Search results for: miscellaneous electric loads (MELs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2335

Search results for: miscellaneous electric loads (MELs)

1195 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics

Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma

Abstract:

Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.

Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery

Procedia PDF Downloads 212
1194 Energy Efficient Shading Strategies for Windows of Hospital ICUs in the Desert

Authors: A. Sherif, A. El Zafarany, R. Arafa

Abstract:

Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for day-lighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.

Keywords: energy, hospital, intensive care units, shading

Procedia PDF Downloads 271
1193 An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends

Authors: M. Mourad, K. Abdelgawwad

Abstract:

This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.

Keywords: gasoline engine, performance, emission, fuel blends

Procedia PDF Downloads 155
1192 Friction and Wear Characteristics of Pongamia Oil Based Blended Lubricant at Different Load and Sliding Distance

Authors: Yashvir Singh

Abstract:

Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non -toxic and environmental friendly. This paper outlines the friction and wear characteristics of Pongamia oil (PO) contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, PO was blended in the ratios 15, 30 and 50% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 3.8 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms were abrasive and the adhesive wear. During testing, the lowest wear was found with the addition of 15% PO, and above this contamination, the wear rate was increased considerably. With increase in load, viscosity of all the bio-lubricants increases and meets the ISO VG 100 requirement at 40 oC except PB 50. The addition of PO in the base lubricant acted as a very good lubricant additive which reduced the friction and wear scar diameter during the test. It has been concluded that the PB 15 can act as an alternative lubricant to increase the mechanical efficiency at 3.8 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products.

Keywords: friction, load, pongamia oil, sliding velocity, wear

Procedia PDF Downloads 342
1191 Multi-Disciplinary Optimisation Methodology for Aircraft Load Prediction

Authors: Sudhir Kumar Tiwari

Abstract:

The paper demonstrates a methodology that can be used at an early design stage of any conventional aircraft. This research activity assesses the feasibility derivation of methodology for aircraft loads estimation during the various phases of design for a transport category aircraft by utilizing potential of using commercial finite element analysis software, which may drive significant time saving. Early Design phase have limited data and quick changing configuration results in handling of large number of load cases. It is useful to idealize the aircraft as a connection of beams, which can be very accurately modelled using finite element analysis (beam elements). This research explores the correct approach towards idealizing an aircraft using beam elements. FEM Techniques like inertia relief were studied for implementation during course of work. The correct boundary condition technique envisaged for generation of shear force, bending moment and torque diagrams for the aircraft. The possible applications of this approach are the aircraft design process, which have been investigated.

Keywords: multi-disciplinary optimization, aircraft load, finite element analysis, stick model

Procedia PDF Downloads 335
1190 The Influence of Ice Topography on Sliding over Ice

Authors: Ernests Jansons, Karlis Agris Gross

Abstract:

Winter brings snow and ice in the Northern Europe and with it the need to move safely over ice. It has been customary to select an appropriate material surface for movement over ice, but another way to influence the interaction with ice is to modify the ice surface. The objective of this work was to investigate the influence of ice topography on initiating movement over ice and on sliding velocity over ice in the laboratory and real-life conditions. The ice was prepared smooth, scratched or with solidified ice-droplets to represent the surface of ice after ice rain. In the laboratory, the coefficient of friction and the sliding velocity were measured, but the sliding velocity measured at the skeleton push-start facility. The scratched ice surface increased the resistance to movement and also showed the slowest sliding speed. Sliding was easier on the smooth ice and ice covered with frozen droplets. The contact surface was measured to determine the effect of contact area with sliding. Results from laboratory tests will be compared to loading under heavier loads to show the influence of load on sliding over different ice surfaces. This outcome provides a useful indicator for pedestrians and road traffic on the safety of movement over different ice surfaces as well as a reference for those involved with winter sports.

Keywords: contact area, friction, ice topography, sliding velocity

Procedia PDF Downloads 220
1189 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions

Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar

Abstract:

One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.

Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation

Procedia PDF Downloads 412
1188 Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon

Authors: Alex Ellery

Abstract:

Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.

Keywords: 3D printing, in-situ resource utilization, self-replication technology, space-based geoengineering

Procedia PDF Downloads 398
1187 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: moving load, moving substructure, dynamic responses, forced vibration responses

Procedia PDF Downloads 332
1186 The Effect of Low Voltage Direct Current Applications on the Growth of Microalgae Chlorella Vulgaris

Authors: Osman Kök, İlhami̇ Tüzün, Yaşar Aluç

Abstract:

This study was conducted to explore the effect of direct current (DC) applications on the growth of microalgae Chlorella vulgaris KKU71, isolated from highly saline freshwater. Experiments were implemented based upon the cross-combinations of both the intensity and duration of electric applications, generating a full factorial design of 10V, 20V, 30V, and 5s, 30s, 60s, respectively. Growth parameters of cultures were monitored on Optical Density (OD), Cell Count (CC), Chlorophyll-a, b (Chl-a, b), and Total Carotenoids (TCar). All DC-assisted treatments stimulated the growth and thus led to higher values of growth parameters such as OD, CC, Chl-a, and TCar. Monotonically increasing with the intensity and duration of DC applications, wet and dry biomass yields of the harvested algae reached their highest level at 30V-60s in all sets of treatments. In addition, this increase between DC applications was listed as C(control)<10V<20V<30V and C<5s<30s<60s. As a result, direct current applications increased the biomass.

Keywords: Chlorella Vulgaris, direct current, growth, biomass

Procedia PDF Downloads 123
1185 Artificial Neural Networks Face to Sudden Load Change for Shunt Active Power Filter

Authors: Dehini Rachid, Ferdi Brahim

Abstract:

The shunt active power filter (SAPF) is not destined only to improve the power factor, but also to compensate the unwanted harmonic currents produced by nonlinear loads. This paper presents a SAPF with identification and control method based on artificial neural network (ANN). To identify harmonics, many techniques are used, among them the conventional p-q theory and the relatively recent one the artificial neural network method. It is difficult to get satisfied identification and control characteristics by using a normal (ANN) due to the nonlinearity of the system (SAPF + fast nonlinear load variations). This work is an attempt to undertake a systematic study of the problem to equip the (SAPF) with the harmonics identification and DC link voltage control method based on (ANN). The latter has been applied to the (SAPF) with fast nonlinear load variations. The results of computer simulations and experiments are given, which can confirm the feasibility of the proposed active power filter.

Keywords: artificial neural networks (ANN), p-q theory, harmonics, total harmonic distortion

Procedia PDF Downloads 364
1184 Moderate Electric Field and Ultrasound as Alternative Technologies to Raspberry Juice Pasteurization Process

Authors: Cibele F. Oliveira, Debora P. Jaeschke, Rodrigo R. Laurino, Amanda R. Andrade, Ligia D. F. Marczak

Abstract:

Raspberry is well-known as a good source of phenolic compounds, mainly anthocyanin. Some studies pointed out the importance of these bioactive compounds consumption, which is related to the decrease of the risk of cancer and cardiovascular diseases. The most consumed raspberry products are juices, yogurts, ice creams and jellies and, to ensure the safety of these products, raspberry is commonly pasteurized, for enzyme and microorganisms inactivation. Despite being efficient, the pasteurization process can lead to degradation reactions of the bioactive compounds, decreasing the products healthy benefits. Therefore, the aim of the present work was to evaluate moderate electric field (MEF) and ultrasound (US) technologies application on the pasteurization process of raspberry juice and compare the results with conventional pasteurization process. For this, phenolic compounds, anthocyanin content and physical-chemical parameters (pH, color changes, titratable acidity) of the juice were evaluated before and after the treatments. Moreover, microbiological analyses of aerobic mesophiles microorganisms, molds and yeast were performed in the samples before and after the treatments, to verify the potential of these technologies to inactivate microorganisms. All the pasteurization processes were performed in triplicate for 10 min, using a cylindrical Pyrex® vessel with a water jacket. The conventional pasteurization was performed at 90 °C using a hot water bath connected to the extraction cell. The US assisted pasteurization was performed using 423 and 508 W cm-2 (75 and 90 % of ultrasound intensity). It is important to mention that during US application the temperature was kept below 35 °C; for this, the water jacket of the extraction cell was connected to a water bath with cold water. MEF assisted pasteurization experiments were performed similarly to US experiments, using 25 and 50 V. Control experiments were performed at the maximum temperature of US and MEF experiments (35 °C) to evaluate only the effect of the aforementioned technologies on the pasteurization. The results showed that phenolic compounds concentration in the juice was not affected by US and MEF application. However, it was observed that the US assisted pasteurization, performed at the highest intensity, decreased anthocyanin content in 33 % (compared to in natura juice). This result was possibly due to the cavitation phenomena, which can lead to free radicals formation and accumulation on the medium; these radicals can react with anthocyanin decreasing the content of these antioxidant compounds in the juice. Physical-chemical parameters did not present statistical differences for samples before and after the treatments. Microbiological analyses results showed that all the pasteurization treatments decreased the microorganism content in two logarithmic cycles. However, as values were lower than 1000 CFU mL-1 it was not possible to verify the efficacy of each treatment. Thus, MEF and US were considered as potential alternative technologies for pasteurization process, once in the right conditions the application of the technologies decreased microorganism content in the juice and did not affected phenolic and anthocyanin content, as well as physical-chemical parameters. However, more studies are needed regarding the influence of MEF and US processes on microorganisms’ inactivation.

Keywords: MEF, microorganism inactivation, anthocyanin, phenolic compounds

Procedia PDF Downloads 220
1183 Development of a Testing Rig for a Cold Formed-Hot Rolled Steel Hybrid Wall Panel System

Authors: Mina Mortazavi, Hamid Ronagh, Pezhman Sharafi

Abstract:

The new concept of a cold formed-hot rolled hybrid steel wall panel system is introduced to overcome the deficiency in lateral load resisting capacity of cold-formed steel structures. The hybrid system is composed of a cold-formed steel part laterally connected to hot rolled part. The hot rolled steel part is responsible for carrying the whole lateral load; while the cold formed steel part is only required to transfer the lateral load to the hot rolled part without any local failure. The vertical load is beared by both hot rolled, and cold formed steel part, proportionally. In order to investigate the lateral performance of the proposed system, it should be tested under simultaneous lateral and vertical load. The main concern is to deliver the loads to each part during the test to simulate the real load distribution in the structure. In this paper, a detailed description of the proposed wall panel system and the designed testing rig is provided.

Keywords: cold-formed steel, hybrid system, wall panel system, testing rig design

Procedia PDF Downloads 395
1182 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 222
1181 Improvement of Protein Extraction From Shrimp by Product Used for Electrospinning by Applying Emerging Technologies

Authors: Mario Pérez-Won, Vilbett Briones L., Guido Trautmann, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzalez-Cavieres

Abstract:

The fishing industry generates a significant amount of shrimp byproducts, which often result in environmental contamination. Protein extraction from these by-products is a potential solution to minimize waste and revalue the by-products. To improve the extraction of proteins (by chemical method) from shrimp (Pleuroncodes monodon) by-products, the emerging technologies of ohmic heating (OH), microwaves (MW) and pulsed electric fields (PEF) were used. The results show that microwaves, electrical pulses, and ohmic heating improved performance by 28.19%, 19.25%, and 3.65%, respectively. Furthermore, conformational changes were studied by DSC and FTIR. Subsequently, the use of these proteins in electrospinning technology was evaluated. In conclusion, this study demonstrates that the application of emerging technologies, can significantly improve the extraction yield of proteins from shrimp by-products.

Keywords: electrospinning, emerging technologies, improving extraction, shrimp by-products

Procedia PDF Downloads 56
1180 Core Loss Influence on MTPA Current Vector Variation of Synchronous Reluctance Machine

Authors: Huai-Cong Liu, Tae Chul Jeong, Ju Lee

Abstract:

The aim of this study was to develop an electric circuit method (ECM) to ascertain the core loss influence on a Synchronous Reluctance Motor (SynRM) in the condition of the maximum torque per ampere (MTPA). SynRM for fan usually operates on the constant torque region, at synchronous speed the MTPA control is adopted due to current vector. However, finite element analysis (FEA) program is not sufficient exactly to reflect how the core loss influenced on the current vector. This paper proposed a method to calculate the current vector with consideration of core loss. The precision of current vector by ECM is useful for MTPA control. The result shows that ECM analysis is closer to the actual motor’s characteristics by testing with a 7.5kW SynRM drive System.

Keywords: core loss, SynRM, current vector, magnetic saturation, maximum torque per ampere (MTPA)

Procedia PDF Downloads 496
1179 Avoidance of Brittle Fracture in Bridge Bearings: Brittle Fracture Tests and Initial Crack Size

Authors: Natalie Hoyer

Abstract:

Bridges in both roadway and railway systems depend on bearings to ensure extended service life and functionality. These bearings enable proper load distribution from the superstructure to the substructure while permitting controlled movement of the superstructure. The design of bridge bearings, according to Eurocode DIN EN 1337 and the relevant sections of DIN EN 1993, increasingly requires the use of thick plates, especially for long-span bridges. However, these plate thicknesses exceed the limits specified in the national appendix of DIN EN 1993-2. Furthermore, compliance with DIN EN 1993-1-10 regulations regarding material toughness and through-thickness properties necessitates further modifications. Consequently, these standards cannot be directly applied to the selection of bearing materials without supplementary guidance and design rules. In this context, a recommendation was developed in 2011 to regulate the selection of appropriate steel grades for bearing components. Prior to the initiation of the research project underlying this contribution, this recommendation had only been available as a technical bulletin. Since July 2023, it has been integrated into guideline 804 of the German railway. However, recent findings indicate that certain bridge-bearing components are exposed to high fatigue loads, which necessitate consideration in structural design, material selection, and calculations. Therefore, the German Centre for Rail Traffic Research called a research project with the objective of defining a proposal to expand the current standards in order to implement a sufficient choice of steel material for bridge bearings to avoid brittle fracture, even for thick plates and components subjected to specific fatigue loads. The results obtained from theoretical considerations, such as finite element simulations and analytical calculations, are validated through large-scale component tests. Additionally, experimental observations are used to calibrate the calculation models and modify the input parameters of the design concept. Within the large-scale component tests, a brittle failure is artificially induced in a bearing component. For this purpose, an artificially generated initial defect is introduced at the previously defined hotspot into the specimen using spark erosion. Then, a dynamic load is applied until the crack initiation process occurs to achieve realistic conditions in the form of a sharp notch similar to a fatigue crack. This initiation process continues until the crack length reaches a predetermined size. Afterward, the actual test begins, which requires cooling the specimen with liquid nitrogen until a temperature is reached where brittle fracture failure is expected. In the next step, the component is subjected to a quasi-static tensile test until failure occurs in the form of a brittle failure. The proposed paper will present the latest research findings, including the results of the conducted component tests and the derived definition of the initial crack size in bridge bearings.

Keywords: bridge bearings, brittle fracture, fatigue, initial crack size, large-scale tests

Procedia PDF Downloads 22
1178 Study of Ultrasonic Waves in Unidirectional Fiber-Reinforced Composite Plates for the Aerospace Applications

Authors: DucTho Le, Duy Kien Dao, Quoc Tinh Bui, Haidang Phan

Abstract:

The article is concerned with the motion of ultrasonic guided waves in a unidirectional fiber-reinforced composite plate under acoustic sources. Such unidirectional composite material has orthotropic elastic properties as it is very stiff along the fibers and rather compliant across the fibers. The dispersion equations of free Lamb waves propagating in an orthotropic layer are derived that results in the dispersion curves. The connection of these equations to the Rayleigh-Lamb frequency relations of isotropic plates is discussed. By the use of reciprocity in elastodynamics, closed-form solutions of elastic wave motions subjected to time-harmonic loads in the layer are computed in a simple manner. We also consider the problem of Lamb waves generated by a set of time-harmonic sources. The obtained computations can be very useful for developing ultrasound-based methods for nondestructive evaluation of composite structures.

Keywords: lamb waves, fiber-reinforced composite plates, dispersion equations, nondestructive evaluation, reciprocity theorems

Procedia PDF Downloads 135
1177 Thermal Buckling of Functionally Graded Panel Based on Mori-Tanaka Scheme

Authors: Seok-In Bae, Young-Hoon Lee, Ji-Hwan Kim

Abstract:

Due to the asymmetry of the material properties of the Functionally Graded Materials(FGMs) in the thickness direction, neutral surface of the model is not the same as the mid-plane of the symmetric structure. In order to investigate the thermal bucking behavior of FGMs, neutral surface is chosen as a reference plane. In the model, material properties are assumed to be temperature dependent, and varied continuously in the thickness direction of the plate. Further, the effective material properties such as Young’s modulus and Poisson’s ratio are homogenized using Mori-Tanaka scheme which considers the interaction among adjacent inclusions. In this work, the finite element methods are used, and the first-order shear deformation theory of plate are accounted. The thermal loads are assumed to be uniform, linear and non-linear distribution through the thickness directions, respectively. Also, the effects of various parameters for thermal buckling behavior of FGM panel are discussed in detail.

Keywords: functionally graded plate, thermal buckling analysis, neutral surface

Procedia PDF Downloads 382
1176 Adjuvant Effect and Mineral Addition in Aggressive Environments on the Sustainability of Using Local Materials Concretes

Authors: M. Belouadah, S. Rahmouni, N. Teballe

Abstract:

The durability of concrete is not one of its features, but its response to service loads and environmental conditions. Thus, the durability of concrete depends on a variety of material characteristics, but also the aggressiveness of the environment. Much durability problems encountered in tropical regions (region M'sila) due to the presence of chlorides and sulfates (in the ground or in the aggregate) with the additional aggravation of the effect of hot weather and arid. This lack of sustainability has a direct influence on the structure of the building and can lead to the complete deterioration of many buildings. The characteristics of the nature of fillers are evaluated based on the degree of aggressiveness of the environment considering as a means of characterization: mechanical strength, porosity. Specimens will be exposed to different storage media chemically aggressive drinking water, salts and sulfates (sodium chloride, MgSO4), solutions are not renewed or PH control solutions. The parameters taken into account are: age, the nature and degree of aggressiveness of the environment conservation, the incorporation of adjuvant type superplasticizer dosage and mineral additives.

Keywords: ordinary concretes, marble powder fillers, adjuvant, strength

Procedia PDF Downloads 259
1175 Elongation Factor 1 Alpha Molecular Phylogenetic Analysis for Anastrepha fraterculus Complex

Authors: Pratibha Srivastava, Ayyamperumal Jeyaprakash, Gary Steck

Abstract:

Exotic, invasive tephritid fruit flies (Diptera: Tephritidae) are a major concern to fruit and vegetable production in the USA. Timely detection and identification of these agricultural pests facilitate the possibility of eradication from newly invaded areas. They spread primarily as larvae in infested fruits carried in commerce or personal baggage. Identification of larval stages to species level is difficult but necessary to determine pest loads and their pathways into the USA. The main focus of this study is the New World genus, Anastrepha. Many of its constituent taxa are pests of major economic importance. This study is significant for national quarantine use, as morphological diagnostics to separate larvae of the various members remain poorly developed. Elongation factor 1 alpha sequences were amplified from Anastrepha fraterculus specimens collected from South America (Ecuador and Peru). Phylogenetic analysis was performed to characterize the Anastrepha fraterculus complex at a molecular level.

Keywords: anastrepha, diptera, elongation factor, fruit fly

Procedia PDF Downloads 190
1174 Functional Instruction Set Simulator of a Neural Network IP with Native Brain Float-16 Generator

Authors: Debajyoti Mukherjee, Arathy B. S., Arpita Sahu, Saranga P. Pogula

Abstract:

A functional model to mimic the functional correctness of a neural network compute accelerator IP is very crucial for design validation. Neural network workloads are based on a Brain Floating Point (BF-16) data type. The major challenge we were facing was the incompatibility of GCC compilers to the BF-16 datatype, which we addressed with a native BF-16 generator integrated into our functional model. Moreover, working with big GEMM (General Matrix Multiplication) or SpMM (Sparse Matrix Multiplication) Work Loads (Dense or Sparse) and debugging the failures related to data integrity is highly painstaking. In this paper, we are addressing the quality challenge of such a complex neural network accelerator design by proposing a functional model-based scoreboard or software model using SystemC. The proposed functional model executes the assembly code based on the ISA of the processor IP, decodes all instructions, and executes as expected to be done by the DUT. The said model would give a lot of visibility and debug capability in the DUT, bringing up micro-steps of execution.

Keywords: ISA, neural network, Brain Float-16, DUT

Procedia PDF Downloads 72
1173 A Study on the Application of Accelerated Life Test to Electric Motor for Machine Tools

Authors: Youn-Hwan Kim, Jae-Won Moon, Hae-Joong Kim

Abstract:

This paper introduces the results of the study on the development of accelerated life test methods for the motor used in machine tools. In recent years, as well as efficiency for motors, there is a growing need for research on life expectancy of motors. It is considered impossible to calculate the acceleration coefficient by increasing the rotational load or temperature load as the acceleration stress in the motor system because the temperature of the copper exceeds the wire thermal class rating. This paper describes the equipment development procedure for the highly accelerated life test (HALT) of the 12kW three-phase squirrel-cage induction motors (SCIMs). After the test, the lifetime analysis was carried out, and it is compared with the life expectancy by finite element method (FEM) and bearing theory.

Keywords: acceleration coefficient, bearing, HALT, life expectancy, motor

Procedia PDF Downloads 259
1172 Numerical Modelling of Laminated Shells Made of Functionally Graded Elastic and Piezoelectric Materials

Authors: Gennady M. Kulikov, Svetlana V. Plotnikova

Abstract:

This paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) stress analysis of functionally graded (FG) laminated elastic and piezoelectric shells. The SaS formulation is based on choosing inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell in order to introduce the electric potentials and displacements of these surfaces as basic shell variables. Such choice of unknowns permits the presentation of the proposed FG piezoelectric shell formulation in a very compact form. The SaS are located inside each layer at Chebyshev polynomial nodes that improves the convergence of the SaS method significantly. As a result, the SaS formulation can be applied efficiently to 3D solutions for FG piezoelectric laminated shells, which asymptotically approach the exact solutions of piezoelectricity as the number of SaS In goes to infinity.

Keywords: electroelasticity, functionally graded material, laminated piezoelectric shell, sampling surfaces method

Procedia PDF Downloads 671
1171 Swimming Pool Water Chlorination Detection System Utilizing TDSTestr

Authors: Fahad Alamoudi, Yaser Miaji, Fawzy Jalalah

Abstract:

The growing popularity of swimming pools and other activities in the water for sport, fitness, therapy or just enjoyable relaxation have led to the increased use of swimming pools and the establishment of a variety of specific-use pools such as spa pools, Waterslides and more recently, hydrotherapy and wave pools. In this research a few simple equipments are used for test, Detect and alert for detection of water cleanness and pollution. YSI Photometer Systems, TDSTestr High model, rio 12HF, and Electrode A1. The researchers used electrolysis as a method of separating bonded elements and compounds by passing an electric current through them. The results which use 41 experiments show the higher the salt concentration, the more efficient the electrode and the smaller the gap between the plates and The lower the electrode voltage. Furthermore, it is proved that the larger the surface area, the lower the cell voltage and the higher current used the more chlorine produced.

Keywords: photometer, electrode, electrolysis, swimming pool chlorination

Procedia PDF Downloads 329
1170 Operational Characteristics of the Road Surface Improvement

Authors: Iuri Salukvadze

Abstract:

Construction takes importance role in the history of mankind, there is not a single thing-product in our lives in which the builder’s work was not to be materialized, because to create all of it requires setting up factories, roads, and bridges, etc. The function of the Republic of Georgia, as part of the connecting Europe-Asia transport corridor, is significantly increased. In the context of transit function a large part of the cargo traffic belongs to motor transport, hence the improvement of motor roads transport infrastructure is rather important and rise the new, increased operational demands for existing as well as new motor roads. Construction of the durable road surface is related to rather large values, but because of high transport-operational properties, such as high-speed, less fuel consumption, less depreciation of tires, etc. If the traffic intensity is high, therefore the reimbursement of expenses occurs rapidly and accordingly is increasing income. If the traffic intensity is relatively small, it is recommended to use lightened structures of road carpet in order to pay for capital investments amounted to no more than normative one. The road carpet is divided into the following basic types: asphaltic concrete and cement concrete. Asphaltic concrete is the most perfect type of road carpet. It is arranged in two or three layers on rigid foundation and will be compacted. Asphaltic concrete is artificial building material, which due stratum will be selected and measured from stone skeleton and sand, interconnected by bitumen and a mixture of mineral powder. Less strictly selected similar material is called as bitumen-mineral mixture. Asphaltic concrete is non-rigid building material and well durable on vertical loadings; it is less resistant to the impact of horizontal forces. The cement concrete is monolithic and durable material, it is well durable the horizontal loads and is less resistant related to vertical loads. The cement concrete consists from strictly selected, measured stone material and sand, the binder is cement. The cement concrete road carpet represents separate slabs of sizes from 3 ÷ 5 op to 6 ÷ 8 meters. The slabs are reinforced by a rather complex system. Between the slabs are arranged seams that are designed for avoiding of additional stresses due temperature fluctuations on the length of slabs. For the joint behavior of separate slabs, they are connected by metal rods. Rods provide the changes in the length of slabs and distribute to the slab vertical forces and bending moments. The foundation layers will be extremely durable, for that is required high-quality stone material, cement, and metal. The qualification work aims to: in order for improvement of traffic conditions on motor roads to prolong operational conditions and improving their characteristics. The work consists from three chapters, 80 pages, 5 tables and 5 figures. In the work are stated general concepts as well as carried out by various companies using modern methods tests and their results. In the chapter III are stated carried by us tests related to this issue and specific examples to improving the operational characteristics.

Keywords: asphalt, cement, cylindrikal sample of asphalt, building

Procedia PDF Downloads 204
1169 Flexural Behavior of Voided Slabs Reinforced With Basalt Bars

Authors: Jazlah Majeed Sulaiman, Lakshmi P.

Abstract:

Concrete slabs are considered to be very ductile structural members. Openings in reinforced slabs are necessary so as to install the mechanical, electrical and pumping (MEP) conduits and ducts. However, these openings reduce the load-carrying capacity, stiffness, energy, and ductility of the slabs. To resolve the undesirable effects of openings in the slab behavior, it is significant to achieve the desired strength against the loads acting on it. The use of Basalt Fiber Reinforcement Polymers (BFRP) as reinforcement has become a valid sustainable option as they produce less greenhouse gases, resist corrosion and have higher tensile strength. In this paper, five slab models are analyzed using non-linear static analysis in ANSYS Workbench to study the effect of openings on slabs reinforced with basalt bars. A parametric numerical study on the loading condition and the shape and size of the opening is conducted, and their load and displacement values are compared. One of the models is validated experimentally.

Keywords: concrete slabs, openings, BFRP, sustainable, corrosion resistant, non-linear static analysis, ANSYS

Procedia PDF Downloads 86
1168 Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Bus

Authors: Amitabh Das, Yash Jain, Mohammad Rafiq B. Agrewale, K. C. Vora

Abstract:

Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing geometry and pattern. Based on benchmarking a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption on an electric bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.

Keywords: wheel-housing, CFD simulation, drag coefficient, energy consumption

Procedia PDF Downloads 167
1167 Strengthening of Reinforced Concrete Beams Using Steel Plates

Authors: Ghusen al-Kafri, Mohammed Ali Abdallah Elsageer, Ahmed Mohamed Hadya Alsdaai, Abdeimanam Salhien Salih Khalifa

Abstract:

In this paper, external reinforcement to enhance a reinforced concrete structure performance has been done using externally bonded steel plate. This technique has been reported effective in enhancing the strength of reinforced concrete beam, a study to determine the effectiveness of steel plate as an external reinforcement was carried out. A total of two groups of beams and one group content five beams, each 750 mm long, 150 mm wide, and 150 mm deep were cast, strengthened and tested till failure under two point loads. One beam was act as a control beam without strengthening and other four beams were strengthened with steel plate at a different arrangement. Other group beams were strengthened with steel plate in shear zone and also strengthened at bottom as first group. The behaviours of the strengthened beams were studied through their load-deflection characteristic upon bending, cracking and mode of failure. The results confirmed that all steel plate arrangements enhanced the strength of the reinforced concrete beam, the positioning of the steel plate affect the moment carrying capacity of the beam.

Keywords: beams, bending, beflection, steel plates

Procedia PDF Downloads 393
1166 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 127