Search results for: mental image
3406 An Assessment of Electrical Activities of Students' Brains toward Teacher’s Specific Emotions
Authors: Hakan Aydogan, Fatih Bozkurt, Huseyin Coskun
Abstract:
In this study, the signal of brain electrical activities of the sixteen students selected from the Department of Electrical and Energy at Usak University have been recorded during a lecturer performed happiness emotions for the first group and anger emotions for the second group in different time while the groups were in the classroom separately. The attention and meditation data extracted from the recorded signals have been analyzed and evaluated toward the teacher’s specific emotion states simultaneously. Attention levels of students who are under influence of happiness emotions of the lecturer have a positive trend and attention levels of students who are under influence of anger emotions of the lecturer have a negative trend. The meditation or mental relaxation levels of students who are under influence of happiness emotions of the lecturer are 34.3% higher comparing with the mental relaxation levels of students who are under influence of anger emotions of the lecturer.Keywords: brainwave, attention, meditation, education
Procedia PDF Downloads 4193405 A Comparative Study of Selected Psychological Variable of Basketball and Volleyball Sportsperson of Bangladesh Krirra Shiskha Protifsthan
Authors: M. Ashadur Rahman
Abstract:
This study presents the psychological status of basketball and volleyball sportspersons of Bangladesh Krira Shikkha Protifsthan (BKSP) in Bangladesh. The subjects of the study were 34 sportspersons which were 20 Basketball and 14 Volleyball Sportspersons in BKSP. The age ranges of the subjects were 15 to 20 years. The subjects were all male sportspersons and regular students of BKSP. Anxiety control, concentration, confidence, mental preparation, and motivation were selected as psychological variables. Psychological Skill Inventory for Sport (PST) prepared by Mahoney Gabiel, Perking (1987) was used to assess the psychological skills of sportspersons to different sports. Mean standard deviation and independent t-test were used to analyze the data, and level of significance was set at 0.05. Significant differences were not found between psychological status between basketball and volleyball sportspersons of BKSP in Bangladesh.Keywords: psychological variable, anxiety control, concentration, confidence, mental preparation, motivation
Procedia PDF Downloads 1993404 A Model Outlining Feelings vs. Emotions and Why Distinction is Critical
Authors: Brendan Mooney
Abstract:
Context: Feelings and emotions are commonly misunderstood and the terms often used interchangeably, leading to potential negative impacts on individuals' mental well-being and relationships. The distinction between these two fundamentally different experiences of human life is crucial for effective psychological practice and communication. Research Aim: The aim of this study is to outline the disparities between feelings and emotions, emphasising the significance of this differentiation in psychological practice to enhance clients' observation, decision-making, problem-solving, and communication skills. Methodology: This research utilises a conceptual model developed by the author in 2017 based on clinical experience, client observations, and feedback. The model serves to guide effective clinical practice by providing clear definitions and understanding of feelings versus emotions. Case study examples were utilised to support the efficacy of the model. Findings: The study highlights that recognising and expressing feelings rather than emotions is more empowering and conducive to resolving unresolved issues, thereby fostering better psychological well-being and interpersonal relationships. Theoretical Importance: This research underscores the importance of clarifying fundamental definitions related to feelings and emotions in enhancing psychological interventions and preventing various relationship conflicts and individual issues. Data Collection and Analysis Procedures: Data was collected through the author's clinical experience and interactions with clients, informing the development of the Feeling Emotions Mental (FEM) model. Analysis involved synthesising observations and feedback to elucidate the distinctions between feelings and emotions. Questions Addressed: What are the disparities between feelings and emotions? How does the confusion between these two fundamentally different experiences of human life impact individuals' mental well-being and relationships? Why is it essential to differentiate between feelings and emotions in psychological practice? Conclusion: The study advocates for a clear understanding of feelings versus emotions to support clients in addressing unresolved issues and improving their overall psychological functioning and communication skills, thereby preventing potential conflicts and relationship challenges.Keywords: couples, mental, misinformation, misunderstanding, relationships
Procedia PDF Downloads 403403 Determining the Prevalence and Correlates of Depression among Transgenders of a Developing Country
Authors: Usama Bin Zubair, Muhammad Azeem
Abstract:
Introduction: Depression has been one of the most commonly diagnosed mental health disorders in Pakistan. A Census conducted by the government of Pakistan in 2017 showed that more than 10000 trans-genders live in Pakistan. HIV, illicit substance use and mental health issues, including depression, have been the main health problems faced by them. Trans-gender population has been suffering from depressive illness more than normal population all over the world. Aim: To assess the prevalence of depression among the transgender population and analyze the relationship of socio-demographic factors with depression. Subjects and Methods: The sample population comprised of one hundred and forty-two transgender people of Rawalpindi and Islamabad. Beck depressive inventory II (BDI-II) was used to record the presence and severity of the depressive symptoms. Depressive symptoms were categorized as mild, moderate and severe. Relationship of the age, smoking, family income, illicit substance use and education were studied with the presence of depressive symptoms among these transgender people of twin cities of Pakistan. Results: A total of 142 transgender people were included in the final analysis. The mean age of the study participants was 39.55 ± 6.18. Out of these, 45.1% had no depressive symptoms while 31.7% had mild, 12.7% had moderate and 10.6% had severe depressive symptomatology. After applying the binary logistic regression, we found that the presence of depressive symptoms had a significant association with illicit substance use among the target population. Conclusion: This study showed a high prevalence of depressive symptoms among the transgender population in the twin cities of Pakistan. Use of illicit substances like tobacco, cannabis, opiates, and alcohol should be discouraged to prevent mental health problems.Keywords: depression, transgender, prevalence, sociodemographic factors
Procedia PDF Downloads 1213402 Analysis of Two Phase Hydrodynamics in a Column Flotation by Particle Image Velocimetry
Authors: Balraju Vadlakonda, Narasimha Mangadoddy
Abstract:
The hydrodynamic behavior in a laboratory column flotation was analyzed using particle image velocimetry. For complete characterization of column flotation, it is necessary to determine the flow velocity induced by bubbles in the liquid phase, the bubble velocity and bubble characteristics:diameter,shape and bubble size distribution. An experimental procedure for analyzing simultaneous, phase-separated velocity measurements in two-phase flows was introduced. The non-invasive PIV technique has used to quantify the instantaneous flow field, as well as the time averaged flow patterns in selected planes of the column. Using the novel particle velocimetry (PIV) technique by the combination of fluorescent tracer particles, shadowgraphy and digital phase separation with masking technique measured the bubble velocity as well as the Reynolds stresses in the column. Axial and radial mean velocities as well as fluctuating components were determined for both phases by averaging the sufficient number of double images. Bubble size distribution was cross validated with high speed video camera. Average turbulent kinetic energy of bubble were analyzed. Different air flow rates were considered in the experiments.Keywords: particle image velocimetry (PIV), bubble velocity, bubble diameter, turbulent kinetic energy
Procedia PDF Downloads 5103401 The Principle of a Thought Formation: The Biological Base for a Thought
Authors: Ludmila Vucolova
Abstract:
The thought is a process that underlies consciousness and cognition and understanding its origin and processes is a longstanding goal of many academic disciplines. By integrating over twenty novel ideas and hypotheses of this theoretical proposal, we can speculate that thought is an emergent property of coded neural events, translating the electro-chemical interactions of the body with its environment—the objects of sensory stimulation, X, and Y. The latter is a self- generated feedback entity, resulting from the arbitrary pattern of the motion of a body’s motor repertory (M). A culmination of these neural events gives rise to a thought: a state of identity between an observed object X and a symbol Y. It manifests as a “state of awareness” or “state of knowing” and forms our perception of the physical world. The values of the variables of a construct—X (object), S1 (sense for the perception of X), Y (object), S2 (sense for perception of Y), and M (motor repertory that produces Y)—will specify the particular conscious percept at any given time. The proposed principle of interaction between the elements of a construct (X, Y, S1, S2, M) is universal and applies for all modes of communication (normal, deaf, blind, deaf and blind people) and for various language systems (Chinese, Italian, English, etc.). The particular arrangement of modalities of each of the three modules S1 (5 of 5), S2 (1 of 3), and M (3 of 3) defines a specific mode of communication. This multifaceted paradigm demonstrates a predetermined pattern of relationships between X, Y, and M that passes from generation to generation. The presented analysis of a cognitive experience encompasses the key elements of embodied cognition theories and unequivocally accords with the scientific interpretation of cognition as the mental action or process of acquiring knowledge and understanding through thought, experience, and the senses, and cognition means thinking and awareness. By assembling the novel ideas presented in twelve sections, we can reveal that in the invisible “chaos”, there is an order, a structure with landmarks and principles of operations and mental processes (thoughts) are physical and have a biological basis. This innovative proposal explains the phenomenon of mental imagery; give the first insight into the relationship between mental states and brain states, and support the notion that mind and body are inseparably connected. The findings of this theoretical proposal are supported by the current scientific data and are substantiated by the records of the evolution of language and human intelligence.Keywords: agent, awareness, cognitive, element, experience, feedback, first person, imagery, language, mental, motor, object, sensory, symbol, thought
Procedia PDF Downloads 3843400 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: deep-learning, image classification, image identification, industrial engineering.
Procedia PDF Downloads 1603399 A Framework of Product Information Service System Using Mobile Image Retrieval and Text Mining Techniques
Authors: Mei-Yi Wu, Shang-Ming Huang
Abstract:
The online shoppers nowadays often search the product information on the Internet using some keywords of products. To use this kind of information searching model, shoppers should have a preliminary understanding about their interesting products and choose the correct keywords. However, if the products are first contact (for example, the worn clothes or backpack of passengers which you do not have any idea about the brands), these products cannot be retrieved due to insufficient information. In this paper, we discuss and study the applications in E-commerce using image retrieval and text mining techniques. We design a reasonable E-commerce application system containing three layers in the architecture to provide users product information. The system can automatically search and retrieval similar images and corresponding web pages on Internet according to the target pictures which taken by users. Then text mining techniques are applied to extract important keywords from these retrieval web pages and search the prices on different online shopping stores with these keywords using a web crawler. Finally, the users can obtain the product information including photos and prices of their favorite products. The experiments shows the efficiency of proposed system.Keywords: mobile image retrieval, text mining, product information service system, online marketing
Procedia PDF Downloads 3593398 Training a Neural Network to Segment, Detect and Recognize Numbers
Authors: Abhisek Dash
Abstract:
This study had three neural networks, one for number segmentation, one for number detection and one for number recognition all of which are coupled to one another. All networks were trained on the MNIST dataset and were convolutional. It was assumed that the images had lighter background and darker foreground. The segmentation network took 28x28 images as input and had sixteen outputs. Segmentation training starts when a dark pixel is encountered. Taking a window(7x7) over that pixel as focus, the eight neighborhood of the focus was checked for further dark pixels. The segmentation network was then trained to move in those directions which had dark pixels. To this end the segmentation network had 16 outputs. They were arranged as “go east”, ”don’t go east ”, “go south east”, “don’t go south east”, “go south”, “don’t go south” and so on w.r.t focus window. The focus window was resized into a 28x28 image and the network was trained to consider those neighborhoods which had dark pixels. The neighborhoods which had dark pixels were pushed into a queue in a particular order. The neighborhoods were then popped one at a time stitched to the existing partial image of the number one at a time and trained on which neighborhoods to consider when the new partial image was presented. The above process was repeated until the image was fully covered by the 7x7 neighborhoods and there were no more uncovered black pixels. During testing the network scans and looks for the first dark pixel. From here on the network predicts which neighborhoods to consider and segments the image. After this step the group of neighborhoods are passed into the detection network. The detection network took 28x28 images as input and had two outputs denoting whether a number was detected or not. Since the ground truth of the bounds of a number was known during training the detection network outputted in favor of number not found until the bounds were not met and vice versa. The recognition network was a standard CNN that also took 28x28 images and had 10 outputs for recognition of numbers from 0 to 9. This network was activated only when the detection network votes in favor of number detected. The above methodology could segment connected and overlapping numbers. Additionally the recognition unit was only invoked when a number was detected which minimized false positives. It also eliminated the need for rules of thumb as segmentation is learned. The strategy can also be extended to other characters as well.Keywords: convolutional neural networks, OCR, text detection, text segmentation
Procedia PDF Downloads 1613397 Depth Estimation in DNN Using Stereo Thermal Image Pairs
Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge
Abstract:
Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation
Procedia PDF Downloads 2793396 Fully Automated Methods for the Detection and Segmentation of Mitochondria in Microscopy Images
Authors: Blessing Ojeme, Frederick Quinn, Russell Karls, Shannon Quinn
Abstract:
The detection and segmentation of mitochondria from fluorescence microscopy are crucial for understanding the complex structure of the nervous system. However, the constant fission and fusion of mitochondria and image distortion in the background make the task of detection and segmentation challenging. In the literature, a number of open-source software tools and artificial intelligence (AI) methods have been described for analyzing mitochondrial images, achieving remarkable classification and quantitation results. However, the availability of combined expertise in the medical field and AI required to utilize these tools poses a challenge to its full adoption and use in clinical settings. Motivated by the advantages of automated methods in terms of good performance, minimum detection time, ease of implementation, and cross-platform compatibility, this study proposes a fully automated framework for the detection and segmentation of mitochondria using both image shape information and descriptive statistics. Using the low-cost, open-source python and openCV library, the algorithms are implemented in three stages: pre-processing, image binarization, and coarse-to-fine segmentation. The proposed model is validated using the mitochondrial fluorescence dataset. Ground truth labels generated using a Lab kit were also used to evaluate the performance of our detection and segmentation model. The study produces good detection and segmentation results and reports the challenges encountered during the image analysis of mitochondrial morphology from the fluorescence mitochondrial dataset. A discussion on the methods and future perspectives of fully automated frameworks conclude the paper.Keywords: 2D, binarization, CLAHE, detection, fluorescence microscopy, mitochondria, segmentation
Procedia PDF Downloads 3573395 Co-produced Databank of Tailored Messages to Support Enagagement to Digitial Health Interventions
Authors: Menna Brown, Tania Domun
Abstract:
Digital health interventions are effective across a wide array of health conditions spanning physical health, lifestyle behaviour change, and mental health and wellbeing; furthermore, they are rapidly increasing in volume within both the academic literature and society as commercial apps continue to proliferate the digital health market. However, adherence and engagement to digital health interventions remains problematic. Technology-based personalised and tailored reminder strategies can support engagement to digital health interventions. Interventions which support individuals’ mental health and wellbeing are of critical importance in the wake if the COVID-19 pandemic. Student and young person’s mental health has been negatively affected and digital resources continue to offer cost effective means to address wellbeing at a population level. Develop a databank of digital co-produced tailored messages to support engagement to a range of digital health interventions including those focused on mental health and wellbeing, and lifestyle behaviour change. Qualitative research design. Participants discussed their views of health and wellbeing, engagement and adherence to digital health interventions focused around a 12-week wellbeing intervention via a series of focus group discussions. They worked together to co-create content following a participatory design approach. Three focus group discussions were facilitated with (n=15) undergraduate students at one Welsh university to provide an empirically derived, co-produced, databank of (n=145) tailored messages. Messages were explored and categorised thematically, and the following ten themes emerged: Autonomy, Recognition, Guidance, Community, Acceptance, Responsibility, Encouragement, Compassion, Impact and Ease. The findings provide empirically derived, co-produced tailored messages. These have been made available for use, via ‘ACTivate your wellbeing’ a digital, automated, 12-week health and wellbeing intervention programme, based on acceptance and commitment therapy (ACT). The purpose of which is to support future research to evaluate the impact of thematically categorised tailored messages on engagement and adherence to digital health interventions.Keywords: digital health, engagement, wellbeing, participatory design, positive psychology, co-production
Procedia PDF Downloads 1213394 Visual Search Based Indoor Localization in Low Light via RGB-D Camera
Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng
Abstract:
Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.Keywords: indoor navigation, low light, RGB-D camera, vision based
Procedia PDF Downloads 4613393 Mapping of Geological Structures Using Aerial Photography
Authors: Ankit Sharma, Mudit Sachan, Anurag Prakash
Abstract:
Rapid growth in data acquisition technologies through drones, have led to advances and interests in collecting high-resolution images of geological fields. Being advantageous in capturing high volume of data in short flights, a number of challenges have to overcome for efficient analysis of this data, especially while data acquisition, image interpretation and processing. We introduce a method that allows effective mapping of geological fields using photogrammetric data of surfaces, drainage area, water bodies etc, which will be captured by airborne vehicles like UAVs, we are not taking satellite images because of problems in adequate resolution, time when it is captured may be 1 yr back, availability problem, difficult to capture exact image, then night vision etc. This method includes advanced automated image interpretation technology and human data interaction to model structures and. First Geological structures will be detected from the primary photographic dataset and the equivalent three dimensional structures would then be identified by digital elevation model. We can calculate dip and its direction by using the above information. The structural map will be generated by adopting a specified methodology starting from choosing the appropriate camera, camera’s mounting system, UAVs design ( based on the area and application), Challenge in air borne systems like Errors in image orientation, payload problem, mosaicing and geo referencing and registering of different images to applying DEM. The paper shows the potential of using our method for accurate and efficient modeling of geological structures, capture particularly from remote, of inaccessible and hazardous sites.Keywords: digital elevation model, mapping, photogrammetric data analysis, geological structures
Procedia PDF Downloads 6863392 The Effectiveness of a Six-Week Yoga Intervention on Body Awareness, Warnings of Relapse, and Emotion Regulation among Incarcerated Females
Authors: James Beauchemin
Abstract:
Introduction: The incarceration of people with mental illness and substance use disorders is a major public health issue, with social, clinical, and economic implications. Yoga participation has been associated with numerous psychological benefits; however, there is a paucity of research examining impacts of yoga with incarcerated populations. The purpose of this study was to evaluate effectiveness of a six-week yoga intervention on several mental health-related variables, including emotion regulation, body awareness, and warnings of substance relapse among incarcerated females. Methods: This study utilized a pre-post, three-arm design, with participants assigned to intervention, therapeutic community, or general population groups. A between-groups analysis of covariance (ANCOVA) was conducted across groups to assess intervention effectiveness using the Difficulties in Emotion Regulation Scale (DERS), Scale of Body Connection (SBC), and Warnings of Relapse (AWARE) Questionnaire. Results: ANCOVA results for warnings of relapse (AWARE) revealed significant between-group differences F(2, 80) = 7.15, p = .001; np2 = .152), with significant pairwise comparisons between the intervention group and both the therapeutic community (p = .001) and the general population (p = .005) groups. Similarly, significant differences were found for emotional regulation (DERS) F(2, 83) = 10.521, p = .000; np2 = .278). Pairwise comparisons indicated a significant difference between the intervention and general population (p = .01). Finally, significant differences between the intervention and control groups were found for body awareness (SBC) F(2, 84) = 3.69, p = .029; np2 = .081). Between-group differences were clarified via pairwise comparisons, indicating significant differences between the intervention group and both the therapeutic community (p = .028) and general population groups (p = .020). Implications: Study results suggest that yoga may be an effective addition to integrative mental health and substance use treatment for incarcerated women, and contributes to increasing evidence that holistic interventions may be an important component for treatment with this population. Specifically, given the prevalence of mental health and substance use disorders, findings revealed that changes in body awareness and emotion regulation may be particularly beneficial for incarcerated populations with substance use challenges as a result of yoga participation. From a systemic perspective, this proactive approach may have long-term implications for both physical and psychological well-being for the incarcerated population as a whole, thereby decreasing the need for traditional treatment. By integrating a more holistic, salutogenic model that emphasizes prevention, interventions like yoga may work to improve the wellness of this population, while providing an alternative or complementary treatment option for those with current symptoms.Keywords: yoga, mental health, incarceration, wellness
Procedia PDF Downloads 1383391 The Functions of Spatial Structure in Supporting Socialization in Urban Parks
Authors: Navid Nasrolah Mazandarani, Faezeh Mohammadi Tahrodi, Jr., Norshida Ujang, Richard Jan Pech
Abstract:
Human evolution has designed us to be dependent on social and natural settings, but designed of our modern cities often ignore this fact. It is evident that high-rise buildings dominate most metropolitan city centers. As a result urban parks are very limited and in many cases are not socially responsive to our social needs in these urban ‘jungles’. This paper emphasizes the functions of urban morphology in supporting socialization in Lake Garden, one of the main urban parks in Kuala Lumpur, Malaysia. It discusses two relevant theories; first the concept of users’ experience coined by Kevin Lynch (1960) which states that way-finding is related to the process of forming mental maps of environmental surroundings. Second, the concept of social activity coined by Jan Gehl (1987) which holds that urban public spaces can be more attractive when they provide welcoming places in which people can walk around and spend time. Until recently, research on socio-spatial behavior mainly focused on social ties, place attachment and human well-being; with less focus on the spatial dimension of social behavior. This paper examines the socio-spatial behavior within the spatial structure of the urban park by exploring the relationship between way-finding and social activity. The urban structures defined by the paths and nodes were analyzed as the fundamental topological structure of space to understand their effects on the social engagement pattern. The study uses a photo questionnaire survey to inspect the spatial dimension in relation to the social activities within paths and nodes. To understand the legibility of the park, spatial cognition was evaluated using sketch maps produced by 30 participants who visited the park. The results of the sketch mapping indicated that a spatial image has a strong interrelation with socio-spatial behavior. Moreover, an integrated spatial structure of the park generated integrated use and social activity. It was found that people recognized and remembered the spaces where they engaged in social activities. They could experience the park more thoroughly, when they found their way continuously through an integrated park structure. Therefore, the benefits of both perceptual and social dimensions of planning and design happened simultaneously. The findings can assist urban planners and designers to redevelop urban parks by considering the social quality design that contributes to clear mental images of these places.Keywords: spatial structure, social activities, sketch map, urban park, way-finding
Procedia PDF Downloads 3153390 Effectiveness of Acceptance and Commitment Therapy on Reducing Corona Disease Anxiety in the Staff Working in Shahid Beheshti Hospital of Shiraz
Authors: Gholam Reza Mirzaei
Abstract:
This research aimed to investigate the effectiveness of acceptance and commitment therapy (ACT) in reducing corona disease anxiety in the staff working at Shahid Beheshti Hospital of Shiraz. The current research was a quasi-experimental study having pre-test and post-test with two experimental and control groups. The statistical population of the research included all the staff of Shahid Beheshti Hospital of Shiraz in 2021. From among the statistical population, 30 participants (N =15 in the experimental group and N =15 in the control group) were selected by available sampling. The materials used in the study comprised the Cognitive Emotion Regulation Questionnaire (CERQ) and Corona Disease Anxiety Scale (CDAS). Following data collection, the participants’ scores were analyzed using SPSS 20 at both descriptive (mean and standard deviation) and inferential (analysis of covariance) levels. The results of the analysis of covariance (ANCOVA) showed that acceptance and commitment therapy (ACT) is effective in reducing Corona disease anxiety (mental and physical symptoms) in the staff working at Shahid Beheshti Hospital of Shiraz. The effectiveness of acceptance and commitment therapy (ACT) on reducing mental symptoms was 25.5% and on physical symptoms was 13.8%. The mean scores of the experimental group in the sub-scales of Corona disease anxiety (mental and physical symptoms) in the post-test were lower than the mean scores of the control group.Keywords: acceptance and commitment therapy, corona disease anxiety, hospital staff, Shiraz
Procedia PDF Downloads 403389 Disagreement among the United Nations Human Rights Bodies over the Legality of Deprivation of Liberty on the Grounds of Mental Disability
Authors: Ravan Samadov
Abstract:
Mentally disabled people are the most discriminated against among other disabled people and face much stronger negative attitudes across many cultures. The most complex and severe form of exclusion of these people is deprivation of liberty on the grounds of their disability. This problem was for many years overlooked to a great extent by the core human rights instruments. However, the United Nations (UN) Convention on the Rights of Persons with Disabilities (CRPD), adopted in 2006, is considered a potential tool to successfully fill the gap. It is especially vital for the developing countries with the vast majority of disabled people of the world and the CRPD is presumed to be able to trigger drastic positive changes. Article 14 of the mentioned human rights treaty has brought into the international forum a new notion, as prohibits deprivation of liberty on the grounds of disability. It is to be understood as an absolute prohibition of deprivation of liberty on the grounds of disability, including mental disability, which manifests in the form of non-consensual psychiatric hospitalisation. The interpretation by the CRPD Committee indicates that this prohibition well embraces all types of non-consensual psychiatric hospitalisation – whether it is based on illness, impairment or disability. This prohibition also extends to such justifications as ‘dangerousness’, ‘need for treatment’ and ‘diminished capacity’. Moreover, providing due substantive and/or procedural safeguards does not render any legitimacy to application of deprivation of liberty on the grounds of mental disability. Logically, this new prohibition form was to be duly considered by different UN human rights bodies, and was subsequently to bring changes to their practices. However, the analyses of post-CRPD work of those bodies allows for asserting the contrary, as they have continued displaying the position which recognises deprivation of liberty on the grounds of disability to be legitimate. While such a position could be justified in the pre-CRPD time as stemming from the silence of human rights documents about it, the continuation of this course after the CRPD entered into force may call the integrity and coherence of the UN human rights treaty system into question. The non-coherent approaches of different UN bodies to this novelty give grounds for misinterpretation thereof, and hinder its due implementation by the States Parties. The paper will discuss the nature of the mentioned new prohibition and the controversial approaches to that notion by different UN human rights bodies.Keywords: CRPD, deprivation of liberty, mental disability, non-consensual psychiatric hospitalisation, UN bodies
Procedia PDF Downloads 3373388 Development of Active Learning Calculus Course for Biomedical Program
Authors: Mikhail Bouniaev
Abstract:
The paper reviews design and implementation of a Calculus Course required for the Biomedical Competency Based Program developed as a joint project between The University of Texas Rio Grande Valley, and the University of Texas’ Institute for Transformational Learning, from the theoretical perspective as presented in scholarly work on active learning, formative assessment, and on-line teaching. Following a four stage curriculum development process (objective, content, delivery, and assessment), and theoretical recommendations that guarantee effectiveness and efficiency of assessment in active learning, we discuss the practical recommendations on how to incorporate a strong formative assessment component to address disciplines’ needs, and students’ major needs. In design and implementation of this project, we used Constructivism and Stage-by-Stage Development of Mental Actions Theory recommendations.Keywords: active learning, assessment, calculus, cognitive demand, mathematics, stage-by-stage development of mental action theory
Procedia PDF Downloads 3603387 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 1383386 The Residual Effects of Special Merchandising Sections on Consumers' Shopping Behavior
Authors: Shih-Ching Wang, Mark Lang
Abstract:
This paper examines the secondary effects and consequences of special displays on subsequent shopping behavior. Special displays are studied as a prominent form of in-store or shopper marketing activity. Two experiments are performed using special value and special quality-oriented displays in an online simulated store environment. The impact of exposure to special displays on mindsets and resulting product choices are tested in a shopping task. Impact on store image is also tested. The experiments find that special displays do trigger shopping mindsets that affect product choices and shopping basket composition and value. There are intended and unintended positive and negative effects found. Special value displays improve store price image but trigger a price sensitive shopping mindset that causes more lower-priced items to be purchased, lowering total basket dollar value. Special natural food displays improve store quality image and trigger a quality-oriented mindset that causes fewer lower-priced items to be purchased, increasing total basket dollar value. These findings extend the theories of product categorization, mind-sets, and price sensitivity found in communication research into the retail store environment. Findings also warn retailers to consider the total effects and consequences of special displays when designing and executing in-store or shopper marketing activity.Keywords: special displays, mindset, shopping behavior, price consciousness, product categorization, store image
Procedia PDF Downloads 2833385 Exploring the Dose-Response Association of Lifestyle Behaviors and Mental Health among High School Students in the US: A Secondary Analysis of 2021 Adolescent Behaviors and Experiences Survey Data
Authors: Layla Haidar, Shari Esquenazi-Karonika
Abstract:
Introduction: Mental health includes one’s emotional, psychological, and interpersonal well-being; it ranges from “good” to “poor” on a continuum. At the individual-level, it affects how a person thinks, feels, and acts. Moreover, it determines how they cope with stress, relate to others, and interface with their surroundings. Research has yielded that mental health is directly related with short- and long-term physical health (including chronic disease), health risk behaviors, education-level, employment, and social relationships. As is the case with physical conditions like diabetes, heart disease, and cancer, mitigating the behavioral and genetic risks of debilitating mental health conditions like anxiety and depression can nurture a healthier quality of mental health throughout one’s life. In order to maximize the benefits of prevention, it is important to identify modifiable risks and develop protective habits earlier in life. Methods: The Adolescent Behaviors and Experiences Survey (ABES) dataset was used for this study. The ABES survey was administered to high school students (9th-12th grade) during January 2021- June 2021 by the Centers for Disease Control and Prevention (CDC). The data was analyzed to identify any associations between feelings of sadness, hopelessness, or increased suicidality among high school students with relation to their participation on one or more sports teams and their average daily consumed screen time. Data was analyzed using descriptive and multivariable analytic techniques. A multinomial logistic regression of each variable was conducted to examine if there was an association, while controlling for grade-level, sex, and race. Results: The findings from this study are insightful for administrators and policymakers who wish to address mounting concerns related to student mental health. The study revealed that compared to a student who participated on zero sports teams, students who participated in 1 or more sports teams showed a significantly increased risk of depression (p<0.05). Conversely, the rate of depression in students was significantly less in those who consumed 5 or more hours of screen time per day, compared to those who consumed less than 1 hour per day of screen time (p<0.05). Conclusion: These findings are informative and highlight the importance of understanding the nuances of student participation on sports teams (e.g., physical exertion, social dynamics of team, and the level of competitiveness within the sport). Likewise, the context of an individual’s screen time (e.g., social media, engaging in team-based video games, or watching television) can inform parental or school-based policies about screen time activity. Although physical activity has been proven to be important for emotional and physical well-being of youth, playing on multiple teams could have negative consequences on the emotional state of high school students potentially due to fatigue, overtraining, and injuries. Existing literature has highlighted the negative effects of screen time; however, further research needs to consider the type of screen-based consumption to better understand its effects on mental health.Keywords: behavioral science, mental health, adolescents, prevention
Procedia PDF Downloads 1053384 Tractography Analysis of the Evolutionary Origin of Schizophrenia
Authors: Asmaa Tahiri, Mouktafi Amine
Abstract:
A substantial number of traditional medical research has been put forward to managing and treating mental disorders. At the present time, to our best knowledge, it is believed that fundamental understanding of the underlying causes of the majority psychological disorders needs to be explored further to inform early diagnosis, managing symptoms and treatment. The emerging field of evolutionary psychology is a promising prospect to address the origin of mental disorders, potentially leading to more effective treatments. Schizophrenia as a topical mental disorder has been linked to the evolutionary adaptation of the human brain represented in the brain connectivity and asymmetry directly linked to humans higher brain cognition in contrast to other primates being our direct living representation of the structure and connectivity of our earliest common African ancestors. As proposed in the evolutionary psychology scientific literature the pathophysiology of schizophrenia is expressed and directly linked to altered connectivity between the Hippocampal Formation (HF) and Dorsolateral Prefrontal Cortex (DLPFC). This research paper presents the results of the use of tractography analysis using multiple open access Diffusion Weighted Imaging (DWI) datasets of healthy subjects, schizophrenia-affected subjects and primates to illustrate the relevance of the aforementioned brain regions connectivity and the underlying evolutionary changes in the human brain. Deterministic fiber tracking and streamline analysis were used to generate connectivity matrices from the DWI datasets overlaid to compute distances and highlight disconnectivity patterns in conjunction with other fiber tracking metrics; Fractional Anisotropy (FA), Mean Diffusivity (MD) and Radial Diffusivity (RD).Keywords: tractography, evolutionary psychology, schizophrenia, brain connectivity
Procedia PDF Downloads 713383 Crater Detection Using PCA from Captured CMOS Camera Data
Authors: Tatsuya Takino, Izuru Nomura, Yuji Kageyama, Shin Nagata, Hiroyuki Kamata
Abstract:
We propose a method of detecting the craters from the image of the lunar surface. This proposal assumes that it is applied to SLIM (Smart Lander for Investigating Moon) working group aiming at the pinpoint landing on the lunar surface and investigating scientific research. It is difficult to equip and use high-performance computers for the small space probe. So, it is necessary to use a small computer with an exclusive hardware such as FPGA. We have studied the crater detection using principal component analysis (PCA), In this paper, We implement detection algorithm into the FPGA, and the detection is performed on the data that was captured from the CMOS camera.Keywords: crater detection, PCA, FPGA, image processing
Procedia PDF Downloads 5503382 Changing Body Ideals of Ethnically Diverse Gay and Heterosexual Men and the Proliferation of Social and Entertainment Media
Authors: Cristina Azocar, Ivana Markova
Abstract:
A survey of 565 male undergraduates examined the effects of exposure to social networking sites and entertainment media on young men’s body image. Exposure to social and to entertainment media was found to have negative effects on men’s body satisfaction, social comparison, and thin ideal internalization. Findings indicated significant differences in those men who were more exposed to social and to entertainment media than those who were not as exposed. Consistent with past studies, gay men were found to be more dissatisfied with their bodies than straight men. Gay men compared themselves to other better-looking individuals and internalized ideal body types seen in media significantly more than their straight counterparts. Surprisingly, straight men seem to care as much about their physical attractiveness/appearance as gay men do, but only in public settings such as at the beach, at athletic events (including gyms) and social events. Although on average ethnic groups were more similar than different, small but significant differences occurred with Asian men indicating significantly higher body dissatisfaction than White/European men and Middle Eastern/Arab men their counterparts. The study increases our knowledge about SNS and entertainment use and its associated body image, and body satisfaction affects among low-income ethnic minority men.Keywords: body dissatisfaction, body image, entertainment media, gay men, race and ethnicity, social economic status, social comparison, social media
Procedia PDF Downloads 1333381 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs
Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.
Abstract:
Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification
Procedia PDF Downloads 1253380 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 743379 Nostalgia in Photographed Books for Children – the Case of Photography Books of Children in the Kibbutz
Authors: Ayala Amir
Abstract:
The paper presents interdisciplinary research which draws on the literary study and the cultural study of photography to explore a literary genre defined by nostalgia – the photographed book for children. This genre, which was popular in the second half of the 20th century, presents the romantic, nostalgic image of childhood created in the visual arts in the 18th century (as suggested by Ann Higonnet). At the same time, it capitalizes on the nostalgia inherent in the event of photography as formulated by Jennifer Green-Lewis: photography frames a moment in the present while transforming it into a past longed for in the future. Unlike Freudian melancholy, nostalgia is an effect that enables representation by acknowledging the loss and containing it in the very experience of the object. The representation and preservation of the lost object (nature, childhood, innocence) are in the center of the genre of children's photography books – a modern version of ancient pastoral. In it, the unique synergia of word and image results in a nostalgic image of childhood in an era already conquered by modernization. The nostalgic effect works both in the representation of space – an Edenic image of nature already shadowed by its demise, and of time – an image of childhood imbued by what Gill Bartholnyes calls the "looking backward aesthetics" – under the sign of loss. Little critical attention has been devoted to this genre with the exception of the work of Bettina Kümmerling-Meibauer, who noted the nostalgic effect of the well-known series of photography books by Astrid Lindgren and Anna Riwkin-Brick. This research aims to elaborate Kümmerling-Meibauer's approach using the theories of the study of photography, word-image studies, as well as current studies of childhood. The theoretical perspectives are implemented in the case study of photography books created in one of the most innovative social structures in our time – the Israeli Kibbutz. This communal way of life designed a society where children will experience their childhood in a parentless rural environment that will save them from the fate of the Oedipal fall. It is suggested that in documenting these children in a fictional format, photographers and writers, images and words cooperated in creating nostalgic works situated on the border between nature and culture, imagination and reality, utopia and its realization in history.Keywords: nostalgia, photography , childhood, children's books, kibutz
Procedia PDF Downloads 1423378 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption
Authors: Ashish Ashish
Abstract:
In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption
Procedia PDF Downloads 1523377 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 171