.

Keywords: anxiety, breast cancer, depression, quality of life

Procedia PDF Downloads 266
2207 An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging

Authors: Muhammad Hassan Khalil, Xu Jiadong

Abstract:

Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results.

Keywords: breast cancer detection, microwave imaging, tomography, tumor

Procedia PDF Downloads 409
2206 CAM Use and Its Association with Quality of Life in a Sample of Lebanese Breast Cancer Patients: A Cross Sectional Study

Authors: Farah Naja, Romy Abi Fadel, Yasmin Aridi, Aya Zarif, Dania Hariri, Mohammad Alameddine, Anas Mugharbel, Maya Khalil, Zeina Nahleh, Arafat Tfayli

Abstract:

The objective of this study is to assess the prevalence and determinants of CAM use among breast cancer patients in Beirut, Lebanon. A secondary objective is to evaluate the association between CAM use and quality of life (QOL). A cross-sectional survey was conducted on 180 breast cancer patients recruited from two major referral centers in Beirut. In a face to face interview, participants completed a questionnaire comprised of three sections: socio-demographic and lifestyle characteristics, breast cancer condition, and CAM use. The assessment of QOL was carried using the FACT-B Arabic version. Prevalence of CAM use since diagnosis was 40%. CAM use was negatively associated with age, treatment at a philanthropic hospital and positively associated with having an advanced stage of disease. The most commonly used CAM was ‘Special food’ followed by ‘Herbal teas’. Only 4% of CAM users cited health care professionals as influencing their choice of CAM. One in four patients disclosed CAM use to their treating physician. There was no significant association between CAM use and QOL. The use of CAM therapies among breast cancer patients is prevalent in Lebanon. Efforts should be dedicated at educating physicians to discuss CAM use with their patients and advising patients to disclose of their use with their physicians.

Keywords: breast cancer , complementary medicine, alternative medicine, lebanon , quality of life

Procedia PDF Downloads 512
2205 Correlation of Leptin with Clinico-Pathological Features of Breast Cancer

Authors: Saad Al-Shibli, Nasser Amjad, Muna Al Kubaisi, Norra Harun, Shaikh Mizan

Abstract:

Leptin is a multifunctional hormone produced mainly by adipocyte. Leptin and its receptor have long been found associated with breast cancer. The main aim of this study is to investigate the correlation between Leptin/Leptin receptor and the clinicopathological features of breast cancer. Blood samples for ELISA, tissue samples from tumors and adjacent breast tissue were taken from 51 women with breast cancer with a control group of 40 women with a negative mammogram. Leptin and Leptin receptor in the tissues were estimated by immunohistochemistry (IHC). They were localized at the subcellular level by immunocytochemistry using transmission electron microscopy (TEM). Our results showed significant difference in serum leptin level between control and the patient group, but no difference between pre and post-operative serum leptin levels in the patient group. By IHC, we found that the majority of the breast cancer cells studied, stained positively for leptin and leptin receptors with co-expression of leptin and its receptors. No significant correlation was found between leptin/leptin receptors expression with the race, menopausal status, lymph node metastasis, estrogen receptor expression, progesterone receptor expression, HER2 expression and tumor size. Majority of the patients with distant metastasis were associated with high leptin and leptin receptor expression. TEM views both Leptin and Leptin receptor were found highly concentrated within and around the nucleus of the cancer breast cells, indicating nucleus is their principal seat of actions while the adjacent breast epithelial cells showed that leptin gold particles are scattered all over the cell with much less than that of the cancerous cells. However, presence of high concentration of leptin does not necessarily prove its over-expression, because it could be internalized from outside by leptin receptor in the cells. In contrast, leptin receptor is definitely over-expressed in the ductal breast cancer cells. We conclude that reducing leptin levels, blocking its downstream tissue specific signal transduction, and/or blocking the upstream leptin receptor pathway might help in prevention and therapy of breast cancer.

Keywords: breast cancer, expression, leptin, leptin receptors

Procedia PDF Downloads 136
2204 Investigation of FoxM1 Gene Expression in Breast Cancer and Its Relationship with miR-216b-5p Expression Level

Authors: Neda Menbari, Ramin Mehdiabadi

Abstract:

Background: breast cancer remains a critical global health issue, constituting a leading cause of cancer-related mortality in women. MicroRNAs (miRs) are natural RNA molecules that play an important role in cellular processes and regulate post-transcriptional gene expression. MiR-216b-5p is a miR that acts as a tumor suppressor. The expression levels of FoxM1 and miR-216b-5p in malignant and control cells have been evaluated by quantitative polymerase chain reaction (qPCR) technique and flow cytometry. Results: the results of this study revealed a significant downregulation of miR-216b-5p in cancerous cells compared to the control MCF-10A cells (P=0.0004). Interestingly, the expression of miR-216b-5p exhibited an inverse relationship with key clinical indicators such as tumor size, grade, and lymph node invasion. Conclusion: The study's findings showed the prognostic value of miR-216b-5p levels in breast cancer, and its reduced expression correlates with unfavorable tumor characteristics. This research recommends performing more studies on the role of FoxM1 and miR-216b-5p in breast cancer pathology which potentially paving the way for targeted therapeutic interventions.

Keywords: breast cancer, gene expression, FOXM1, microRNA

Procedia PDF Downloads 49
2203 LTF Expression Profiling Which is Essential for Cancer Cell Proliferation and Metastasis, Correlating with Clinical Features, as Well as Early Stages of Breast Cancer

Authors: Azar Heidarizadi, Mahdieh Salimi, Hossein Mozdarani

Abstract:

Introduction: As a complex disease, breast cancer results from several genetic and epigenetic changes. Lactoferrin, a member of the transferrin family, is reported to have a number of biological functions, including DNA synthesis, immune responses, iron transport, etc., any of which could play a role in tumor progression. The aim of this study was to investigate the bioinformatics data and experimental assay to find the pattern of promoter methylation and gene expression of LTF in breast cancer in order to study its potential role in cancer management. Material and Methods: In order to evaluate the methylation status of the LTF promoter, we studied the MS-PCR and Real-Time PCR on samples from patients with breast cancer and normal cases. 67 patient samples were conducted for this study, including tumoral, plasma, and normal tissue adjacent samples, as well as 30 plasma from normal cases and 10 tissue breast reduction cases. Subsequently, bioinformatics analyses such as cBioPortal databases, string, and genomatix were conducted to disclose the prognostic value of LTF in breast cancer progression. Results: The analysis of LTF expression showed an inverse relationship between the expression level of LTF and the stages of tissues of breast cancer patients (p<0.01). In fact, stages 1 and 2 had a high expression in LTF, while, in stages 3 and 4, a significant reduction was observable (p < 0.0001). LTF expression frequently alters with a decrease in the expression in ER⁺, PR⁺, and HER2⁺ patients (P < 0.01) and an increase in the expression in the TNBC, LN¯, ER¯, and PR- patients (P < 0.001). Also, LTF expression is significantly associated with metastasis and lymph node involvement factors (P < 0.0001). The sensitivity and specificity of LTF were detected, respectively. A negative correlation was detected between the results of level expression and methylation of the LTF promoter. Conclusions: The altered expression of LTF observed in breast cancer patients could be considered as a promotion in cell proliferation and metastasis even in the early stages of cancer.

Keywords: LTF, expression, methylation, breast cancer

Procedia PDF Downloads 70
2202 Prevalence and Determinants of the Use of CAM and Its Association with Quality of Life in a Sample of Lebanese Breast Cancer Patients: A Cross Sectional Study

Authors: Farah Naja, Romy Abi Fadel, Yasmin Aridi, Aya Zarif, Dania Hariri, Mohammad Alameddine, Anas Mugharbel, Maya Khalil, Zeina Nahleh, Arafat Tfayli

Abstract:

The objective of this study is to assess the prevalence and determinants of CAM use among breast cancer patients in Beirut, Lebanon. A secondary objective is to evaluate the association between CAM use and quality of life (QOL). A cross-sectional survey was conducted on 180 breast cancer patients recruited from two major referral centers in Beirut. In a face to face interview, participants completed a questionnaire comprised of three sections: socio-demographic and lifestyle characteristics, breast cancer condition, and CAM use. The assessment of QOL was carried using the FACT-B Arabic version. Prevalence of CAM use since diagnosis was 40%. CAM use was negatively associated with age, treatment at a philanthropic hospital and positively associated with having an advanced stage of disease. The most commonly used CAM was ‘Special food’ followed by ‘Herbal teas’. Only 4% of CAM users cited health care professionals as influencing their choice of CAM. One in four patients disclosed CAM use to their treating physician. There was no significant association between CAM use and QOL. The use of CAM therapies among breast cancer patients is prevalent in Lebanon. Efforts should be dedicated at educating physicians to discuss CAM use with their patients and advising patients to disclose of their use with their physicians.

Keywords: breast cancer, complementary and aLternative medicine, Lebanon, quality of life

Procedia PDF Downloads 603
2201 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis

Authors: Mahdi Bazarganigilani

Abstract:

Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.

Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning

Procedia PDF Downloads 209
2200 Utility of CK7, CK20 and CDX-2 as a Potential Panel in Differentiating Primary Ovarian Surface Epithelial Tumors from Metastatic Adenocarcinoma to the Ovary

Authors: Ghada Esheba, Ghadeer Aldoobi, Salwa Almalk, Abrar Alshareef, Eman Al-khairi, Eman Yaseen

Abstract:

Background: In Saudi Arabia, ovarian cancer ranked seventh among female population and is the most common female genital tract malignancy after endometrial cancer. A slight increase in the incidence of ovarian cancer was observed from 2001–2008. Makkah, Riyadh, and the eastern region of Saudi Arabia had the highest incidence rate ratio for the number of ovarian cancer cases (1). Differentiating metastatic adenocarcinomas from primary ovarian carcinomas, especially those of endometrioid and mucinous type is clinically significant and a challenge for clinicians and pathologists, yet the distinction has important therapeutic and prognostic implications. Aim: To clarify the most important histopathological criteria to differentiate between primary ovarian surface epithelial tumors especially mucinous and endometrioid subtypes, and metastatic adenocarcinoma and to evaluate the value of a panel of antibodies consisting of CK7, CK20, and CDX-2 in the distinction between primary ovarian surface epithelial tumors and metastatic adenocarcinoma. Material and methods: This study was carried out on 26 cases of primary ovarian surface epithelial neoplasms and 14 cases of metastatic ovarian adenocarcinoma. All cases were studied immunohistochemically using CK7, CK20, and CDX-2. Results: All cases of primary ovarian adenocarcinoma were positive for CK7. 25% and 58% of mucinous borderline mucinous tumor and mucinous carcinoma respectively were positive for CK20. Only 42% of mucinous carcinoma were positive for CDX-2. All cases of endometrioid carcinomas were negative for both CK20 and CDX-2. All cases of metastatic adenocarcinoma from the colon were negative for CK7 and positive for CK20 and CDX-2. Conclusions: CK7 is an important positive marker for primary ovarian tumors, while CK20 and CDX-2 are useful markers for colorectal carcinoma metastatic to the ovary. Caution should be taken as primary ovarian mucinous tumors may stain positive for CK20, CDX-2, or both, however, they usually exhibit a focal pattern of reactivity.

Keywords: adenoma, endometrioid, malignancy, ovarian

Procedia PDF Downloads 231
2199 Breast Cancer Detection Using Machine Learning Algorithms

Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra

Abstract:

In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.

Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer

Procedia PDF Downloads 51
2198 The Effect of Progressive Muscle Relaxation and Sleep Hygiene Education to Change Sleep Quality Index Scores of Patient with Breast Cancer

Authors: Ika Wulansari, Yati Afiyanti, Indang Trihandini

Abstract:

Sleeping disorder experienced by patients with breast cancer can affect the physical, mental, health, and well-being. This study examines the effect of progressive muscle relaxation training and sleep hygiene education to change sleep quality scores of the patient with breast cancer. The study design using quasi-experiment with pre-post test within the control group, involving 62 breast cancer patients using consecutive sampling method in Jakarta. Statistical test results with independent t-test showed a significant difference in score of sleep quality between in intervention group and the control group (6,66±3,815; 9,30±3,334, p-value = 0,005). Progressive muscle relaxation exercise and sleep hygiene education proven to be affective to change the patients sleeping quality, so that it can be an alternative therapeutic option to overcome sleeping disorders.

Keywords: sleeping disorders, breast cancer, progressive muscle relaxation, sleep hygiene education

Procedia PDF Downloads 313
2197 Development and Evaluation of a Psychological Adjustment and Adaptation Status Scale for Breast Cancer Survivors

Authors: Jing Chen, Jun-E Liu, Peng Yue

Abstract:

Objective: The objective of this study was to develop a psychological adjustment and adaptation status scale for breast cancer survivors, and to examine the reliability and validity of the scale. Method: 37 breast cancer survivors were recruited in qualitative research; a five-subject theoretical framework and an item pool of 150 items of the scale were derived from the interview data. In order to evaluate and select items and reach a preliminary validity and reliability for the original scale, the suggestions of study group members, experts and breast cancer survivors were taken, and statistical methods were used step by step in a sample of 457 breast cancer survivors. Results: An original 24-item scale was developed. The five dimensions “domestic affections”, “interpersonal relationship”, “attitude of life”, “health awareness”, “self-control/self-efficacy” explained 58.053% of the total variance. The content validity was assessed by experts, the CVI was 0.92. The construct validity was examined in a sample of 264 breast cancer survivors. The fitting indexes of confirmatory factor analysis (CFA) showed good fitting of the five dimensions model. The criterion-related validity of the total scale with PTGI was satisfactory (r=0.564, p<0.001). The internal consistency reliability and test-retest reliability were tested. Cronbach’s alpha value (0.911) showed a good internal consistency reliability, and the intraclass correlation coefficient (ICC=0.925, p<0.001) showed a satisfactory test-retest reliability. Conclusions: The scale was brief and easy to understand, was suitable for breast cancer patients whose physical strength and energy were limited.

Keywords: breast cancer survivors, rehabilitation, psychological adaption and adjustment, development of scale

Procedia PDF Downloads 512
2196 The Effects of Terrein: A Secondary Metabolite from Aspergillus terreus as Anticancer and Antimetastatic Agent on Lung Cancer Cells

Authors: Paiwan Buachan, Maneekarn Namsa-Aid, Suchada Jongrungruangchok, Foengchat Jarintanan, Wanlaya Uthaisang-Tanechpongtamb

Abstract:

Lung cancer or pulmonary carcinoma is the uncontrolled growth of abnormal cells in one or both of the lungs. These abnormal cells can spread to other organs of the body through lymphatic system or bloodstream which is called metastatic stage that leading cause of cancer death. Terrein (C₈H₁₀O₃; MW= 154.06 kDa) is a secondary bioactive fungal metabolite, which was isolated from the Aspergillus terreus. In this study, we investigated the effects of terrein on the inhibition of human lung cancer cell proliferation and metastasis. The A549 human non-small cell lung cancer cell line was used as a model. Terrein significantly inhibited lung cancer cell proliferation measuring by a colorimetric MTT assay (IC₅₀ 0.32 mM) and significantly inhibited metastatic processes including migration, invasion, and adhesion that determined by wound healing assay, transwell assay, and adhesion assay, respectively. These findings indicate that terrein could be a potential therapeutic agent for lung cancer.

Keywords: terrein, lung cancer, anticancer, antimetastatic

Procedia PDF Downloads 169
2195 Effects of Aerobic Training on MicroRNA Let-7a Expression and Levels of Tumor Tissue IL-6 in Mice With Breast Cancer

Authors: Leila Anoosheh

Abstract:

Aim: The aim of this study was to assess The effects of aerobic training on microRNA let-7a expression and levels of tumor tissue IL-6 in mice with breast cancer. Method: Twenty BALB/c c mice (4-5 weeks,17 gr mass) were cancerous by injection of estrogen-dependent receptor breast cancer cells MC4-L2 and divided into two groups: tumor-training(TT) and tumor-control(TC) group. Then TT group completed aerobic training for 6 weeks, 5 days per week (14-18 m/min). After tumor emersion, tumor width and length were measured by digital caliper every week. 48 hours after the last exercise subjects were killed. Tissue sampling were collected and stored in -70ᵒ. Tumor tissue was homogenized and let-7a expression and IL-6 levels were accounted with Real time-PCR and ELISA Kit respectively. Statistical analysis of let-7a was conducted by the REST software. Repeated measures and independent tests were used to assess tumor size and IL-6, respectively. Results: Tumor size and IL-6 levels were significantly decreased in TT group compare with TC group (p<0.05). microRNA let-7a was increased significantly in TT against control group respectively (p=0/000). Conclusion: Reduction in tumor size, followed by aerobic exercise can be attributed to the loss of inflammatory factors such as IL-6; It seems that regarding to up regulation effects of aerobic exercise training on let-7a and down regulation effects of that on IL-6 in mice with breast cancer, This type of training can be used as adjuvant therapy in conjunction with other therapies for breast cancer.

Keywords: breast cancer, aerobic training, microRNA let-7a, IL-6

Procedia PDF Downloads 429
2194 Axillary Evaluation with Targeted Axillary Dissection Using Ultrasound-Visible Clips after Neoadjuvant Chemotherapy for Patients with Node-Positive Breast Cancer

Authors: Naomi Sakamoto, Eisuke Fukuma, Mika Nashimoto, Yoshitomo Koshida

Abstract:

Background: Selective localization of the metastatic lymph node with clip and removal of clipped nodes with sentinel lymph node (SLN), known as targeted axillary dissection (TAD), reduced false-negative rates (FNR) of SLN biopsy (SLNB) after neoadjuvant chemotherapy (NAC). For the patients who achieved nodal pathologic complete response (pCR), accurate staging of axilla by TAD lead to omit axillary lymph node dissection (ALND), decreasing postoperative arm morbidity without a negative effect on overall survival. This study aimed to investigate the ultrasound (US) identification rate and success removal rate of two kinds of ultrasound-visible clips placed in metastatic lymph nodes during TAD procedure. Methods: This prospective study was conducted using patients with clinically T1-3, N1, 2, M0 breast cancer undergoing NAC followed by surgery. A US-visible clip was placed in the suspicious lymph node under US guidance before neoadjuvant chemotherapy. Before surgery, US examination was performed to evaluate the detection rate of clipped node. During the surgery, the clipped node was removed using several localization techniques, including hook-wire localization, dye-injection, or fluorescence technique, followed by a dual-technique SLNB and resection of palpable nodes if present. For the fluorescence technique, after injection of 0.1-0.2 mL of indocyanine green dye (ICG) into the clipped node, ICG fluorescent imaging was performed using the Photodynamic Eye infrared camera (Hamamatsu Photonics k. k., Shizuoka, Japan). For the dye injection method, 0.1-0.2 mL of pyoktanin blue dye was injected into the clipped node. Results: A total of 29 patients were enrolled. Hydromark™ breast biopsy site markers (Hydromark, T3 shape; Devicor Medical Japan, Tokyo, Japan) was used in 15patients, whereas a UltraCor™ Twirl™ breast marker (Twirl; C.R. Bard, Inc, NJ, USA) was placed in 14 patients. US identified the clipped node marked with the UltraCore Twirl in 100% (14/14) and with the Hydromark in 93.3% (14/15, p = ns). Success removal of clipped node marked with the UltraCore Twirl was achieved in 100% (14/14), whereas the node marked with the Hydromark was removed in 80% (12/15) (p = ns). Conclusions: The ultrasound identification rate differed between the two types of ultrasound-visible clips, which also affected the success removal rate of clipped nodes. Labelling the positive node with a US-highly-visible clip allowed successful TAD.

Keywords: breast cancer, neoadjuvant chemotherapy, targeted axillary dissection, breast tissue marker, clip

Procedia PDF Downloads 66
2193 Convolutional Neural Networks versus Radiomic Analysis for Classification of Breast Mammogram

Authors: Mehwish Asghar

Abstract:

Breast Cancer (BC) is a common type of cancer among women. Its screening is usually performed using different imaging modalities such as magnetic resonance imaging, mammogram, X-ray, CT, etc. Among these modalities’ mammogram is considered a powerful tool for diagnosis and screening of breast cancer. Sophisticated machine learning approaches have shown promising results in complementing human diagnosis. Generally, machine learning methods can be divided into two major classes: one is Radiomics analysis (RA), where image features are extracted manually; and the other one is the concept of convolutional neural networks (CNN), in which the computer learns to recognize image features on its own. This research aims to improve the incidence of early detection, thus reducing the mortality rate caused by breast cancer through the latest advancements in computer science, in general, and machine learning, in particular. It has also been aimed to ease the burden of doctors by improving and automating the process of breast cancer detection. This research is related to a relative analysis of different techniques for the implementation of different models for detecting and classifying breast cancer. The main goal of this research is to provide a detailed view of results and performances between different techniques. The purpose of this paper is to explore the potential of a convolutional neural network (CNN) w.r.t feature extractor and as a classifier. Also, in this research, it has been aimed to add the module of Radiomics for comparison of its results with deep learning techniques.

Keywords: breast cancer (BC), machine learning (ML), convolutional neural network (CNN), radionics, magnetic resonance imaging, artificial intelligence

Procedia PDF Downloads 224
2192 Using Econometric Methods to Explore Obesity Stigma and Avoidance of Breast and Cervical Cancer Screening

Authors: Stephanie A. Schauder, Gosia Sylwestrzak

Abstract:

Overweight and obese women report avoiding preventive care due to fear of weight-related bias from medical professionals. Gynecological exams, due to their sensitive and personally invasive nature, are especially susceptible to avoidance. This research investigates the association between body mass index (BMI) and screening rates for breast and cervical cancer using claims data from 1.3 million members of a large health insurance company. Because obesity is associated with increased cancer risk, screenings for these cancers should increase as BMI increases. However, this paper finds that the distribution of cancer screening rates by BMI take an inverted U-shape with underweight and obese members having the lowest screening rates. For cervical cancer screening, those in the target population with a BMI of 23 have the highest screening rate at 68%, while Obese Class III members have a screening rate of 50%. Those in the underweight category have a screening rate of 58%. This relationship persists even after controlling for health and demographic covariates in regression analysis. Interestingly, there is no association between BMI and BRCA (BReast CAncer gene) genetic testing. This is consistent with the narrative that stigma causes avoidance because genetic testing does not involve any assessment of a person’s body. More work must be done to determine how to increase cancer screening rates in those who may feel stigmatized due to their weight.

Keywords: cancer screening, cervical cancer, breast cancer, weight stigma, avoidance of care

Procedia PDF Downloads 200
2191 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks

Authors: Siddhant Rao

Abstract:

Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.

Keywords: breast cancer, mitotic count, machine learning, convolutional neural networks

Procedia PDF Downloads 223
2190 Spirituality and Coping with Breast Cancer among Omani Women

Authors: Huda Al-Awisi, Mohammed Al-Azri, Samira Al-Rasbi, Mansour Al-Moundhri

Abstract:

Cancer diagnosis is invariably a profound and catastrophic life-changing experience for individuals and their families. It has been found that cancer patients and survivors are distressed with the fragility of their life and their mortality. Based on the literature, cancer patients /survivors value their spiritual experience and connecting with unknown power either related to religious belief or not as an important coping mechanism. Health care professionals including nurses are expected to provide spiritual care for cancer patients as holistic care. Yet, nurses face many challenges in providing such care mainly due to lack of clear definition of spirituality. This study aims to explore coping mechanisms of Omani women diagnosed with breast cancer throughout their cancer journey including spirituality using a qualitative approach. A purposive sample of 19 Omani women diagnosed with breast cancer at different stages of cancer treatment modalities were interviewed. Interviews were tape recorded and transcribed verbatim. The framework approach was used to analyze the data. One main theme related to spirituality was identified and called “The power of faith”. For the majority of participants, faith in God (the will of God) was most important in coping with all stages of their breast cancer experience. Some participants thought that the breast cancer is a test from God which they have to accept. Participants also expressed acceptance of death as the eventual end and reward from God. This belief gives them the strength to cope with cancer and seek medical treatment. In conclusion, women participated in this study believed faith in God imposed spiritual power for them to cope with cancer. They connected spirituality with religious beliefs. Therefore, regardless of nurses’ faith in spirituality, the spiritual care needs to be tailored and provided according to each patient individual need.

Keywords: breast cancer, spiritual, religion, coping, diagnosis, oman, women

Procedia PDF Downloads 326
2189 Lacunarity measures on Mammographic Image Applying Fractal Dimension and Lacunarity Measures

Authors: S. Sushma, S. Balasubramanian, K. C. Latha, R. Sridhar

Abstract:

Structural texture measures are used to address the aspect of breast cancer risk assessment in screening mammograms. The current study investigates whether texture properties characterized by local Fractal Dimension (FD) and lacunarity contribute to assess breast cancer risk. Fractal Dimension represents the complexity while the lacunarity characterize the gap of a fractal dimension. In this paper, we present our result confirming that the lacunarity value resulted in algorithm using mammogram images states that level of lacunarity will be low when the Fractal Dimension value will be high.

Keywords: breast cancer, fractal dimension, image analysis, lacunarity, mammogram

Procedia PDF Downloads 388
2188 Increase Women's Knowledge and Attitude about Breast Cancer and Screening: Using an Educational Intervention in Community

Authors: Mitra Savabi-Esfahani, Fariba Taleghani, Mahnaz Noroozi, Maryam Tabatabaeian, Elsebeth Lynge

Abstract:

Breast cancer is a health concern in worldwide. All women have not adequate information about breast cancer, resulting in undetected some tumors until advanced stages. Therefore awareness of people was recommended as a strategy to control that. The aim of this study was to assess the effect of an educational intervention on women's knowledge and attitude about breast cancer and screening. This study was conducted in 2016 on 191 women. All women living in one of big cities were invited to enroll in training classes. Inclusion criteria consisted women who were 20 - 69 years and not participated in any educational intervention. The lecture with group discussion was used as educational methods. Data collection tool was a structured questionnaire which filled out before and after intervention. The reliability of the questionnaire was determined by Cronbach's alpha. The data were analyzed using SPSS software. The average age was 44/4 ± 11.5 and 42.6% of the women had obtained high school. Of the 191 women, 70(36.6%) and 76(39.8%) had low and medium level of knowledge respectively and half of them, 95(50%) had medium level of attitude in before intervention. There was significant difference between mean scores of knowledge and attitude before and after the intervention by Paired T test (p < 0/001). It seems applying effective educational interventions can increase knowledge and attitude women about breast cancer particularly in community that they have insufficient levels. Moreover, the lecture method along with group discussion can be proposed as effective and conventional methods for this purpose.

Keywords: attitude, breast cancer, educational intervention, knowledge

Procedia PDF Downloads 308