Search results for: breast ultrasound image classification
5476 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 175475 Compare Anxiety, Stress, Depression, andAttitude towards Death among Breast CancerPatient Undergoing Mastectomy and Breast-Conserving
Authors: Mitra JahangirRad, Sheida Sodagar, Maryam Bahrami Hidaji
Abstract:
This study was conducted with the aim of comparing anxiety, stress, depression and attitude towards death among patients with breast cancer who have undergone mastectomy or breast-conserving surgery. The study method is causal-comparative. Statistical population was all patients with breast cancer referring to Medical Center of Panjom Azar Hospital in Gorgan or oncologists' offices in this city within eight months. They were selected using purposive sampling. Sample size of this study was 45 patients with breast cancer undergoing mastectomy and 70 patients under breast-conserving surgery. Measurement tools in this study were depression, anxiety, and stress scale (Dass-21) as well as Death Attitude Profile-Revised (DAPR). Results of this study in hypotheses investigation showed that anxiety, stress and depression among patients with breast cancer, undergoing mastectomy or breast-conserving surgery is significantly different. However, their attitudes towards death do not differ. From these findings, it can be concluded that although most patients with breast cancer encounter many psychological problems, patients undergoing mastectomy experience more anxiety, stress and depression relative to patients with breast-conserving surgery and it seems that they need more supportive therapy.Keywords: anxiety, breast cancer, depression, death, mastectomy
Procedia PDF Downloads 4155474 Recognition of New Biomarkers in the Epigenetic Pathway of Breast Cancer
Authors: Fatemeh Zeinali Sehrig
Abstract:
This study aimed to evaluate the expression of miR-299-3p, DNMT1, DNMT3A, and DNMT3B in breast cancer samples and investigate their diagnostic significance. Using the GSE40525 and GSE45666, the miR-299-3p expression level was studied in breast cancer tissues. Also, the expression levels of DNMT1, DNMT3A, and DNMT3B were investigated by analyzing GSE61725, GSE86374, and GSE37751 datasets. The target genes were studied in terms of biological processes of molecular functions and cellular components. Consistent with the in silico results, miR-299-3p expression was substantially decreased in breast cancer tissues, and the expression levels of DNMT1, DNMT3A, and DNMT3B were considerably upregulated in breast cancer samples. It was found that the expression levels of miR-299-3p and DNMT1, DNMT3A, and DNMT3B could be valuable diagnostic tools for detecting breast cancer. Also, miR-299-3p downregulation may play a role in DNMT1, DNMT3A, and DNMT3B upregulation in breast cancer.Keywords: breast cancer, miR-299-3p, DNMTs, GEO database
Procedia PDF Downloads 405473 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.Keywords: neural network, conformal prediction, cancer classification, regression
Procedia PDF Downloads 2935472 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3705471 Effect of Ultrasound on the Hydrolysis of Soy Oil Catalyzed by 1,3-Specific Lipase Abstract
Authors: Jamal Abd Awadallak, Thiago Olinek Reinehr, Eduardo Raizer, Deise Molinari, Edson Antonio, Camila da Silva da Silva
Abstract:
The hydrolysis of soy oil catalyzed by 1,3-specific enzyme (Lecitase Ultra) in a well-stirred bioreactor was studied. Two forms of applications of the ultrasound were evaluated aiming to increase reaction rates, wherein the use of probe ultrasound associated with the use of surfactant to pre-emulsify the substrate showed the best results. Two different reaction periods were found: the first where the ultrasound has great influence on reaction rates, and the second where ultrasound influence is minimal. Studies on the time of pre-emulsification, surfactant concentration and enzyme concentration showed that the initial rate of hydrolysis depends on the interfacial area between the oil phase and the aqueous phase containing the enzyme.Keywords: specific enzyme, free fatty acids, Hydrolysis, lecitase ultra, ultrasound
Procedia PDF Downloads 5795470 Optimizing Perennial Plants Image Classification by Fine-Tuning Deep Neural Networks
Authors: Khairani Binti Supyan, Fatimah Khalid, Mas Rina Mustaffa, Azreen Bin Azman, Amirul Azuani Romle
Abstract:
Perennial plant classification plays a significant role in various agricultural and environmental applications, assisting in plant identification, disease detection, and biodiversity monitoring. Nevertheless, attaining high accuracy in perennial plant image classification remains challenging due to the complex variations in plant appearance, the diverse range of environmental conditions under which images are captured, and the inherent variability in image quality stemming from various factors such as lighting conditions, camera settings, and focus. This paper proposes an adaptation approach to optimize perennial plant image classification by fine-tuning the pre-trained DNNs model. This paper explores the efficacy of fine-tuning prevalent architectures, namely VGG16, ResNet50, and InceptionV3, leveraging transfer learning to tailor the models to the specific characteristics of perennial plant datasets. A subset of the MYLPHerbs dataset consisted of 6 perennial plant species of 13481 images under various environmental conditions that were used in the experiments. Different strategies for fine-tuning, including adjusting learning rates, training set sizes, data augmentation, and architectural modifications, were investigated. The experimental outcomes underscore the effectiveness of fine-tuning deep neural networks for perennial plant image classification, with ResNet50 showcasing the highest accuracy of 99.78%. Despite ResNet50's superior performance, both VGG16 and InceptionV3 achieved commendable accuracy of 99.67% and 99.37%, respectively. The overall outcomes reaffirm the robustness of the fine-tuning approach across different deep neural network architectures, offering insights into strategies for optimizing model performance in the domain of perennial plant image classification.Keywords: perennial plants, image classification, deep neural networks, fine-tuning, transfer learning, VGG16, ResNet50, InceptionV3
Procedia PDF Downloads 675469 Release of Calcein from Liposomes Using Low and High Frequency Ultrasound
Authors: Ghaleb A. Husseini, Salma E. Ahmed, Hesham G. Moussa, Ana M. Martins, Mohammad Al-Sayah, Nasser Qaddoumi
Abstract:
This abstract aims to investigate the use of targeted liposomes as anticancer drug carriers in vitro in combination with ultrasound applied as drug trigger; in order to reduce the side effects caused by traditional chemotherapy. Pegylated liposomes were used to encapsulate calcein and then release this model drug when 20-kHz, 40-kHz, 1-MHz and 3-MHz ultrasound were applied at different acoustic power densities. Fluorescence techniques were then used to measure the percent drug release of calcein from these targeted liposomes. Results showed that as the power density increases, at the four frequencies studied, the release of calcein also increased. Based on these results, we believe that ultrasound can be used to increase the rate and amount of chemotherapeutics release from liposomes.Keywords: liposomes, calcein release, high frequency ultrasound, low frequency ultrasound, fluorescence techniques
Procedia PDF Downloads 4265468 Pre-Processing of Ultrasonography Image Quality Improvement in Cases of Cervical Cancer Using Image Enhancement
Authors: Retno Supriyanti, Teguh Budiono, Yogi Ramadhani, Haris B. Widodo, Arwita Mulyawati
Abstract:
Cervical cancer is the leading cause of mortality in cancer-related diseases. In this diagnosis doctors usually perform several tests to determine the presence of cervical cancer in a patient. However, these checks require support equipment to get the results in more detail. One is by using ultrasonography. However, for the developing countries most of the existing ultrasonography has a low resolution. The goal of this research is to obtain abnormalities on low-resolution ultrasound images especially for cervical cancer case. In this paper, we emphasize our work to use Image Enhancement for pre-processing image quality improvement. The result shows that pre-processing stage is promising to support further analysis.Keywords: cervical cancer, mortality, low-resolution, image enhancement.
Procedia PDF Downloads 6385467 INRAM-3DCNN: Multi-Scale Convolutional Neural Network Based on Residual and Attention Module Combined with Multilayer Perceptron for Hyperspectral Image Classification
Authors: Jianhong Xiang, Rui Sun, Linyu Wang
Abstract:
In recent years, due to the continuous improvement of deep learning theory, Convolutional Neural Network (CNN) has played a great superior performance in the research of Hyperspectral Image (HSI) classification. Since HSI has rich spatial-spectral information, only utilizing a single dimensional or single size convolutional kernel will limit the detailed feature information received by CNN, which limits the classification accuracy of HSI. In this paper, we design a multi-scale CNN with MLP based on residual and attention modules (INRAM-3DCNN) for the HSI classification task. We propose to use multiple 3D convolutional kernels to extract the packet feature information and fully learn the spatial-spectral features of HSI while designing residual 3D convolutional branches to avoid the decline of classification accuracy due to network degradation. Secondly, we also design the 2D Inception module with a joint channel attention mechanism to quickly extract key spatial feature information at different scales of HSI and reduce the complexity of the 3D model. Due to the high parallel processing capability and nonlinear global action of the Multilayer Perceptron (MLP), we use it in combination with the previous CNN structure for the final classification process. The experimental results on two HSI datasets show that the proposed INRAM-3DCNN method has superior classification performance and can perform the classification task excellently.Keywords: INRAM-3DCNN, residual, channel attention, hyperspectral image classification
Procedia PDF Downloads 815466 Breast Cancer Early Recognition, New Methods of Screening, and Analysis
Authors: Sahar Heidary
Abstract:
Breast cancer is a main public common obstacle global. Additionally, it is the second top reason for tumor death across women. Considering breast cancer cure choices can aid private doctors in precaution for their patients through future cancer treatment. This article reviews usual management centered on stage, histology, and biomarkers. The growth of breast cancer is a multi-stage procedure including numerous cell kinds and its inhibition residues stimulating in the universe. Timely identification of breast cancer is one of the finest methods to stop this illness. Entirely chief therapeutic administrations mention screening mammography for women aged 40 years and older. Breast cancer metastasis interpretations for the mainstream of deaths from breast cancer. The discovery of breast cancer metastasis at the initial step is essential for managing and estimate of breast cancer development. Developing methods consuming the exploration of flowing cancer cells illustrate talented outcomes in forecasting and classifying the initial steps of breast cancer metastasis in patients. In public, mammography residues are the key screening implement though the efficiency of medical breast checks and self-checkup is less. Innovative screening methods are doubtful to exchange mammography in the close upcoming for screening the overall people.Keywords: breast cancer, screening, metastasis, methods
Procedia PDF Downloads 1705465 Mobile Health Approaches in the Management of Breast Cancer: A Qualitative Content Analysis
Authors: Hyekyung Woo, Gwihyun Kim
Abstract:
mHealth, which encompasses mobile health technologies and interventions, is rapidly evolving in various medical specialties, and its impact is evident in oncology. This review describes current trends in research addressing the integration of mHealth into the management of breast cancer by examining evaluations of mHealth and its contributions across the cancer care continuum. Mobile technologies are perceived as effective in prevention and as feasible for managing breast cancer, but the diagnostic accuracy of these tools remains in doubt. Not all phases of breast cancer treatment involve mHealth, and not all have been addressed by research. These drawbacks in the application of mHealth to breast cancer management call for intensified research to strengthen its role in breast cancer care.Keywords: mobile application, breast cancer, content analysis, mHealth
Procedia PDF Downloads 3125464 Isolation and Classification of Red Blood Cells in Anemic Microscopic Images
Authors: Jameela Ali Alkrimi, Abdul Rahim Ahmad, Azizah Suliman, Loay E. George
Abstract:
Red blood cells (RBCs) are among the most commonly and intensively studied type of blood cells in cell biology. The lack of RBCs is a condition characterized by lower than normal hemoglobin level; this condition is referred to as 'anemia'. In this study, a software was developed to isolate RBCs by using a machine learning approach to classify anemic RBCs in microscopic images. Several features of RBCs were extracted using image processing algorithms, including principal component analysis (PCA). With the proposed method, RBCs were isolated in 34 second from an image containing 18 to 27 cells. We also proposed that PCA could be performed to increase the speed and efficiency of classification. Our classifier algorithm yielded accuracy rates of 100%, 99.99%, and 96.50% for K-nearest neighbor (K-NN) algorithm, support vector machine (SVM), and neural network ANN, respectively. Classification was evaluated in highly sensitivity, specificity, and kappa statistical parameters. In conclusion, the classification results were obtained for a short time period with more efficient when PCA was used.Keywords: red blood cells, pre-processing image algorithms, classification algorithms, principal component analysis PCA, confusion matrix, kappa statistical parameters, ROC
Procedia PDF Downloads 4055463 A Highly Accurate Computer-Aided Diagnosis: CAD System for the Diagnosis of Breast Cancer by Using Thermographic Analysis
Authors: Mahdi Bazarganigilani
Abstract:
Computer-aided diagnosis (CAD) systems can play crucial roles in diagnosing crucial diseases such as breast cancer at the earliest. In this paper, a CAD system for the diagnosis of breast cancer was introduced and evaluated. This CAD system was developed by using spatio-temporal analysis of data on a set of consecutive thermographic images by employing wavelet transformation. By using this analysis, a very accurate machine learning model using random forest was obtained. The final results showed a promising accuracy of 91% in terms of the F1 measure indicator among 200 patients' sample data. The CAD system was further extended to obtain a detailed analysis of the effect of smaller sub-areas of each breast on the occurrence of cancer.Keywords: computer-aided diagnosis systems, thermographic analysis, spatio-temporal analysis, image processing, machine learning
Procedia PDF Downloads 2125462 A Technique for Image Segmentation Using K-Means Clustering Classification
Authors: Sadia Basar, Naila Habib, Awais Adnan
Abstract:
The paper presents the Technique for Image Segmentation Using K-Means Clustering Classification. The presented algorithms were specific, however, missed the neighboring information and required high-speed computerized machines to run the segmentation algorithms. Clustering is the process of partitioning a group of data points into a small number of clusters. The proposed method is content-aware and feature extraction method which is able to run on low-end computerized machines, simple algorithm, required low-quality streaming, efficient and used for security purpose. It has the capability to highlight the boundary and the object. At first, the user enters the data in the representation of the input. Then in the next step, the digital image is converted into groups clusters. Clusters are divided into many regions. The same categories with same features of clusters are assembled within a group and different clusters are placed in other groups. Finally, the clusters are combined with respect to similar features and then represented in the form of segments. The clustered image depicts the clear representation of the digital image in order to highlight the regions and boundaries of the image. At last, the final image is presented in the form of segments. All colors of the image are separated in clusters.Keywords: clustering, image segmentation, K-means function, local and global minimum, region
Procedia PDF Downloads 3765461 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 985460 Hounsfield-Based Automatic Evaluation of Volumetric Breast Density on Radiotherapy CT-Scans
Authors: E. M. D. Akuoko, Eliana Vasquez Osorio, Marcel Van Herk, Marianne Aznar
Abstract:
Radiotherapy is an integral part of treatment for many patients with breast cancer. However, side effects can occur, e.g., fibrosis or erythema. If patients at higher risks of radiation-induced side effects could be identified before treatment, they could be given more individual information about the risks and benefits of radiotherapy. We hypothesize that breast density is correlated with the risk of side effects and present a novel method for automatic evaluation based on radiotherapy planning CT scans. Methods: 799 supine CT scans of breast radiotherapy patients were available from the REQUITE dataset. The methodology was first established in a subset of 114 patients (cohort 1) before being applied to the whole dataset (cohort 2). All patients were scanned in the supine position, with arms up, and the treated breast (ipsilateral) was identified. Manual experts contour available in 96 patients for both the ipsilateral and contralateral breast in cohort 1. Breast tissue was segmented using atlas-based automatic contouring software, ADMIRE® v3.4 (Elekta AB, Sweden). Once validated, the automatic segmentation method was applied to cohort 2. Breast density was then investigated by thresholding voxels within the contours, using Otsu threshold and pixel intensity ranges based on Hounsfield units (-200 to -100 for fatty tissue, and -99 to +100 for fibro-glandular tissue). Volumetric breast density (VBD) was defined as the volume of fibro-glandular tissue / (volume of fibro-glandular tissue + volume of fatty tissue). A sensitivity analysis was performed to verify whether calculated VBD was affected by the choice of breast contour. In addition, we investigated the correlation between volumetric breast density (VBD) and patient age and breast size. VBD values were compared between ipsilateral and contralateral breast contours. Results: Estimated VBD values were 0.40 (range 0.17-0.91) in cohort 1, and 0.43 (0.096-0.99) in cohort 2. We observed ipsilateral breasts to be denser than contralateral breasts. Breast density was negatively associated with breast volume (Spearman: R=-0.5, p-value < 2.2e-16) and age (Spearman: R=-0.24, p-value = 4.6e-10). Conclusion: VBD estimates could be obtained automatically on a large CT dataset. Patients’ age or breast volume may not be the only variables that explain breast density. Future work will focus on assessing the usefulness of VBD as a predictive variable for radiation-induced side effects.Keywords: breast cancer, automatic image segmentation, radiotherapy, big data, breast density, medical imaging
Procedia PDF Downloads 1335459 Standard Protocol Selection for Acquisition of Breast Thermogram in Perspective of Early Breast Cancer Detection
Authors: Mrinal Kanti Bhowmik, Usha Rani Gogoi Jr., Anjan Kumar Ghosh, Debotosh Bhattacharjee
Abstract:
In the last few decades, breast thermography has achieved an average sensitivity and specificity of 90% for breast tumor detection. Breast thermography is a non-invasive, cost-effective, painless and radiation-free breast imaging modality which makes a significant contribution to the evaluation and diagnosis of patients, suspected of having breast cancer. An abnormal breast thermogram may indicate significant biological risk for the existence or the development of breast tumors. Breast thermography can detect a breast tumor, when the tumor is in its early stage or when the tumor is in a dense breast. The infrared breast thermography is very sensitive to environmental changes for which acquisition of breast thermography should be performed under strictly controlled conditions by undergoing some standard protocols. Several factors like air, temperature, humidity, etc. are there to be considered for characterizing thermal images as an imperative tool for detecting breast cancer. A detailed study of various breast thermogram acquisition protocols adopted by different researchers in their research work is provided here in this paper. After going through a rigorous study of different breast thermogram acquisition protocols, a new standard breast thermography acquisition setup is proposed here in this paper for proper and accurate capturing of the breast thermograms. The proposed breast thermogram acquisition setup is being built in the Radiology Department, Agartala Government Medical College (AGMC), Govt. of Tripura, Tripura, India. The breast thermograms are captured using FLIR T650sc thermal camera with the thermal sensitivity of 20 mK at 30 degree C. The paper is an attempt to highlight the importance of different critical parameters of breast thermography like different thermography views, patient preparation protocols, acquisition room requirements, acquisition system requirements, etc. This paper makes an important contribution by providing a detailed survey and a new efficient approach on breast thermogram capturing.Keywords: acquisition protocol, breast cancer, breast thermography, infrared thermography
Procedia PDF Downloads 3975458 Lived Experience of Breast Cancer for Arab Muslim Women
Authors: Nesreen M. Alqaissi
Abstract:
Little is known about the lived experiences of breast cancer among Arab Muslim women. The researcher used a qualitative interpretive phenomenological research design to explore the lived experiences of breast cancer as described by Jordanian Muslim women. A purposive sample of 20 women with breast cancer was recruited. Data were collected utilizing individual semi-structured interviews, and analyzed using Heideggerian Hermeneutical methodology. Results: Five related themes and one constitutive pattern: (a) breast cancer means death; (b) matriarchal family members as important source of support; (c) spirituality as a way to live and survive breast cancer; (d) concealing cancer experiences to protect self and families; (e) physicians as protectors and treatment decision makers; (f) the constitutive pattern: culture influencing Jordanian women experiences with breast cancer. In conclusion, researchers and healthcare providers should consider the influence of culture, spirituality, and families, when caring for women with breast cancer from Jordan.Keywords: breast cancer, Arab Muslim, Jordan, lived experiences, spirituality, culture
Procedia PDF Downloads 5145457 Classification of Computer Generated Images from Photographic Images Using Convolutional Neural Networks
Authors: Chaitanya Chawla, Divya Panwar, Gurneesh Singh Anand, M. P. S Bhatia
Abstract:
This paper presents a deep-learning mechanism for classifying computer generated images and photographic images. The proposed method accounts for a convolutional layer capable of automatically learning correlation between neighbouring pixels. In the current form, Convolutional Neural Network (CNN) will learn features based on an image's content instead of the structural features of the image. The layer is particularly designed to subdue an image's content and robustly learn the sensor pattern noise features (usually inherited from image processing in a camera) as well as the statistical properties of images. The paper was assessed on latest natural and computer generated images, and it was concluded that it performs better than the current state of the art methods.Keywords: image forensics, computer graphics, classification, deep learning, convolutional neural networks
Procedia PDF Downloads 3385456 A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories
Authors: Nabilah Ibrahim, Khaliza Musa
Abstract:
The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI.Keywords: B-mode Ultrasound Image, carotid artery diameter, canny edge detection, body mass index
Procedia PDF Downloads 4455455 Detection of Lymphedema after Breast Cancer in Yucatecan Women
Authors: Olais A. Ingrid, Peraza G. Leydi, Estrella C. Damaris
Abstract:
Breast cancer is the most common among women worldwide; the different treatments can bring sequels that directly affect the quality of life, such as lymphedema. The objective was to determine if there is presence of lymphedema secondary to breast cancer in Yucatecan women. It was an observational, analytical, cross-sectional study, 92 women were included who met the following criteria: women with surgical treatment for unilateral: breast cancer, aged between 25 and 65 years old, minimum 6 weeks after unilateral breast surgery and have completed any type of chemotherapy or adjuvant radiotherapy treatment for breast cancer. The evaluation was through indirect measurement volume by circometry to determine the presence of lymphedema. 23% of women had lymphedema grade I. It related to the presence of some of the symptoms like stiffness, swelling, decreased range of motion and feeling of heaviness in the arm of the operated side of the breast. It is important to determine the presence of lymphedema to perform physical therapy treatment.Keywords: breast cancer, lymphedema, physical therapy, Yucatan
Procedia PDF Downloads 3515454 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 365453 Experiencing Scarred Body among Thai Women Living with Breast Cancer
Authors: Dusanee Suwankhong, Pranee Liamputtong
Abstract:
Breast surgery leaves undesirable scars to all women who experienced mastectomy, despite the fact that this could be a principle approach to save one life. This paper explores how Thai women living with breast cancer perceived and experienced a scarred body after breast surgery. In-depth interviews and drawing methods were employed among 20 women diagnosed with breast cancer. The interviewed data were analysed using thematic analysis method. The results showed that all women with breast cancer who underwent breast surgery perceived and experienced scar as a persisting and visible side-effect. This disfigurement appearance presented a negative image of feminine identity and led to emotional burdens among women. They responded to being scarred in different ways relating to their perceptions of body and changes. The older group had less embarrassed feelings towards being scarred comparing to the younger one. All women tried to seek means to cope with such physical impairment and keep balance life related to their condition. For example, they relied on Buddhism practice and tried to heal the keloid using natural products. Scars appeared to be an unpleasant effect for women who underwent breast mastectomy. Nurses and health care professionals in the local health service sectors need to pay close attention to how the women see the scarred body and their experiences of living with the distorted feminine appearance, and to provide sensitive support that meets the needs of these vulnerable women. The suitable supports can reduce the sense of embarrassment and increase their sense of self-confidence about their social femininity.Keywords: breast surgery, emotional response, qualitative study, scars, Thai women
Procedia PDF Downloads 1695452 Comparison of Back-Projection with Non-Uniform Fast Fourier Transform for Real-Time Photoacoustic Tomography
Authors: Moung Young Lee, Chul Gyu Song
Abstract:
Photoacoustic imaging is the imaging technology that combines the optical imaging and ultrasound. This provides the high contrast and resolution due to optical imaging and ultrasound imaging, respectively. We developed the real-time photoacoustic tomography (PAT) system using linear-ultrasound transducer and digital acquisition (DAQ) board. There are two types of algorithm for reconstructing the photoacoustic signal. One is back-projection algorithm, the other is FFT algorithm. Especially, we used the non-uniform FFT algorithm. To evaluate the performance of our system and algorithms, we monitored two wires that stands at interval of 2.89 mm and 0.87 mm. Then, we compared the images reconstructed by algorithms. Finally, we monitored the two hairs crossed and compared between these algorithms.Keywords: back-projection, image comparison, non-uniform FFT, photoacoustic tomography
Procedia PDF Downloads 4345451 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 1135450 Molecular Study of P53- and Rb-Tumor Suppressor Genes in Human Papilloma Virus-Infected Breast Cancers
Authors: Shakir H. Mohammed Al-Alwany, Saad Hasan M. Ali, Ibrahim Mohammed S. Shnawa
Abstract:
The study was aimed to define the percentage of detection of high-oncogenic risk types of HPV and their genotyping in archival tissue specimens that ranged from apparently healthy tissue to invasive breast cancer by using one of the recent versions of In Situ Hybridization(ISH) 0.2. To find out rational significance of such genotypes as well as over expressed products of mutants P53 and RB genes on the severity of underlying breast cancers. The DNA of HPV was detected in 46.5 % of tissues from breast cancers while HPV DNA in the tissues from benign breast tumours was detected in 12.5%. No HPV positive–ISH reaction was detected in healthy breast tissues of the control group. HPV DNA of genotypes (16, 18, 31 and 33) was detected in malignant group in frequency of 25.6%, 27.1%, 30.2% and 12.4%, respectively. Over expression of p53 was detected by IHC in 51.2% breast cancer cases and in 50% benign breast tumour group, while none of control group showed P53- over expression. Retinoblastoma protein was detected by IHC test in 49.7% of malignant breast tumours, 54.2% of benign breast tumours but no signal was reported in the tissues of control group. The significance prevalence of expression of mutated p53 & Rb genes as well as detection of high-oncogenic HPV genotypes in patients with breast cancer supports the hypothesis of an etiologic role for the virus in breast cancer development.Keywords: human papilloma virus, P53, RB, breast cancer
Procedia PDF Downloads 4815449 Destruction of Atherosclerotic Plaque Using Pulse Ultrasound with a Planar Rectangular Ultrasound Transducer
Authors: Christakis Damianou, Christos Christofi, Nicos Mylonas
Abstract:
The aim of the proposed study was to evaluate mechanical mode ultrasound using a flat rectangular (3x10 mm2) MRI compatible transducer operating at 5 MHz for destroying atherosclerotic plaque. The system was tested initially in a Hydroxyapatite-polyalactide (HA/PLA) model. An optimized protocol was decided and then applied in atherosclerotic plaque of a rabbit. The plaque in the rabbit was created using a high cholesterol diet. The atherosclerotic plaque was imaged using MRI. This study shows that the destruction of atherosclerotic plaque is feasible.Keywords: mri, ultrasound, atherosclerotic, plaque, pulse
Procedia PDF Downloads 3045448 Association of Overweight and Obesity with Breast Cancer
Authors: Amir Ghasemlouei, Alireza Khalaj
Abstract:
In women, cancer of the breast is one of the most common incident cancer and cause of death from cancer .we reviewed the prevalence of obesity and its association with breast cancer. In this study, a total of 25 articles regarding the subject matter of the article have been presented in which 640 patients were examined that 320 patients with breast cancer and 320 were controls. The distribution of breast cancer patients and controls with respect to their anthropometric indices in patients with higher weight, which was statistically significant (60.2 ± 10.2 kg) compared with control group (56.1 ± 11.3 kg). The body mass index of patients was (26.06+/-3.42) and significantly higher than the control group (24.1+/-1.7). Obesity leads to increased levels of adipose tissue in the body that can be stored toxins and carcinogens to produce a continuous supply. Due to the high level of fat and the role of estrogen in a woman is endogenous estrogen of the tumor and regulate the activities of growth steroids, obesity is a risk factor for breast cancer is confirmed. Our study and other studies show that obesity is a risk factor for breast cancer. And with a weight loss intervention for breast cancer can be prevented in the future.Keywords: breast cancer, review study, obesity, overweight
Procedia PDF Downloads 4545447 Influence of Bra Band Tension and Underwire Angles on Breast Motion
Authors: Cheuk Wing Lee, Kit Lun Yick, Sun Pui Ng, Joanne Yip
Abstract:
Daily activities and exercise may result in large displacements of the breasts, which lead to breast pain and discomfort. Therefore, a proper bra design and fit can help to control excessive breast motion to prevent the over-stretching of the connective tissues. Nevertheless, bra fit problems, such as excessively high tension of the shoulder straps and a tight underband could have substantially negative effects on the wear comfort and health of the wearer. The purpose of this study is to, therefore, examine the effects of bra band tension on breast displacement. Usually, human wear trials are carried out, but there are inconsistencies during testing. Therefore, a soft manikin torso is used to examine breast displacement at walking speeds of 2.30 km/h and 4.08 km/h. The breast displacement itself is determined by using a VICON motion capture system. The 3D geometric changes of the underwire bra band tension and the corresponding control of breast movement are also analyzed by using a 3D handheld scanner along with Rapidform software. The results indicate that an appropriate bra band tension can help to reduce breast displacement and provide a comfortable angle for the underwire. The findings can be used by designers and bra engineers as a reference source to advance bra design and development.Keywords: bra band, bra features, breast displacement, underwire angle
Procedia PDF Downloads 251