Search results for: CO2 emissions
1297 Study of Methods to Reduce Carbon Emissions in Structural Engineering
Authors: Richard Krijnen, Alan Wang
Abstract:
As the world is aiming to reach net zero around 2050, structural engineers must begin finding solutions to contribute to this global initiative. Approximately 40% of global energy-related emissions are due to buildings and construction, and a building’s structure accounts for 50% of its embodied carbon, which indicates that structural engineers are key contributors to finding solutions to reach carbon neutrality. However, this task presents a multifaceted challenge as structural engineers must navigate technical, safety and economic considerations while striving to reduce emissions. This study reviews several options and considerations to reduce carbon emissions that structural engineers can use in their future designs without compromising the structural integrity of their proposed design. Low-carbon structures should adhere to several guiding principles. Firstly, prioritize the selection of materials with low carbon footprints, such as recyclable or alternative materials. Optimization of design and engineering methods is crucial to minimize material usage. Encouraging the use of recyclable and renewable materials reduces dependency on natural resources. Energy efficiency is another key consideration involving the design of structures to minimize energy consumption across various systems. Choosing local materials and minimizing transportation distances help in reducing carbon emissions during transport. Innovation, such as pre-fabrication and modular design or low-carbon concrete, can further cut down carbon emissions during manufacturing and construction. Collaboration among stakeholders and sharing experiences and resources are essential for advancing the development and application of low-carbon structures. This paper identifies current available tools and solutions to reduce embodied carbon in structures, which can be used as part of daily structural engineering practice.Keywords: efficient structural design, embodied carbon, low-carbon material, sustainable structural design
Procedia PDF Downloads 391296 Optimal Economic Restructuring Aimed at an Optimal Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions
Authors: Alexander Vaninsky
Abstract:
The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.Keywords: economic restructuring, input-output analysis, divisia index, factorial decomposition, E3 models
Procedia PDF Downloads 3131295 Effect of Hydrogen on the Performance of a Methanol SI-Engine at City Driving Conditions
Authors: Junaid Bin Aamir, Ma Fanhua
Abstract:
Methanol is one of the most suitable alternative fuels for replacing gasoline in present and future spark-ignited engines. However, for pure methanol engines, cold start problems and misfires are observed under certain operating conditions. Hydrogen provides a solution for such problems. This paper experimentally investigated the effect of hydrogen on the performance of a pure methanol SI-engine at city driving conditions (1500 rpm speed and 1.18 excess air ratio). Hydrogen was used as a part of methanol reformed syngas (67% hydrogen by volume). 4% by mass of the total methanol converted to hydrogen and other constituent gases, was used in each cycle. Port fuel injection was used to inject methanol and hydrogen-rich syngas into the 4-cylinder engine. The results indicated an increase in brake thermal efficiency up to 5% with the addition of hydrogen, a decrease in brake specific fuel consumption up to 200 g/kWh, and a decrease in exhaust gas temperature by 100°C for all mean effective pressures. Hydrogen addition also decreased harmful exhaust emissions significantly. There was a reduction in THC emissions up to 95% and CO emissions up to 50%. NOx emissions were slightly increased (up to 15%), but they can be reduced to zero by lean burn strategy.Keywords: alternative fuels, hydrogen, methanol, performance, spark ignition engines
Procedia PDF Downloads 3041294 Proposal of Methodology Based on Technical Characterization and Quantitative Contrast of Co₂ Emissions for the Migration to Electric Mobility of the Vehicle Fleet: Case Study of Electric Companies in Ecuador
Authors: Rodrigo I. Ullauri, Santiago E. Tinajero, Omar O. Ramos, Paola R. Quintana
Abstract:
The increase of CO₂ emissions in the atmosphere and its impact on climate change is a global concern. The transportation sector is a significant consumer of fossil fuels and contributes significantly to greenhouse gas emissions. The current challenge is to find ways to reduce the use of fossil fuels in transportation. In Ecuador, where 92% of electricity is generated from clean sources, the concept of e-mobility is considered an attractive alternative to address the challenge of sustainable mobility. The proposal is to migrate from combustion-powered vehicles to electric vehicles in the electric companies of Ecuador, using a methodology to standardize criteria, determine specific requirements, contrast technical characteristics, and estimate emission reductions. The results showed that there are three categories of vehicles that have electric counterparts suitable for performing activities under certain operation parameters inherent to current technology limitations but with a significant contribution to the reduction of annual CO₂ emissions.Keywords: climate change, electro mobility, energy, sustainable transportation
Procedia PDF Downloads 881293 Cost Analysis of Hybrid Wind Energy Generating System Considering CO2 Emissions
Authors: M. A. Badr, M. N. El Kordy, A. N. Mohib, M. M. Ibrahim
Abstract:
The basic objective of the research is to study the effect of hybrid wind energy on the cost of generated electricity considering the cost of reduction CO2 emissions. The system consists of small wind turbine(s), storage battery bank and a diesel generator (W/D/B). Using an optimization software package, different system configurations are investigated to reach optimum configuration based on the net present cost (NPC) and cost of energy (COE) as economic optimization criteria. The cost of avoided CO2 is taken into consideration. The system is intended to supply the electrical load of a small community (gathering six families) in a remote Egyptian area. The investigated system is not connected to the electricity grid and may replace an existing conventional diesel powered electric supply system to reduce fuel consumption and CO2 emissions. The simulation results showed that W/D energy system is more economic than diesel alone. The estimated COE is 0.308$/kWh and extracting the cost of avoided CO2, the COE reached 0.226 $/kWh which is an external benefit of wind turbine, as there are no pollutant emissions through operational phase.Keywords: hybrid wind turbine systems, remote areas electrification, simulation of hybrid energy systems, techno-economic study
Procedia PDF Downloads 3971292 Evaluation of a Risk Assessment Method for Fiber Emissions from Sprayed Asbestos-Containing Materials
Authors: Yukinori Fuse, Masato Kawaguchi
Abstract:
A quantitative risk assessment method was developed for fiber emissions from sprayed asbestos-containing materials (ACMs). In Japan, instead of being quantitative, these risk assessments have relied on the subjective judgment of skilled engineers, which may vary from one person to another. Therefore, this closed sampling method aims at avoiding any potential variability between assessments. This method was used to assess emissions from ACM sprayed in eleven buildings and the obtained results were compared with the subjective judgments of a skilled engineer. An approximate correlation tendency was found between both approaches. In spite of existing uncertainties, the closed sampling method is useful for public health protection. We firmly believe that this method may find application in the management and renovation decisions of buildings using friable and sprayed ACM.Keywords: asbestos, renovation, risk assessment, maintenance
Procedia PDF Downloads 3781291 The Effect of Hydrogen on Performance and Emissions of a Methanol Si-Engine at Part Load
Authors: Junaid Bin Aamir, Ma Fanhua
Abstract:
Methanol and hydrogen are the most suitable alternative fuel resources for the existing and future internal combustion engines. This paper experimentally examined the effects of hydrogen addition on the performance and emission characteristics of a spark-ignition engine fueled with methanol at part load conditions. The experiments were carried out for various engine speeds and loads. Hydrogen-rich syngas was used to enhance the performance of the test engine. It was formed by catalytic dissociation of methanol itself, and volumetric hydrogen fraction in syngas was about 67%. A certain amount of syngas dissociated from methanol was injected into the intake manifold in each engine cycle, and the low heating value (LHV) of hydrogen-rich syngas used was 4% of methanol in each cycle. Both the fuels were injected separately using port fuel injectors. The results showed that brake thermal efficiency of the engine was enhanced by 3-5% with hydrogen addition, while brake specific fuel consumption and exhaust gas temperature were reduced. There was a significant reduction (90-95%) in THC and (35-50%) in CO emissions at the exhaust. NOx emissions from hydrogen blended methanol increased slightly (10-15%), but they can be reduced by using lean fuel-air mixture to keep the cylinder temperature low.Keywords: hydrogen, methanol, alternative fuel, emissions, spark ignition engines
Procedia PDF Downloads 1951290 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida
Authors: K. Thakkar, C. Ghenai
Abstract:
An integrated modeling approach was used in this study to (1) track energy consumption, production, and resource extraction, (2) track greenhouse gases emissions and (3) analyze emissions for local and regional air pollutions. The model was used in this study for short and long term energy and GHG emissions reduction analysis for the state of Florida. The integrated modeling methodology will help to evaluate the alternative energy scenarios and examine emissions-reduction strategies. The mitigation scenarios have been designed to describe the future energy strategies. They consist of various demand and supply side scenarios. One of the GHG mitigation scenarios is crafted by taking into account the available renewable resources potential for power generation in the state of Florida to compare and analyze the GHG reduction measure against ‘Business As Usual’ and ‘Florida State Policy’ scenario. Two more ‘integrated’ scenarios, (‘Electrification’ and ‘Efficiency and Lifestyle’) are crafted through combination of various mitigation scenarios to assess the cumulative impact of the reduction measures such as technological changes and energy efficiency and conservation.Keywords: energy planning, climate change mitigation assessment, integrated modeling approach, energy alternatives, and GHG emission reductions
Procedia PDF Downloads 4431289 The Role of Natural Gas in Reducing Carbon Emissions
Authors: Abdulrahman Nami Almutairi
Abstract:
In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable.Keywords: natural gas, clean fuel, carbon emissions, global warming, environmental protection
Procedia PDF Downloads 421288 The Current Situation and Perspectives of Electricity Demand and Estimation of Carbon Dioxide Emissions and Efficiency
Abstract:
This article presents a current and future energy situation in Libya. The electric power efficiency and operating hours in power plants are evaluated from 2005 to 2010. Carbon dioxide emissions in most of power plants are estimated. In 2005, the efficiency of steam power plants achieved a range of 20% to 28%. While, the gas turbine power plants efficiency ranged between 9% and 25%, this can be considered as low efficiency. However, the efficiency improvement has clearly observed in some power plants from 2008 to 2010, especially in the power plant of North Benghazi and west Tripoli. In fact, these power plants have modified to combine cycle. The efficiency of North Benghazi power plant has increased from 25% to 46.6%, while in Tripoli it is increased from 22% to 34%. On the other hand, the efficiency improvement is not observed in the gas turbine power plants. When compared to the quantity of fuel used, the carbon dioxide emissions resulting from electricity generation plants were very high. Finally, an estimation of the energy demand has been done to the maximum load and the annual load factor (i.e., the ratio between the output power and installed power).Keywords: power plant, efficiency improvement, carbon dioxide emissions, energy situation in Libya
Procedia PDF Downloads 4761287 Digitalized Cargo Coordination to Eliminate Emissions in the Shipping Ecosystem: A System Dynamical Approach
Authors: Henry Schwartz, Bogdan Iancu, Magnus Gustafsson, Johan Lilius
Abstract:
The shipping sector generates significant amounts of carbon emissions on annual basis. The excess amount of carbon dioxide is harmful for both the environment and the society, and partly for that reason, there is acute interest to decrease the volume of anthropogenic carbon dioxide emissions in shipping. The usage of the existing cargo carrying capacity can be maximized, and the share of time used in actual transportation operations could be increased if the whole transportation and logistics chain was optimized with the aid of information sharing done through a centralized marketplace and an information-sharing platform. The outcome of this change would be decreased carbon dioxide emission volumes produced per each metric ton of cargo transported by a vessel. Cargo coordination is a platform under development that matches the need for waterborne transportation services with the ships that operate at a given moment in time. In this research, the transition towards adopting cargo coordination is modelled with system dynamics. The model encompasses the complex supply-demand relationships of ship operators and cargo owners. The built scenarios predict the pace at which different stakeholders start using the digitalized platform and by doing so reduce the amount of annual CO2 emissions generated. To improve the reliability of the results, various sensitivity analyses considering the pace of transition as well as the overall impact on the environment (carbon dioxide emissions per amount of cargo transported) are conducted. The results of the study can be used to support investors and politicians in decision making towards more environmentally sustainable solutions. In addition, the model provides concepts and ideas for a wider discussion considering the paths towards carbon neutral transportation.Keywords: carbon dioxide emissions, energy efficiency, sustainable transportation, system dynamics
Procedia PDF Downloads 1451286 Life Cycle Assessment of Almond Processing: Off-ground Harvesting Scenarios
Authors: Jessica Bain, Greg Thoma, Marty Matlock, Jeyam Subbiah, Ebenezer Kwofie
Abstract:
The environmental impact and particulate matter emissions (PM) associated with the production and packaging of 1 kg of almonds were evaluated using life cycle assessment (LCA). The assessment began at the point of ready to harvest with a system boundary was a cradle-to-gate assessment of almond packaging in California. The assessment included three scenarios of off-ground harvesting of almonds. The three general off-ground harvesting scenarios with variations include the harvested almonds solar dried on a paper tarp in the orchard, the harvested almonds solar dried on the floor in a separate lot, and the harvested almonds dried mechanically. The life cycle inventory (LCI) data for almond production were based on previously published literature and data provided by Almond Board of California (ABC). The ReCiPe 2016 method was used to calculate the midpoint impacts. Using consequential LCA model, the global warming potential (GWP) for the three harvesting scenarios are 2.90, 2.86, and 3.09 kg CO2 eq/ kg of packaged almond for scenarios 1, 2a, and 3a, respectively. The global warming potential for conventional harvesting method was 2.89 kg CO2 eq/ kg of packaged almond. The particulate matter emissions for each scenario per hectare for each off-ground harvesting scenario is 77.14, 9.56, 66.86, and 8.75 for conventional harvesting and scenarios 1, 2, and 3, respectively. The most significant contributions to the overall emissions were from almond production. The farm gate almond production had a global warming potential of 2.12 kg CO2 eq/ kg of packaged almond, approximately 73% of the overall emissions. Based on comparisons between the GWP and PM emissions, scenario 2a was the best tradeoff between GHG and PM production.Keywords: life cycle assessment, low moisture foods, sustainability, LCA
Procedia PDF Downloads 821285 Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture
Authors: Jerzy Merkisz, Piotr Lijewski, Pawel Fuc, Maciej Siedlecki, Andrzej Ziolkowski, Sylwester Weymann
Abstract:
The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for the carriage of this type of cargo in terms of exhaust emissions and fuel consumption.Keywords: emission, transport, fuel consumption, PEMS
Procedia PDF Downloads 5281284 Greenhouse Gas Emissions from a Tropical Eutrophic Freshwater Wetland
Authors: Juan P. Silva, T. R. Canchala, H. J. Lubberding, E. J. Peña, H. J. Gijzen
Abstract:
This study measured the fluxes of greenhouse gases (GHGs) i.e. CO2, CH4 and N2O from a tropical eutrophic freshwater wetland (“Sonso Lagoon”) which receives input loading nutrient from several sources i.e. agricultural run-off, domestic sewage, and a polluted river. The flux measurements were carried out at four different points using the static chamber technique. CO2 fluxes ranged from -8270 to 12210 mg.m-2.d-1 (median = 360; SD = 4.11; n = 50), CH4 ranged between 0.2 and 5270 mg.m-2.d-1 (median = 60; SD = 1.27; n = 45), and N2O ranged from -31.12 to 15.4 mg N2O m-2.d-1 (median = 0.05; SD = 9.36; n = 42). Although some negative fluxes were observed in the zone dominated by floating plants i.e. Eichornia crassipes, Salvinia sp., and Pistia stratiotes L., the mean values indicated that the Sonso Lagoon was a net source of CO2, CH4 and N2O. In addition, an effect of the eutrophication on GHG emissions could be observed in the positive correlation found between CO2, CH4 and N2O generation and COD, PO4-3, NH3-N, TN and NO3-N. The eutrophication impact on GHG production highlights the necessity to limit the anthropic activities on freshwater wetlands.Keywords: eutrophication, greenhouse gas emissions, freshwater wetlands, climate change
Procedia PDF Downloads 3601283 A Preliminary End-Point Approach for Calculating Odorous Emissions in Life Cycle Assessment
Authors: G. M. Cappucci, C. Losi, P. Neri, M. Pini, A. M. Ferrari
Abstract:
Waste treatment and many production processes cause significant emissions of odors, thus typically leading to intense debate. The introduction of odorimetric units and their units of measurement, i.e., U.O. / m3, with the European regulation UE 13725 of 2003 designates the dynamic olfactometry as the official method for odorimetric analysis. Italy has filled the pre-existing legislative gap on the regulation of odorous emissions only recently, by introducing the Legislative Decree n°183 in 2017. The concentration of the odor to which a perceptive response occurs to 50% of the panel corresponds to the odorimetric unit of the sample under examination (1 U.O. / m3) and is equal to the threshold of perceptibility of the substance (O.T.). In particular, the treatment of Municipal Solid Waste (MSW) by Mechanical-Biological Treatment (MBT) plants produces odorous emissions, typically generated by aerobic procedures, potentially leading to significant environmental burdens. The quantification of odorous emissions represents a challenge within a LCA study since primary data are often missing. The aim of this study is to present the preliminary findings of an ongoing study whose aim is to identify and quantify odor emissions from the Tre Monti MBT plant, located in Imola (Bologna, Italy). Particularly, the issues faced with odor emissions in the present work are: i) the identification of the components of the gaseous mixture, whose total quantification in terms of odorimetric units is known, ii) the distribution of the total odorimetric units among the single substances identified and iii) the quantification of the mass emitted for each substance. The environmental analysis was carried out on the basis of the amount of emitted substance. The calculation method IMPact Assessment of Chemical Toxics (IMPACT) 2002+ has been modified since the original one does not take into account indoor emissions. Characterization factors were obtained by adopting a preliminary method in order to calculate indoor human effects. The impact and damage assessments were performed without the identification of new categories, thus in accordance with the categories of the selected calculation method. The results show that the damage associated to odorous emissions is the 0.24% of the total damage, and the most affected damage category is Human Health, mainly as a consequence of ammonia emission (86.06%). In conclusion, this preliminary approach allowed identifying and quantifying the substances responsible for the odour impact, in order to attribute them the relative damage on human health as well as ecosystem quality.Keywords: life cycle assessment, municipal solid waste, odorous emissions, waste treatment
Procedia PDF Downloads 1721282 Impact of Traffic Restrictions due to Covid19, on Emissions from Freight Transport in Mexico City
Authors: Oscar Nieto-Garzón, Angélica Lozano
Abstract:
In urban areas, on-road freight transportation creates several social and environmental externalities. Then, it is crucial that freight transport considers not only economic aspects, like retailer distribution cost reduction and service improvement, but also environmental effects such as global CO2 and local emissions (e.g. Particulate Matter, NOX, CO) and noise. Inadequate infrastructure development, high rate of urbanization, the increase of motorization, and the lack of transportation planning are characteristics that urban areas from developing countries share. The Metropolitan Area of Mexico City (MAMC), the Metropolitan Area of São Paulo (MASP), and Bogota are three of the largest urban areas in Latin America where air pollution is often a problem associated with emissions from mobile sources. The effect of the lockdown due to COVID-19 was analyzedfor these urban areas, comparing the same period (January to August) of years 2016 – 2019 with 2020. A strong reduction in the concentration of primary criteria pollutants emitted by road traffic were observed at the beginning of 2020 and after the lockdown measures.Daily mean concentration of NOx decreased 40% in the MAMC, 34% in the MASP, and 62% in Bogota. Daily mean ozone levels increased after the lockdown measures in the three urban areas, 25% in MAMC, 30% in the MASP and 60% in Bogota. These changes in emission patterns from mobile sources drastically changed the ambient atmospheric concentrations of CO and NOX. The CO/NOX ratioat the morning hours is often used as an indicator of mobile sources emissions. In 2020, traffic from cars and light vehicles was significantly reduced due to the first lockdown, but buses and trucks had not restrictions. In theory, it implies a decrease in CO and NOX from cars or light vehicles, maintaining the levels of NOX by trucks(or lower levels due to the congestion reduction). At rush hours, traffic was reduced between 50% and 75%, so trucks could get higher speeds, which would reduce their emissions. By means an emission model, it was found that an increase in the average speed (75%) would reduce the emissions (CO, NOX, and PM) from diesel trucks by up to 30%. It was expected that the value of CO/NOXratio could change due to thelockdownrestrictions. However, although there was asignificant reduction of traffic, CO/NOX kept its trend, decreasing to 8-9 in 2020. Hence, traffic restrictions had no impact on the CO/NOX ratio, although they did reduce vehicle emissions of CO and NOX. Therefore, these emissions may not adequately represent the change in the vehicle emission patterns, or this ratio may not be a good indicator of emissions generated by vehicles. From the comparison of the theoretical data and those observed during the lockdown, results that the real NOX reduction was lower than the theoretical reduction. The reasons could be that there are other sources of NOX emissions, so there would be an over-representation of NOX emissions generated by diesel vehicles, or there is an underestimation of CO emissions. Further analysis needs to consider this ratioto evaluate the emission inventories and then to extend these results forthe determination of emission control policies to non-mobile sources.Keywords: COVID-19, emissions, freight transport, latin American metropolis
Procedia PDF Downloads 1361281 Solutions to Reduce CO2 Emissions in Autonomous Robotics
Authors: Antoni Grau, Yolanda Bolea, Alberto Sanfeliu
Abstract:
Mobile robots can be used in many different applications, including mapping, search, rescue, reconnaissance, hazard detection, and carpet cleaning, exploration, etc. However, they are limited due to their reliance on traditional energy sources such as electricity and oil which cannot always provide a convenient energy source in all situations. In an ever more eco-conscious world, solar energy offers the most environmentally clean option of all energy sources. Electricity presents threats of pollution resulting from its production process, and oil poses a huge threat to the environment. Not only does it pose harm by the toxic emissions (for instance CO2 emissions), it produces the combustion process necessary to produce energy, but there is the ever present risk of oil spillages and damages to ecosystems. Solar energy can help to mitigate carbon emissions by replacing more carbon intensive sources of heat and power. The challenge of this work is to propose the design and the implementation of electric battery recharge stations. Those recharge docks are based on the use of renewable energy such as solar energy (with photovoltaic panels) with the object to reduce the CO2 emissions. In this paper, a comparative study of the CO2 emission productions (from the use of different energy sources: natural gas, gas oil, fuel and solar panels) in the charging process of the Segway PT batteries is carried out. To make the study with solar energy, a photovoltaic panel, and a Buck-Boost DC/DC block has been used. Specifically, the STP005S-12/Db solar panel has been used to carry out our experiments. This module is a 5Wp-photovoltaic (PV) module, configured with 36 monocrystalline cells serially connected. With those elements, a battery recharge station is made to recharge the robot batteries. For the energy storage DC/DC block, a series of ultracapacitors have been used. Due to the variation of the PV panel with the temperature and irradiation, and the non-integer behavior of the ultracapacitors as well as the non-linearities of the whole system, authors have been used a fractional control method to achieve that solar panels supply the maximum allowed power to recharge the robots in the lesser time. Greenhouse gas emissions for production of electricity vary due to regional differences in source fuel. The impact of an energy technology on the climate can be characterised by its carbon emission intensity, a measure of the amount of CO2, or CO2 equivalent emitted by unit of energy generated. In our work, the coal is the fossil energy more hazardous, providing a 53% more of gas emissions than natural gas and a 30% more than fuel. Moreover, it is remarkable that existing fossil fuel technologies produce high carbon emission intensity through the combustion of carbon-rich fuels, whilst renewable technologies such as solar produce little or no emissions during operation, but may incur emissions during manufacture. The solar energy thus can help to mitigate carbon emissions.Keywords: autonomous robots, CO2 emissions, DC/DC buck-boost, solar energy
Procedia PDF Downloads 4211280 Mitigating CO2 Emissions in Developing Countries: The Role of Foreign Aid
Authors: Mohamed Boly
Abstract:
This paper investigates the link between foreign aid and environmental protection, specifically CO2 emissions, in aid recipient countries. Conflicting results exist in the literature regarding the environmental impact of foreign aid. We come to reconcile them, using Project-Level Aid Data with environment codes, over the 1980- 2010 period. The disaggregation of aid according to the environmental codes, show why the results of previous literature remain very mixed. Moreover, we find that the effect of environmental aid is conditioned by some specific characteristics of the recipient country, independently of the donor.Keywords: foreign aid, green aid, interactive effects, pollution
Procedia PDF Downloads 3031279 The Long-Run Impact of Financial Development on Greenhouse Gas Emissions in India: An Application of Regime Shift Based Cointegration Approach
Authors: Javaid Ahmad Dar, Mohammad Asif
Abstract:
The present study investigates the long-run impact of financial development, energy consumption and economic growth on greenhouse gas emissions for India, in presence of endogenous structural breaks, over a period of 1971-2013. Autoregressive distributed lag bounds testing procedure and Hatemi-J threshold cointegration technique have been used to test the variables for cointegration. ARDL bounds test did not confirm any cointegrating relationship between the variables. The threshold cointegration test establishes the presence of long-run impact of financial development, energy use and economic growth on greenhouse gas emissions in India. The results reveal that the long-run relationship between the variables has witnessed two regime shifts, in 1978 and 2002. The empirical evidence shows that financial sector development and energy consumption in India degrade environment. Unlike previous studies, this paper finds no statistical evidence of long-run relationship between economic growth and environmental deterioration. The study also challenges the existence of environmental Kuznets curve in India.Keywords: cointegration, financial development, global warming, greenhouse gas emissions, regime shift, unit root
Procedia PDF Downloads 3791278 Reducing Greenhouse Gass Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand
Authors: Ronbanchob Apiratikul
Abstract:
This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively.Keywords: recycling, garbage bank, waste management, recyclable wastes, greenhouse gases
Procedia PDF Downloads 4231277 The Relationships between Energy Consumption, Carbon Dioxide (CO2) Emissions, and GDP for Egypt: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of carbon dioxide (CO2) emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), CO2 emissions and gross domestic product (GDP) for Egypt using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Augmented Dickey-Fuller (ADF) test for stationarity, Johansen maximum likelihood method for co-integration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. The long-run equilibrium in the VECM suggests some negative impacts of the CO2 emissions and the coal and natural gas use on the GDP. Conversely, a positive long-run causality from the electricity consumption to the GDP is found to be significant in Egypt during the period. In the short-run, some positive unidirectional causalities exist, running from the coal consumption to the GDP, and the CO2 emissions and the natural gas use. Further, the GDP and the electricity use are positively influenced by the consumption of petroleum products and the direct combustion of crude oil. Overall, the results support arguments that there are relationships among environmental quality, energy use, and economic output in both the short term and long term; however, the effects may differ due to the sources of energy, such as in the case of Egypt for the period of 1980-2010.Keywords: CO2 emissions, Egypt, energy consumption, GDP, time series analysis
Procedia PDF Downloads 6141276 Green Aviation System: The Way Forward for Better Environment
Authors: Ramana Reddy, Vijay Kothari
Abstract:
Aircraft provide a fast, reliable mode of transport with no comparable alternative for long distance travel. Throughout the years, technology improvements have been made to aircraft and engines to make them more fuel efficient. Air traffic continues to grow around the world and needs more aircrafts to accommodate such rapid growth. This has direct consequences on two of the most important environmental factors i.e. emissions and noise. Aviation contributes about 2% of global greenhouse gas emissions. Aviation emits a number of pollutants that alter the chemical composition of the atmosphere, changing its radiative balance and hence influencing the climate. In order to reduce or if possible eliminate potential harm to the environment and also make air travel efficient and economical, an environmentally beneficial concept called “Green Aviation System” is required. This is a structured frame work with elements like innovative technologies/tools in engineering design, manufacturing, airport and fleet operations.Keywords: air traffic, environment, emissions, noise, green aviation system
Procedia PDF Downloads 4541275 Cross-Country Mitigation Policies and Cross Border Emission Taxes
Authors: Massimo Ferrari, Maria Sole Pagliari
Abstract:
Pollution is a classic example of economic externality: agents who produce it do not face direct costs from emissions. Therefore, there are no direct economic incentives for reducing pollution. One way to address this market failure would be directly taxing emissions. However, because emissions are global, governments might as well find it optimal to wait let foreign countries to tax emissions so that they can enjoy the benefits of lower pollution without facing its direct costs. In this paper, we first document the empirical relation between pollution and economic output with static and dynamic regression methods. We show that there is a negative relation between aggregate output and the stock of pollution (measured as the stock of CO₂ emissions). This relationship is also highly non-linear, increasing at an exponential rate. In the second part of the paper, we develop and estimate a two-country, two-sector model for the US and the euro area. With this model, we aim at analyzing how the public sector should respond to higher emissions and what are the direct costs that these policies might have. In the model, there are two types of firms, brown firms (which produce a polluting technology) and green firms. Brown firms also produce an externality, CO₂ emissions, which has detrimental effects on aggregate output. As brown firms do not face direct costs from polluting, they do not have incentives to reduce emissions. Notably, emissions in our model are global: the stock of CO₂ in the economy affects all countries, independently from where it is produced. This simplified economy captures the main trade-off between emissions and production, generating a classic market failure. According to our results, the current level of emission reduces output by between 0.4 and 0.75%. Notably, these estimates lay in the upper bound of the distribution of those delivered by studies in the early 2000s. To address market failure, governments should step in introducing taxes on emissions. With the tax, brown firms pay a cost for polluting hence facing the incentive to move to green technologies. Governments, however, might also adopt a beggar-thy-neighbour strategy. Reducing emissions is costly, as moves production away from the 'optimal' production mix of brown and green technology. Because emissions are global, a government could just wait for the other country to tackle climate change, ripping the benefits without facing any costs. We study how this strategic game unfolds and show three important results: first, cooperation is first-best optimal from a global prospective; second, countries face incentives to deviate from the cooperating equilibria; third, tariffs on imported brown goods (the only retaliation policy in case of deviation from the cooperation equilibrium) are ineffective because the exchange rate would move to compensate. We finally study monetary policy under when costs for climate change rise and show that the monetary authority should react stronger to deviations of inflation from its target.Keywords: climate change, general equilibrium, optimal taxation, monetary policy
Procedia PDF Downloads 1591274 Assessment of Pollutant Concentrations and Respiratory Tract Depositions of PM from Traffic Emissions: A Case Study of a Highway Toll Plaza in India
Authors: Nazneen, Aditya Kumar Patra
Abstract:
The aim of this study was to investigate the personal exposures of toll plaza workers on a busy national highway in India during the winter season to PM₂.₅, PM₁₀, BC (black carbon), and UFP (ultrafine particles). The results showed that toll workers inside the toll collection booths (ITC) were exposed to higher concentrations of air pollutants than those working outside the booths (OTC), except for UFP. Specifically, the concentrations of PM₂.₅ were 20₄.₇ µg m⁻³ (ITC) and 100.4 µg m⁻³ (OTC), while PM₁₀ concentrations were 326.1 µg m⁻³ (ITC) and 24₄.₇ µg m⁻³ (OTC), and BC concentrations were 30.7 µg m⁻³ (ITC) and 17.2 µg m⁻³ (OTC). In contrast, UFP concentrations were higher at OTC (11312.8 pt cm⁻³) than at IOC (7431.6 pt cm⁻³). The diurnal variation of pollutants showed higher concentrations in the evening due to increased traffic and less atmospheric dispersion. The respiratory deposition dose (RDD) of pollutants was higher inside the toll booths, especially during the evening. The study also revealed that PM particles consisted of soot, mineral and fly ash, which are proxies of fresh exhaust emissions, re-suspended road dust, and industrial emissions, respectively. The presence of Si, Al, Ca and Pb, as confirmed by EDX (Energy Dispersive X-ray analysis) analyses, indicated the sources of pollutants to be re-suspended road dust, brake/tire wear, and construction dust. The findings emphasize the need for policies to regulate air pollutant concentrations, particularly in workplaces situated near busy roads.Keywords: air pollution, PM₂.₅, black carbon, traffic emissions
Procedia PDF Downloads 861273 Driving Forces of Net Carbon Emissions in a Tropical Dry Forest, Oaxaca, México
Authors: Rogelio Omar Corona-Núñez, Alma Mendoza-Ponce
Abstract:
The Tropical Dry Forest not only is one of the most important tropical ecosystems in terms of area, but also it is one of the most degraded ecosystems. However, little is known about the degradation impacts on carbon stocks, therefore in carbon emissions. There are different studies which explain its deforestation dynamics, but there is still a lack of understanding of how they correlate to carbon losses. Recently different authors have built current biomass maps for the tropics and Mexico. However, it is not clear how well they predict at the local scale, and how they can be used to estimate carbon emissions. This study quantifies the forest net carbon losses by comparing the potential carbon stocks and the different current biomass maps in the Southern Pacific coast in Oaxaca, Mexico. The results show important differences in the current biomass estimates with not a clear agreement. However, by the aggregation of the information, it is possible to infer the general patterns of biomass distribution and it can identify the driving forces of the carbon emissions. This study estimated that currently ~44% of the potential carbon stock estimated for the region is still present. A total of 6,764 GgC has been emitted due to deforestation and degradation of the forest at a rate of above ground biomass loss of 66.4 Mg ha-1. Which, ~62% of the total carbon emissions can be regarded as being due to forest degradation. Most of carbon losses were identified in places suitable for agriculture, close to rural areas and to roads while the lowest losses were accounted in places with high water stress and within the boundaries of the National Protected Area. Moreover, places not suitable for agriculture, but close to the coast showed carbon losses as a result of urban settlements.Keywords: above ground biomass, deforestation, degradation, driving forces, tropical deciduous forest
Procedia PDF Downloads 1821272 Analysis of the Environmental Impact of Selected Small Heat and Power Plants Operating in Poland
Authors: M. Stelmachowski, M. Wojtczak
Abstract:
The aim of the work was to assess the environmental impact of the selected small and medium-sized companies supplying heat and electricity to the cities with a population of about 50,000 inhabitants. Evaluation and comparison of the impact on the environment have been carried out for the three plants producing heat and two CHP plants with particular attention to emissions into the atmosphere and the impact of introducing a system of trading carbon emissions of these companies.Keywords: CO2 emission, district heating, heat and power plant, impact on environment
Procedia PDF Downloads 4781271 Mitigating Climate Change: Cross-Country Variation in Policy Ambition
Authors: Mohammad Aynal Haque
Abstract:
Under the international cooperation — Paris Agreement — countries outline their self-determined policy ambition for emissions reduction in their Nationally Determined Contributions (NDCs) as a key to addressing climate change globally. Although practically all countries commit themselves to reach the Paris landmark (below 20 C) globally, some act as climate leaders, others behave as followers, and others turn out to be climate laggards. As a result, there is a substantial variation in ‘emissions reduction targets’ across countries. Thus, a question emerges: What explains this variation? Or why do some countries opt for higher while others opt for lower ‘emissions reduction targets toward global mitigation efforts? Conceptualizing the ‘emissions reduction targets by 2030’ outlined in NDCs by each country as the climate policy ambition (CPA), this paper explores how certain national political, economic, environmental, and external factors play vital roles in determining climate policy ambition. Based on the cross-country regression analysis among 168 countries, this study finds that democracy, vulnerability to climate change effects, and foreign direct investment have substantial effects on CPA. The paper also finds that resource capacity has a minimal negative effect on CPA across developed countries.Keywords: climate change, Paris agreement, international cooperation, political economy, environmental politics, NDCs
Procedia PDF Downloads 741270 Transport Emission Inventories and Medical Exposure Modeling: A Missing Link for Urban Health
Authors: Frederik Schulte, Stefan Voß
Abstract:
The adverse effects of air pollution on public health are an increasingly vital problem in planning for urban regions in many parts of the world. The issue is addressed from various angles and by distinct disciplines in research. Epidemiological studies model the relative increase of numerous diseases in response to an increment of different forms of air pollution. A significant share of air pollution in urban regions is related to transport emissions that are often measured and stored in emission inventories. Though, most approaches in transport planning, engineering, and operational design of transport activities are restricted to general emission limits for specific air pollutants and do not consider more nuanced exposure models. We conduct an extensive literature review on exposure models and emission inventories used to study the health impact of transport emissions. Furthermore, we review methods applied in both domains and use emission inventory data of transportation hubs such as ports, airports, and urban traffic for an in-depth analysis of public health impacts deploying medical exposure models. The results reveal specific urban health risks related to transport emissions that may improve urban planning for environmental health by providing insights in actual health effects instead of only referring to general emission limits.Keywords: emission inventories, exposure models, transport emissions, urban health
Procedia PDF Downloads 3871269 Real-Time Optimisation and Minimal Energy Use for Water and Environment Efficient Irrigation
Authors: Kanya L. Khatri, Ashfaque A. Memon, Rod J. Smith, Shamas Bilal
Abstract:
The viability and sustainability of crop production is currently threatened by increasing water scarcity. Water scarcity problems can be addressed through improved water productivity and the options usually presumed in this context are efficient water use and conversion of surface irrigation to pressurized systems. By replacing furrow irrigation with drip or centre pivot systems, the water efficiency can be improved by up to 30 to 45%. However, the installation and application of pumps and pipes, and the associated fuels needed for these alternatives increase energy consumption and cause significant greenhouse gas emissions. Hence, a balance between the improvement in water use and the potential increase in energy consumption is required keeping in view adverse impact of increased carbon emissions on the environment. When surface water is used, pressurized systems increase energy consumption substantially, by between 65% to 75%, and produce greenhouse gas emissions around 1.75 times higher than that of gravity based irrigation. With gravity based surface irrigation methods the energy consumption is assumed to be negligible. This study has shown that a novel real-time infiltration model REIP has enabled implementation of real-time optimization and control of surface irrigation and surface irrigation with real-time optimization has potential to bring significant improvements in irrigation performance along with substantial water savings of 2.92 ML/ha which is almost equivalent to that given by pressurized systems. Thus real-time optimization and control offers a modern, environment friendly and water efficient system with close to zero increase in energy consumption and minimal greenhouse gas emissions.Keywords: pressurised irrigation, carbon emissions, real-time, environmentally-friendly, REIP
Procedia PDF Downloads 5021268 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences
Authors: C. Xavier Mendieta, J. J McArthur
Abstract:
Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions
Procedia PDF Downloads 306