Search results for: iron doped zeolite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1618

Search results for: iron doped zeolite

1528 Preparation and Characterization of Iron/Titanium-Pillared Clays

Authors: Rezala Houria, Valverde Jose Luis, Romero Amaya, Molinari Alessandra, Maldotti Andrea

Abstract:

The escalation of oil prices in 1973 confronted the oil industry with the problem of how to maximize the processing of crude oil, especially the heavy fractions, to give gasoline components. Strong impetus was thus given to the development of catalysts with relatively large pore sizes, which were able to deal with larger molecules than the existing molecular sieves, and with good thermal and hydrothermal stability. The oil embargo in 1973 therefore acted as a stimulus for the investigation and development of pillared clays. Iron doped titania-pillared montmorillonite clays was prepared using bentonite from deposits of Maghnia in western-Algeria. The preparation method consists of differents steps (purification of the raw bentonite, preparation of a pillaring agent solution and exchange of the cations located between the clay layers with the previously formed iron/titanium solution). The characterization of this material was carried out by X-ray fluorescence spectrometry, X-ray diffraction, textural measures by BET method, inductively coupled plasma atomic emission spectroscopy, diffuse reflectance UV visible spectroscopy, temperature- programmed desorption of ammonia and atomic absorption.This new material was investigated as photocatalyst for selective oxygenation of the liquid alkylaromatics such as: toluene, paraxylene and orthoxylene and the photocatalytic properties of it were compared with those of the titanium-pillared clays.

Keywords: iron doping, montmorillonite clays, pillared clays, oil industry

Procedia PDF Downloads 302
1527 Effect of Doping Ag and N on the Photo-Catalytic Activity of ZnO/CuO Nanocomposite for Degradation of Methyl Orange under UV and Visible Radiation

Authors: O. P. Yadav

Abstract:

Nano-size Ag-N co-doped ZnO/CuO composite photo-catalyst has been synthesized by chemical method and characterized using XRD, TEM, FTIR, AAS and UV-Vis spectroscopic techniques. Photo-catalytic activity of as-synthesized nanomaterial has been studied using degradation of methyl orange as a probe under UV as well as visible radiations. Ag-N co-doped ZnO/CuO composite showed higher photo-catalytic activity than Ag- or N-doped ZnO and undoped ZnO-CuO composite photo-catalysts. The observed highest activity of Ag-N co-doped ZnO-CuO among the studied photo-catalysts is attributed to the cumulative effects of lowering of band-gap energy and decrease of recombination rate of photo-generated electrons and holes owing to doped N and Ag, respectively. Effects of photo-catalyst load, pH and substrate initial concentration on degradation of methyl orange have also been studied. Photo-catalytic degradation of methyl orange follows pseudo first order kinetics.

Keywords: degradation, nanocomposite, photocatalyst, spectroscopy, XRD

Procedia PDF Downloads 497
1526 Zeolite-Enhanced Pyrolysis: Transforming Waste Plastics into Hydrogen

Authors: Said Sair, Hanane Ait Ousaleh, Ilyas Belghazi, Othmane Amadine

Abstract:

Plastic waste has become a major environmental issue, driving the need for innovative solutions to convert it into valuable resources. This study explores the catalytic pyrolysis of plastic waste to produce hydrogen, using zeolite catalysts as a key component in the process. Various zeolites, including types X, A, and P, are synthesized and characterized through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area analysis, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). These techniques are employed to assess the structural and chemical properties of the catalysts. Catalytic pyrolysis experiments are performed under different conditions, including variations in temperature, catalyst loading, and reaction time, to optimize hydrogen production. The results demonstrate that the choice of zeolite catalyst significantly impacts plastic waste conversion efficiency into hydrogen. This research contributes to advancing circular economy principles by providing an effective method for plastic waste management and clean energy production, promoting environmental sustainability.

Keywords: hydrogen production, plastic waste, zeolite catalysts, catalytic pyrolysis, circular economy, sustainable energy

Procedia PDF Downloads 18
1525 Liquid Fuel Production via Catalytic Pyrolysis of Waste Oil

Authors: Malee Santikunaporn, Neera Wongtyanuwat, Channarong Asavatesanupap

Abstract:

Pyrolysis of waste oil is an effective process to produce high quality liquid fuels. In this work, pyrolysis experiments of waste oil over Y zeolite were carried out in a semi-batch reactor under a flow of nitrogen at atmospheric pressure and at different reaction temperatures (350-450 oC). The products were gas, liquid fuel, and residue. Only liquid fuel was further characterized for its composition and properties by using gas chromatography, thermogravimetric analyzer, and bomb calorimeter. Experimental results indicated that the pyrolysis reaction temperature significantly affected both yield and composition distribution of pyrolysis oil. An increase in reaction temperature resulted in increased fuel yield, especially gasoline fraction. To obtain high amount of fuel, the optimal reaction temperature should be higher than 350 oC. A presence of Y zeolite in the system enhanced the cracking activity. In addition, the pyrolysis oil yield is proportional to the catalyst quantity.

Keywords: gasoline, diesel, pyrolysis, waste oil, Y zeolite

Procedia PDF Downloads 198
1524 Prevalence of Overweight and Obesity in Iron-Deficient Iranian Teenagers Girls

Authors: Eftekhari M. H., Mozaffari-Khosravi H., Shidfar F.

Abstract:

Background: Many Iranian adolescent girls are iron deficient, but it is unclear whether the iron deficiency is associated with other nutritional risk indicators. Objective: we aimed to investigate the association between iron deficiency and weight status (measured as BMI) among a reprehensive sample of teenage girls. Methods: A cross-sectional study was performed in a region of southern I.R.Iran. One hundred eighty-seven iron-deficient participants (aged between 11 to 14) were selected by systematic random sampling among all students in grades 1 to 3 from high schools for girls. We assayed hemoglobin, hematocrit, serum ferritin, iron and total iron binding capacity and measured weight and height. Body mass index was calculated according to age and gender-specific BMI growth charts for children 2 to 20 years of age. Results: 13% were at risk for being overweight and 8.3% were overweight. The severity of iron deficiency increased as BMI increased from normal to at risk for overweight and overweight. Iron deficiency anemia was most prevalent among overweight adolescents than at risk for overweight and normal weight adolescents (28%, 18%, and 13%, respectively). Conclusions: The results of this study showed an inverse association of BMI with serum ferritin. Overweight adolescents demonstrated an increased prevalence of anemia. Because of the potentially harmful effects of iron deficiency, obese adolescents should be routinely screened and treated as necessary.

Keywords: adolescent, over weight, iron deficiency, Iran

Procedia PDF Downloads 139
1523 Investigation of Zeolite and Silica Fume Addition on Durability of Cement Composites

Authors: Martina Kovalcikova, Adriana Estokova

Abstract:

Today, concrete belongs to the most frequently used materials in the civil engineering industry for many years. Consuming energy in cement industry is very high and CO₂ emissions generated during the production of Portland cement has serious environmental threatens. Therefore, utilization of pozzolanic material as a supplementary cementitious material has a direct relationship with the sustainable development. The paper presents the results of the comparative study of the resistance of the Slovak origin zeolite based cement composites with addition of silica fume exposed to the sulfate environment. The various aggressive media were used for the experiment: sulfuric acid with pH 4, distilled water and magnesium sulfate solution with a concentration of 3 g/L of SO₄²−. The laboratory experiment proceeded during 180 days under model conditions. The changes in the elemental concentrations of calcium and silicon in liquid leachates were observed.

Keywords: concrete, leaching, silica fume, sulfuric acid, zeolite

Procedia PDF Downloads 270
1522 Some Aspects of Study the Leaching and Acid Corrosion of Concrete

Authors: Alena Sicakova, Adriana Estokova

Abstract:

Although properly made concrete is inherently a durable material, there are many physical and chemical forces in the environment which can contribute to its deterioration. This paper deals with two aspects of concrete durability in chemical aggressive environment: degradation effect of particular aggressive exposure and role of particular mineral additives. Results of the study of leaching and acid corrosion processes in samples prepared with specific dosage of microsilica and zeolite are given in the paper. Corrosion progress after 60-day exposition is manifested by increasing rate of both Ca and Si release, what is identified by XRF method. Kind and dosage of additions used in experiment was found to be helpful for stabilization of concrete microstructure. The lowest concentration of mean elements in leachates was observed for mixture V1 (microsilica only) unlike the V2 (microsilica + zeolite). It is surprising in the terms of recommendations of zeolite application for acid exposure. Using microsilica only seems to be more effective.

Keywords: sustainability, durability, concrete, acid corrosion, leaching

Procedia PDF Downloads 417
1521 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application

Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.

Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery

Procedia PDF Downloads 245
1520 Prevalence and Determinants of Iron Deficiency Anaemia in Pregnant Xhosa Women

Authors: A. Abiodun, G. George, B. Longo-Mbenza, E. Blanco-Blanco

Abstract:

Objective: To determine the prevalence and determinants of iron-deficiency anaemia in pregnant Xhosa women practising geophagia. Methods: This cross-sectional study was conducted among pregnant Xhosa women from rural areas of Mthatha, South Africa, according to socio-demographic, geophagia, haematologic and iron metabolism profiles using univariate and multivariate analyses. Anaemia was defined by haemoglobin <11 g/dL and iron deficiency was defined by serum ferritin < 12 ug/L. Results: Out of 210 pregnant women (mean age =23±5.3 for geophagic and 25.6±5.3 for non-geophagic), 51.4% (n = 108) had iron deficiency anaemia (50.9% geophagic and 49.1% non-geophagic). After adjusting for confounders, only geophagia (OR=2.1 95% CI 1.1-4.2; P=0.029) and mean corpuscular haemoglobin concentration categories (< 30.5 g/dL with OR=16.6 95% CI 6.8-40.2; P < 0.0001; 30.5-31.5 g/dL with OR=2.9 95% CI 1.4-6.1; P=0.006; and ≥ 31.5 g/dL with OR=1) were identified as the most important significant and independent determinants of iron deficiency anaemia. Conclusion: The study results point to the potential harm geophagia can cause in pregnant women. The prevalence of iron deficiency anaemia is unacceptably high. Geophagic behaviour, low MCHC presented as particular risk factors of iron deficiency anaemia in this study. Education and counselling about appropriate diet during pregnancy and prevention of geophagic behaviour (and health consequences) are needed among pregnant Xhosa women.

Keywords: geophagia, pregnancy, iron deficiency anaemia, Xhosa

Procedia PDF Downloads 377
1519 Effect of Austenitization Temperature on Wear Behavior of Carbidic Austempered Ductile Iron (CADI)

Authors: Ajay Likhite, Prashant Parhad, D. R. Peshwe, S. U. Pathak

Abstract:

Chromium bearing Austempered Ductile Iron (ADI) has been recently in the news for its improved wear performance over the ADI. The work presented below was taken up to study the effect of different austenitisation temperatures on the microstructure and wear performance of the Carbidic Austempered Ductile Iron (CADI). In this investigation Cr bearing ductile iron was subjected to austempering treatment to obtain an ausferritic microstructure. Two different austenitisation temperatures were selected whereas, the austempering temperature and time was kept unchanged. Microstructure and wear performance of this alloy, austenitized at two different temperatures was studied.

Keywords: austempered ductile iron, carbidic austempered ductile iron, austenitization temperature, wear behavior

Procedia PDF Downloads 438
1518 Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property

Authors: Neha Verma, Manik Rakhra

Abstract:

Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment.

Keywords: ZnO, photocatalyst, photodegradation of dye, gas sensor

Procedia PDF Downloads 155
1517 Discussion on Microstructural Changes Caused by Deposition Temperature of LZO Doped Mg Piezoelectric Films

Authors: Cheng-Ying Li, Sheng-Yuan Chu

Abstract:

This article deposited LZO-doped Mg piezoelectric thin films via RF sputtering and observed microstructure and electrical characteristics by varying the deposition temperature. The XRD analysis results indicate that LZO-doped Mg exhibits excellent (002) orientation, and there is no presence of ZnO(100), Influenced by the temperature's effect on the lattice constant, the (002) peak intensity increases with rising temperature. Finally, we conducted deformation intensity analysis on the films, revealing an over fourfold increase in deformation at a processing temperature of 500°C.

Keywords: RF sputtering, piezoelectricity, ZnO, Mg

Procedia PDF Downloads 41
1516 Adsorption Studies of Methane on Zeolite NaX, LiX, KX at High Pressures

Authors: El Hadi Zouaoui, Djamel Nibou, Mohamed Haddouche, Wan Azlina Wan Ab Karim Ghani, Samira Amokrane

Abstract:

In this study, CH₄ adsorption isotherms on NaX or Faujasite X and exchanged zeolites with Li⁺(LiX), and K⁺(KX) at different temperatures (298, 308, 323 and 353 K) has been investigated, using high pressure (3 MPa (30 bar)) thermo-gravimetric analyser. The experimental results were then validated using several isothermal kinetics models, namely Langmuir, Toth, and Marczewski-Jaroniec, followed by a calculation of the error coefficients between the experimental and theoretical results. It was found that the CH₄ adsorption isotherms are characterized by a strong increase in adsorption at low pressure and a tendency towards a high pressure limit value Qₘₐₓ. The size and position of the exchanged cations, the spherical shape of methane, the specific surface, and the volume of the pores revealed the most important influence parameters for this study. These results revealed that the experimentation and the modeling, well correlated with Marczewski-Jaroniec, Toth, and gave the best results whatever the temperature and the material used.

Keywords: CH₄ adsorption, exchange cations, exchanged zeolite, isotherm study, NaX zeolite

Procedia PDF Downloads 249
1515 Deposition of Cr-doped ZnO Thin Films and Their Ferromagnetic Properties

Authors: Namhyun An, Byungho Lee, Hwauk Lee, Youngmin Lee, Deuk Young Kim, Sejoon Lee

Abstract:

In this study, the Cr-doped ZnO thin films have been deposited by reactive magnetron sputtering method with different Cr-contents (1.0at.%, 2.5at.% and 12.5at.%) and their ferromagnetic properties have been characterized. All films revealed clear ferromagnetism above room temperature. However, the spontaneous magnetization of the films was observed to depend on the Cr contents in the films. Namely, the magnitude of effective magnetic moment (per each Cr ion) was exponentially decreased with increasing the Cr contents. We attributed the decreased spontaneous magnetization to the degraded crystal magnetic anisotropy. In other words, we found out that the high concentration of magnetic ions causes the lattice distortion in the magnetic ion-doped thin film, and it consequently degrades ferromagnetic channeling in the solid-state material system.

Keywords: Cr-doped ZnO, ferromagnetic properties, magnetization, sputtering, thin film

Procedia PDF Downloads 392
1514 Protein-Thiocyanate Composite as a Sensor for Iron III Cations

Authors: Hosam El-Sayed, Amira Abou El-Kheir, Salwa Mowafi, Marwa Abou Taleb

Abstract:

Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Proteinium thiocyanate (PTC) composite was prepared by reaction of a regenerated film with potassium thiocyanate in acid medium. In another experiment, the said acidified proteins were reacted with potassium thiocyante before dissolution and regeneration in a form of PTC composite. The possibility of using PTC composite for determination of the concentration of iron III ions in domestic as well as industrial water was examined. The concentration of iron III cations in water was determined spectrophotometrically by measuring the intensity of blood red colour of iron III thiocyanate obtained by interaction of PTC with iron III cation in the tested water sample.

Keywords: iron III cations, protein, sensor, thiocyanate, water

Procedia PDF Downloads 429
1513 Rare Earth Metal Ion-Doped SiO2 Nanocomposite Membranes for Gas Separation in Steam Atmosphere

Authors: Md. Hasan Zahir

Abstract:

Y2O3-doped silica membranes were synthesized with the sol-gel method by using a tetraethyl orthosilicate-derived sol mixed with yttrium nitrate hexahydrate. These solutions were used to fabricate hydrogen separation microporous membranes with a sandwich-type structure on γ-Al2O3 supported by tubular α-Al2O3. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano-permporometer. The gas permeance properties of the membranes were measured in the temperature range 100–500°C. The Y-doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39×10-7 mol m-2 s -1 Pa-1 for He and 6.19 ×10-10 mol m-2 s -1 Pa-1 for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y-doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2±0.2 and 21.3±0.7 kJ mol−1 for SiO2 and Si/Y, respectively. Very high permeances were obtained for N2 and O2, 2.2 and 5 × 10-8 mol m-2 s -1 Pa-1 respectively, which demonstrates that these materials are promising air purification and/or separation systems that block larger impurity molecules by molecular sieving effects. Y-doped SiO2 exhibits greater hydrothermal stability at high temperatures and higher selectivity than SiO2 membranes.

Keywords: ceramic membrane, gas separation, hydrothermal stability, rare earth doped-Silica

Procedia PDF Downloads 259
1512 Prevalence of Anemia and Iron Deficiency in Women of Childbearing Age in the North-West of Libya

Authors: Mustafa Ali Abugila, Basma Nuri Kajruba, Hanan Elhadi, Rehab Ramadan Wali

Abstract:

Iron deficiency anemia is characterized by a decrease of Hb (hemoglobin), serum iron, ferritin, and RBC (red blood cells) (shape and size). Also, it is characterized by an increase in total iron binding capacity (TIBC). Red blood cells become microctytic and hypochromic due to a decrease in iron content. This study was conducted in the north west of Libya and included 210 women in childbearing age (18-45 years) who were visiting women clinic. After filling the questionnaire, blood samples were taken and analyzed for hematological and biochemical profiles. Biochemical tests included measurement of serum iron, ferritin, and total iron binding capacity (TIBC). Among the total sample (210 women), there were 87 (41.42%) pregnant and 123 (58.57%) non-pregnant women (includes married and single). Pregnant women (87) were classified according to the gestational age into first, second, and third trimesters. The means of biochemical and hematological parameters in the studied samples were: Hb = 10.37± 2.02 g/dl, RBC = 3.78± 1.037 m/m3, serum iron 61.86± 40.28 µg/dl, and TIBC = 386.01 ± 94.91 µg/dl. In this study, we considered that any women have hemoglobin below 11.5 g/dl is anemic. 89.1%, 69.5%, and 47.8% of pregnant women who belong to third trimester had low (below normal value) Hb, serum iron, and ferritin, i.e. iron deficiency anemia was more common in third trimester among the first and the second trimesters. Third trimester pregnant women also had high TIBC more than first and second trimesters.

Keywords: red blood cells, hemoglobin, total iron binding capacity, ferritin

Procedia PDF Downloads 530
1511 Surface Modified Electrospun Expanded Polystyrene Fibre with Superhydrophobic/Superoleophillic Properties as Potential Oil Membrane

Authors: S. Oluwagbemiga Alayande, E. Olugbenga Dare, Titus A. M. Msagati, A. Kehinde Akinlabi , P. O. Aiyedun

Abstract:

This paper presents a cheap route procedure for the preparation of a potential oil membrane with superhydrophobic /superoleophillic properties for selective removal of crude oil from water. In these study, expanded polystyrene (EPS) was electrospun to produce beaded fibers in which zeolite was introduced to the polymer matrix in order to impart rough surface to non-beaded fiber. Films of the EPS and EPS/Zeolite solutions were also made for comparative study. The electrospun fibers EPS, EPS/Zeolite and resultant films were characterized using SEM, BET, FTIR and optical contact angle. The fibers exhibited superhydrophic and superoleophillic wetting properties with water and crude oil. The selective removal of crude oil presents new opportunity for the re-use of EPS as adsorbent in petroleum/petrochemical industry.

Keywords: expanded polystyrene, superhydrophobic, superoleophillic, oil-membrane

Procedia PDF Downloads 472
1510 Carbon-Doped TiO2 Nanofibers Prepared by Electrospinning

Authors: ChoLiang Chung, YuMin Chen

Abstract:

C-doped TiO2 nanofibers were prepared by electrospinning successfully. Different amounts of carbon were added into the nanofibers by using chitosan, aiming to shift the wave length that is required to excite the photocatalyst from ultraviolet light to visible light. Different amounts of carbon and different atmosphere fibers were calcined at 500oC, and the optical characteristic of C-doped TiO2 nanofibers had been changed. characterizes of nanofibers were identified by X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM), UV-vis, Atomic Force Microscope (AFM), and Fourier Transform Infrared Spectroscopy (FTIR). The XRD is used to identify the phase composition of nanofibers. The morphology of nanofibers were explored by FE-SEM and AFM. Optical characteristics of absorption were measured by UV-Vis. Three dimension surface images of C-doped TiO2 nanofibers revealed different effects of processing. The results of XRD showed that the phase of C-doped TiO2 nanofibers transformed to rutile phase and anatase phase successfully. The results of AFM showed that the surface morphology of nanofibers became smooth after high temperature treatment. Images from FE-SEM revealed the average size of nanofibers. UV-vis results showed that the band-gap of TiO2 were reduced. Finally, we found out C-doped TiO2 nanofibers can change countenance of nanofiber and make it smoother.

Keywords: carbon, TiO2, chitosan, electrospinning

Procedia PDF Downloads 256
1509 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method

Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad

Abstract:

ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.

Keywords: Gd doped ZnO, electric, optics, microstructure

Procedia PDF Downloads 472
1508 Modification of a Natural Zeolite with a Short-Chain Quaternary Ammonium Salt in an Ultrasonication Process and Investigation of Its Ability to Eliminate Nitrate Ions: Characterization and Mechanism Study

Authors: Nona Mirzamohammadi, Bahram Nasernejad

Abstract:

This work mainly focuses on studying the mechanism governing the adsorption of tetraethylammonium bromide, a short-chain quaternary ammonium salt, on the surface of natural zeolite and to characterize modified and raw zeolites in order to study the removal of nitrate anions from water. Natural clinoptilolite, as the most common zeolite, was chosen and modified in an ultrasonication process using tetraethylammonium bromide, subsequent to being contacted with NaCl solutions. FT-IR studies indicated a peak attributed to the stretching vibrations of the –CH₂ group in the molecule of tetraethylammonium bromide in the spectrum of the modified sample. Moreover, the SEM images showed some obvious changes in the surface morphology and crystallinity of clinoptilolite after being modified. Batch adsorption experiments show that the modified zeolite is capable of removing nitrate anions, and the predominant removal mechanism is suggested to be a combination of electrostatic attraction and ion exchange since the results from the zeta potential analysis showed a decrease in the net negative charge of clinoptilolite after modification, while bromide ions were detected in the modified sample in the µXRF analysis.

Keywords: adsorption, clinoptilolite, short-chain quaternary ammonium salt, tetraethylammoniumbromide, ultrasonication

Procedia PDF Downloads 106
1507 Effects of Copper and Cobalt Co-Doping on Structural, Optical and Electrical Properties of Tio2 Thin Films Prepared by Sol Gel Method

Authors: Rabah Bensaha, Badreeddine Toubal

Abstract:

Un-doped TiO2, Co single doped TiO2 and (Cu-Co) co-doped TiO2 thin films have been growth on silicon substrates by the sol-gel dip coating technique. We mainly investigated both effects of the dopants and annealing temperature on the structural, optical and electrical properties of TiO2 films using X-ray diffraction (XRD), Raman and FTIR spectroscopy, Atomic force microscopy (AFM), Scanning electron microscopy (SEM), UV–Vis spectroscopy. The chemical compositions of Co-doped and (Cu-Co) co-doped TiO2 films were confirmed by XRD, Raman and FTIR studies. The average grain sizes of CoTiO3-TiO2 nanocomposites were increased with annealing temperature. AFM and SEM reveal a completely the various nanostructures of CoTiO3-TiO2 nanocomposites thin films. The films exhibit a high optical reflectance with a large band gap. The highest electrical conductivity was obtained for the (Cu-Co) co-doped TiO2 films. The polyhedral surface morphology might possibly improve the surface contact between particle sizes and then contribute to better electron mobility as well as conductivity. The obtained results suggest that the prepared TiO2 films can be used for optoelectronic applications.

Keywords: sol-gel, TiO2 thin films, CoTiO3-TiO2 nanocomposites films, Electrical conductivity

Procedia PDF Downloads 442
1506 Studies on H2S Gas Sensing Performance of Al2O3-Doped ZnO Thick Films at Ppb Level

Authors: M. K. Deore

Abstract:

The thick films of undoped and Al2O3 doped- ZnO were prepared by screen printing technique. AR grade (99.9 % pure) Zinc Oxide powder were mixed mechanochemically in acetone medium with Aluminium Chloride (AlCl2) material in various weight percentages such as 0.5, 1, 3 and 5 wt % to obtain Al2O3 - ZnO composite. The prepared materials were sintered at 1000oC for 12h in air ambience and ball milled to ensure sufficiently fine particle size. The electrical, structural and morphological properties of the films were investigated. The X-ray diffraction analysis of pure and doped ZnO shows the polycrystalline nature. The surface morphology of the films was studied by SEM. The final composition of each film was determined by EDAX analysis. The gas response of undoped and Al2O3- doped ZnO films were studied for different gases such as CO, H2, NH3, and H2S at operating temperature ranging from 50 oC to 450 o C. The pure film shows the response to H2S gas (500ppm) at 300oC while the film doped with 3 wt.% Al2O3 gives the good response to H2S gas(ppb) at 350oC. The selectivity, response and recovery time of the sensor were measured and presented.

Keywords: thick films, ZnO-Al2O3, H2S gas, sensitivity, selectivity, response and recovery time

Procedia PDF Downloads 420
1505 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 215
1504 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: blast furnace iron slag, compressive strength, HMA, indirect tensile strength, marshall/stiffness, mechanical performance, mechanical properties

Procedia PDF Downloads 438
1503 Influence of Pouring Temperature on the Formation of Spheroidal and Lamellar Graphite in Cast Iron

Authors: Mehmet Ekici

Abstract:

The objective of this research is to investigate the effect of pouring temperature on the microstructure of the cast iron. The pattern was designed with 300 mm of width, and the thickness variations are 1.25 mm and poured at five different temperatures; 1300, 1325, 1350, 1375 and 1400°C. Several cast irons, prepared with different chemical compositions and microstructures (three lamellar and three spheroidal structures) have been examined by extensive mechanical testing and optical microscopy. The fluidity of spheroidal and lamellar graphite in cast iron increases with the pouring temperature. The numbers of nodules were decreased by increasing pouring temperature for spheroidal structures. Whereas, the numbers of flakes of lamellar structures changed by both pouring temperature and chemical composition. In general, with increasing pouring temperature, the amount of pearlite in the internal structure of both lamellar and spheroidal graphite cast iron materials were increased.

Keywords: spheroidal graphite cast iron, lamellar graphite in cast iron, pouring temperature, tensile test and impact test

Procedia PDF Downloads 332
1502 Multi-Layer Mn-Doped SnO2 Thin Film for Multi-State Resistive Switching

Authors: Zhemi Xu, Dewei Chu, Sean Li

Abstract:

Well self-assembled pure and Mn-doped SnO2 nanocubes were synthesized by interface thermodynamic method, which is ideal for highly homogeneous large scale thin film deposition on flexible substrates for various electric devices. Mn-doped SnO2 shows very good resistive switching with high On/Off ratio (over 103), endurance and retention characteristics. More important, the resistive state can be tuned by multi-layer fabrication by alternate pure SnO2 and Mn-doped SnO2 nanocube layer, which improved the memory capacity of resistive switching effectively. Thus, such a method provides transparent, multi-level resistive switching for next generation non-volatile memory applications.

Keywords: metal oxides, self-assembly nanoparticles, multi-level resistive switching, multi-layer thin film

Procedia PDF Downloads 345
1501 Structural and Optical Study of Cu doped ZnS Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: Hamid Merzouk, D. T. Talantikite, H. Haddad, Amel Tounsi

Abstract:

ZnS is an important II-VI binary compound with large band-gap energy at room temperature. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. The depositions are performed by a simple chemical bath deposition route. Structural properties are carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical transmittance is investigated by the UV-visible spectroscopy at room temperature.

Keywords: chemical, bath, method, Cu, doped, ZnS, thin, films

Procedia PDF Downloads 553
1500 Iron Extraction from Bog Iron Ore in Early French Colonial America

Authors: Yves Monette, Brad Loewen, Louise Pothier

Abstract:

This study explores the first bog iron ore extraction activities which took place in colonial New France. Archaeological excavations carried on the founding site of Montreal in the last ten years have revealed the remains of Fort Ville-Marie erected in 1642. In a level related to the fort occupation between 1660 and 1680, kilos of scories, a dozen of half-finished iron artefacts and a light yellow clayey ore material have recovered that point to extractive metallurgy activities at the fort. Examples of scories, artefacts and of a possible bog iron ore were submitted to SEM-EDS analysis. The results clearly indicate that iron was extracted from local limonite ores in a bloomery. We discovered that the gangue material could be traced from the ore to the scories. However, some lime silicates and some accessory minerals found in the scories, like barite and celestine for example, were absent from the ore but present in dolomite fragments found in the same archaeological context. The tracing of accessory minerals suggests that the ironmaster introduced a lime flux in the bloomery charge to maximize the separation of the iron ore. Before the introduction of the blast furnace in Western Europe during the first half of the 18th Century, the use of fluxes in iron bloomery was not a common practice.

Keywords: bog iron ore, extractive metallurgy, French colonial America, Montreal, scanning electron microscopy (SEM)

Procedia PDF Downloads 354
1499 Study Of Cu Doped Zns Thin Films Nanocrystalline by Chemical Bath Deposition Method

Authors: H. Merzouka, D. T. Talantikitea, S. Fettouchib, L. Nessarkb

Abstract:

Recently New nanosized materials studies are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made in design and control fabrication of nano-structured semiconductors such as zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work preparation and characterization of ZnS and Cu doped ZnS thin films. Nanoparticles ZnS and Cu doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and copper acetate as Cu ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuK radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1. The transmittance is more than 70 % is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Cu doping.

Keywords: Cu doped ZnS, nanostructured, thin films, CBD, XRD, FTIR

Procedia PDF Downloads 443