Search results for: linguistic and cultural human rights
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12898

Search results for: linguistic and cultural human rights

1498 Review of Urbanization Pattern in Kabul City

Authors: Muhammad Hanif Amiri, Edris Sadeqy, Ahmad Freed Osman

Abstract:

International Conference on Architectural Engineering and Skyscraper (ICAES 2016) on January 18 - 19, 2016 is aimed to exchange new ideas and application experiences face to face, to establish business or research relations and to find global partners for future collaboration. Therefore, we are very keen to participate and share our issues in order to get valuable feedbacks of the conference participants. Urbanization is a controversial issue all around the world. Substandard and unplanned urbanization has many implications on a social, cultural and economic situation of population life. Unplanned and illegal construction has become a critical issue in Afghanistan particularly Kabul city. In addition, lack of municipal bylaws, poor municipal governance, lack of development policies and strategies, budget limitation, low professional capacity of ainvolved private sector in development and poor coordination among stakeholders are the other factors which made the problem more complicated. The main purpose of this research paper is to review urbanization pattern of Kabul city and find out the improvement solutions and to evaluate the increasing of population density which caused vast illegal and unplanned development which finally converts the Kabul city to a slam area as the whole. The Kabul city Master Plan was reviewed in the year 1978 and revised for the planned 2million population. In 2001, the interim administration took place and the city became influx of returnees from neighbor countries and other provinces of Afghanistan mostly for the purpose of employment opportunities, security and better quality of life, therefore, Kabul faced with strange population growth. According to Central Statistics Organization of Afghanistan population of Kabul has been estimated approx. 5 million (2015), however a new Master Plan has been prepared in 2009, but the existing challenges have not been dissolved yet. On the other hand, 70% of Kabul population is living in unplanned (slam) area and facing the shortage of drinking water, inexistence of sewerage and drainage network, inexistence of proper management system for solid waste collection, lack of public transportation and traffic management, environmental degradation and the shortage of social infrastructure. Although there are many problems in Kabul city, but still the development of 22 townships are in progress which caused the great attraction of population. The research is completed with a detailed analysis on four main issues such as elimination of duplicated administrations, Development of regions, Rehabilitation and improvement of infrastructure, and prevention of new townships establishment in Kabul Central Core in order to mitigate the problems and constraints which are the foundation and principal to find the point of departure for an objective based future development of Kabul city. The closure has been defined to reflect the stage-wise development in light of prepared policy and strategies, development of a procedure for the improvement of infrastructure, conducting a preliminary EIA, defining scope of stakeholder’s contribution and preparation of project list for initial development. In conclusion this paper will help the transformation of Kabul city.

Keywords: development of regions, illegal construction, population density, urbanization pattern

Procedia PDF Downloads 319
1497 Coronin 1C and miR-128A as Potential Diagnostic Biomarkers for Glioblastoma Multiform

Authors: Denis Mustafov, Emmanouil Karteris, Maria Braoudaki

Abstract:

Glioblastoma multiform (GBM) is a heterogenous primary brain tumour that kills most affected patients. To the authors best knowledge, despite all research efforts there is no early diagnostic biomarker for GBM. MicroRNAs (miRNAs) are short non-coding RNA molecules which are deregulated in many cancers. The aim of this research was to determine miRNAs with a diagnostic impact and to potentially identify promising therapeutic targets for glioblastoma multiform. In silico analysis was performed to identify deregulated miRNAs with diagnostic relevance for glioblastoma. The expression profiles of the chosen miRNAs were then validated in vitro in the human glioblastoma cell lines A172 and U-87MG. Briefly, RNA extraction was carried out using the Trizol method, whilst miRNA extraction was performed using the mirVANA miRNA isolation kit. Quantitative Real-Time Polymerase Chain Reaction was performed to verify their expression. The presence of five target proteins within the A172 cell line was evaluated by Western blotting. The expression of the CORO1C protein within 32 GBM cases was examined via immunohistochemistry. The miRNAs identified in silico included miR-21-5p, miR-34a and miR-128a. These miRNAs were shown to target deregulated GBM genes, such as CDK6, E2F3, BMI1, JAG1, and CORO1C. miR-34a and miR-128a showed low expression profiles in comparison to a control miR-RNU-44 in both GBM cell lines suggesting tumour suppressor properties. Opposing, miR-21-5p demonstrated greater expression indicating that it could potentially function as an oncomiR. Western blotting revealed expression of all five proteins within the A172 cell line. In silico analysis also suggested that CORO1C is a target of miR-128a and miR-34a. Immunohistochemistry demonstrated that 75% of the GBM cases showed moderate to high expression of CORO1C protein. Greater understanding of the deregulated expression of miR-128a and the upregulation of CORO1C in GBM could potentially lead to the identification of a promising diagnostic biomarker signature for glioblastomas.

Keywords: non-coding RNAs, gene expression, brain tumours, immunohistochemistry

Procedia PDF Downloads 89
1496 The Evaluation of the Effect of a Weed-Killer Sulfonylurea on Durum Wheat (Triticum durum Desf)

Authors: Meksem Amara Leila, Ferfar Meriem, Meksem Nabila, Djebar Mohammed Reda

Abstract:

The wheat is the cereal the most consumed in the world. In Algeria, the production of this cereal covers only 20 in 25 % of the needs for the country, the rest being imported. To improve the efficiency and the productivity of the durum wheat, the farmers turn to the use of pesticides: weed-killers, fungicides and insecticides. However this use often entrains losses of products more at least important contaminating the environment and all the food chain. Weed-killers are substances developed to control or destroy plants considered unwanted. That they are natural or produced by the human being (molecule of synthesis), the absorption and the metabolization of weed-killers by plants cause the death of these plants.In this work, we set as goal the evaluation of the effect of a weed-killer sulfonylurea, the CossackOD with various concentrations (0, 2, 4 and 9 µg) on variety of Triticum durum: Cirta. We evaluated the plant growth by measuring the leaves and root length, compared with the witness as well as the content of proline and analyze the level of one of the antioxydative enzymes: catalse, after 14 days of treatment. Sulfonylurea is foliar and root weed-killers inhibiting the acetolactate synthase: a vegetable enzyme essential to the development of the plant. This inhibition causes the ruling of the growth then the death. The obtained results show a diminution of the average length of leaves and roots this can be explained by the fact that the ALS inhibitors are more active in the young and increasing regions of the plant, what inhibits the cellular division and talks a limitation of the foliar and root’s growth. We also recorded a highly significant increase in the proline levels and a stimulation of the catalase activity. As a response to increasing the herbicide concentrations a particular increases in antioxidative mechanisms in wheat cultivar Cirta suggest that the high sensitivity of Cirta to this sulfonylurea herbicide is related to the enhanced production and oxidative damage of reactive oxygen species.

Keywords: sulfonylurea, Triticum durum, oxydative stress, Toxicity

Procedia PDF Downloads 424
1495 Interstellar Mission to Wolf 359: Possibilities for the Future

Authors: Rajasekar Anand Thiyagarajan

Abstract:

One of the driving forces of mankind is the “le r`eve d'etoiles" or the “dream of stars", which has been the dynamo of our civilization. Since the beginning of the dawn of the civilization, mankind has looked upon the heavens with wonder and he has tried to understand the meaning of those twinkling lights. As human history has progressed, the understanding of those twinkling lights has progressed, as we now know a lot of information about stars. However, the dream of stars or the dream of reaching those stars always remains within the expectations of mankind. In fact, the needs of the civilization constantly drive for better knowledge and the capability of reaching those stars is one such way that knowledge and exultation can be achieved. This paper takes a futuristic case study of an interstellar mission to Wolf 359, which is approximately 8.3 light years away from us. In terms of galactic distances, 8.3 light years is not much, but as far as present space technology capabilities are concerned, it is next to impossible for us to reach those distances. Several studies have been conducted on various missions to Alpha Centauri and other nearby stars such as Barnard's star and Wolf 359. However, taking a more distant star such as Wolf 359 will help test the mankind's drive for interstellar exploration, as exotic means of travel are needed. This paper will take a futuristic case study of the event and various possibilities of space travel will be discussed in detail. Comprehensive tables and graphs will be given, which will depict the amount of time that will pass at each mode of travel and more importantly some idea on the cost in terms of energy as well as money will be discussed within today's context. In addition, prerequisites to an interstellar mission to Wolf 359 will be given in detail as well as a sample mission which will take place to that particular destination. Even though the possibility of such a mission is probably nonexistent for the 21st century, it is essential to do these exercises so that mankind's understanding of the universe will be increased. In addition, this paper hopes to establish some general guidelines for such an interstellar mission.

Keywords: wolf 359, interstellar mission, alpha centauri, core diameter, core length, reflector thickness enrichment, gas temperature, reflector temperature, power density, mass of the space craft, acceleration of the space craft, time expansion

Procedia PDF Downloads 428
1494 Hand Gesture Detection via EmguCV Canny Pruning

Authors: N. N. Mosola, S. J. Molete, L. S. Masoebe, M. Letsae

Abstract:

Hand gesture recognition is a technique used to locate, detect, and recognize a hand gesture. Detection and recognition are concepts of Artificial Intelligence (AI). AI concepts are applicable in Human Computer Interaction (HCI), Expert systems (ES), etc. Hand gesture recognition can be used in sign language interpretation. Sign language is a visual communication tool. This tool is used mostly by deaf societies and those with speech disorder. Communication barriers exist when societies with speech disorder interact with others. This research aims to build a hand recognition system for Lesotho’s Sesotho and English language interpretation. The system will help to bridge the communication problems encountered by the mentioned societies. The system has various processing modules. The modules consist of a hand detection engine, image processing engine, feature extraction, and sign recognition. Detection is a process of identifying an object. The proposed system uses Canny pruning Haar and Haarcascade detection algorithms. Canny pruning implements the Canny edge detection. This is an optimal image processing algorithm. It is used to detect edges of an object. The system employs a skin detection algorithm. The skin detection performs background subtraction, computes the convex hull, and the centroid to assist in the detection process. Recognition is a process of gesture classification. Template matching classifies each hand gesture in real-time. The system was tested using various experiments. The results obtained show that time, distance, and light are factors that affect the rate of detection and ultimately recognition. Detection rate is directly proportional to the distance of the hand from the camera. Different lighting conditions were considered. The more the light intensity, the faster the detection rate. Based on the results obtained from this research, the applied methodologies are efficient and provide a plausible solution towards a light-weight, inexpensive system which can be used for sign language interpretation.

Keywords: canny pruning, hand recognition, machine learning, skin tracking

Procedia PDF Downloads 185
1493 Field Study of Chlorinated Aliphatic Hydrocarbons Degradation in Contaminated Groundwater via Micron Zero-Valent Iron Coupled with Biostimulation

Authors: Naijin Wu, Peizhong Li, Haijian Wang, Wenxia Wei, Yun Song

Abstract:

Chlorinated aliphatic hydrocarbons (CAHs) pollution poses a severe threat to human health and is persistent in groundwater. Although chemical reduction or bioremediation is effective, it is still hard to achieve their complete and rapid dechlorination. Recently, the combination of zero-valent iron and biostimulation has been considered to be one of the most promising strategies, but field studies of this technology are scarce. In a typical site contaminated by various types of CAHs, basic physicochemical parameters of groundwater, CAHs and their product concentrations, and microbial abundance and diversity were monitored after a remediation slurry containing both micron zero-valent iron (mZVI) and biostimulation components were directly injected into the aquifer. Results showed that groundwater could form and keep low oxidation-reduction potential (ORP), a neutral pH, and anoxic conditions after different degrees of fluctuations, which was benefit for the reductive dechlorination of CAHs. The injection also caused an obvious increase in the total organic carbon (TOC) concentration and sulfate reduction. After 253 days post-injection, the mean concentration of total chlorinated ethylene (CEE) from two monitoring wells decreased from 304 μg/L to 8 μg/L, and total chlorinated ethane (CEA) decreased from 548 μg/L to 108 μg/L. Occurrence of chloroethane (CA) suggested that hydrogenolysis dechlorination was one of the main degradation pathways for CEA, and also hints that biological dechlorination was activated. A significant increase of ethylene at day 67 post-injection indicated that dechlorination was complete. Additionally, the total bacterial counts increased by 2-3 orders of magnitude after 253 days post-injection. And the microbial species richness decreased and gradually changed to anaerobic/fermentative bacteria. The relative abundance of potential degradation bacteria increased corresponding to the degradation of CAHs. This work demonstrates that mZVI and biostimulation can be combined to achieve the efficient removal of various CAHs from contaminated groundwater sources.

Keywords: chlorinated aliphatic hydrocarbons, groundwater, field study, zero-valent iron, biostimulation

Procedia PDF Downloads 165
1492 Removal of Nickel Ions from Industrial Effluents by Batch and Column Experiments: A Comparison of Activated Carbon with Pinus Roxburgii Saw Dust

Authors: Sardar Khana, Zar Ali Khana

Abstract:

Rapid industrial development and urbanization contribute a lot to wastewater discharge. The wastewater enters into natural aquatic ecosystems from industrial activities and considers as one of the main sources of water pollution. Discharge of effluents loaded with heavy metals into the surrounding environment has become a key issue regarding human health risk, environment, and food chain contamination. Nickel causes fatigue, cancer, headache, heart problems, skin diseases (Nickel Itch), and respiratory disorders. Nickel compounds such as Nickel Sulfide and Nickel oxides in industrial environment, if inhaled, have an association with an increased risk of lung cancer. Therefore the removal of Nickel from effluents before discharge is necessary. Removal of Nickel by low-cost biosorbents is an efficient method. This study was aimed to investigate the efficiency of activated carbon and Pinusroxburgiisaw dust for the removal of Nickel from industrial effluents using commercial Activated Carbon, and raw P.roxburgii saw dust. Batch and column adsorption experiments were conducted for the removal of Nickel. The study conducted indicates that removal of Nickel greatly dependent on pH, contact time, Nickel concentration, and adsorbent dose. Maximum removal occurred at pH 9, contact time of 600 min, and adsorbent dose of 1 g/100 mL. The highest removal was 99.62% and 92.39% (pH based), 99.76% and 99.9% (dose based), 99.80% and 100% (agitation time), 92% and 72.40% (Ni Conc. based) for P.roxburgii saw dust and activated Carbon, respectively. Similarly, the Ni removal in column adsorption was 99.77% and 99.99% (bed height based), 99.80% and 99.99% (Concentration based), 99.98%, and 99.81% (flow rate based) during column studies for Nickel using P.Roxburgiisaw dust and activated carbon, respectively. Results were compared with Freundlich isotherm model, which showed “r2” values of 0.9424 (Activated carbon) and 0.979 (P.RoxburgiiSaw Dust). While Langmuir isotherm model values were 0.9285 (Activated carbon) and 0.9999 (P.RoxburgiiSaw Dust), the experimental results were fitted to both the models. But the results were in close agreement with Langmuir isotherm model.

Keywords: nickel removal, batch, and column, activated carbon, saw dust, plant uptake

Procedia PDF Downloads 130
1491 The Use of Modern Technologies and Computers in the Archaeological Surveys of Sistan in Eastern Iran

Authors: Mahyar MehrAfarin

Abstract:

The Sistan region in eastern Iran is a significant archaeological area in Iran and the Middle East, encompassing 10,000 square kilometers. Previous archeological field surveys have identified 1662 ancient sites dating from prehistoric periods to the Islamic period. Research Aim: This article aims to explore the utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, and the benefits derived from their implementation. Methodology: The research employs a descriptive-analytical approach combined with field methods. New technologies and software, such as GPS, drones, magnetometers, equipped cameras, satellite images, and software programs like GIS, Map source, and Excel, were utilized to collect information and analyze data. Findings: The use of modern technologies and computers in archaeological field surveys proved to be essential. Traditional archaeological activities, such as excavation and field surveys, are time-consuming and costly. Employing modern technologies helps in preserving ancient sites, accurately recording archaeological data, reducing errors and mistakes, and facilitating correct and accurate analysis. Creating a comprehensive and accessible database, generating statistics, and producing graphic designs and diagrams are additional advantages derived from the use of efficient technologies in archaeology. Theoretical Importance: The integration of computers and modern technologies in archaeology contributes to interdisciplinary collaborations and facilitates the involvement of specialists from various fields, such as geography, history, art history, anthropology, laboratory sciences, and computer engineering. The utilization of computers in archaeology spanned across diverse areas, including database creation, statistical analysis, graphics implementation, laboratory and engineering applications, and even artificial intelligence, which remains an unexplored area in Iranian archaeology. Data Collection and Analysis Procedures: Information was collected using modern technologies and software, capturing geographic coordinates, aerial images, archeogeophysical data, and satellite images. This data was then inputted into various software programs for analysis, including GIS, Map source, and Excel. The research employed both descriptive and analytical methods to present findings effectively. Question Addressed: The primary question addressed in this research is how the use of modern technologies and computers in archeological field surveys in Sistan, Iran, can enhance archaeological data collection, preservation, analysis, and accessibility. Conclusion: The utilization of modern technologies and computers in archaeological field surveys in Sistan, Iran, has proven to be necessary and beneficial. These technologies aid in preserving ancient sites, accurately recording archaeological data, reducing errors, and facilitating comprehensive analysis. The creation of accessible databases, statistics generation, graphic designs, and interdisciplinary collaborations are further advantages observed. It is recommended to explore the potential of artificial intelligence in Iranian archaeology as an unexplored area. The research has implications for cultural heritage organizations, archaeology students, and universities involved in archaeological field surveys in Sistan and Baluchistan province. Additionally, it contributes to enhancing the understanding and preservation of Iran's archaeological heritage.

Keywords: Iran, sistan, archaeological surveys, computer use, modern technologies

Procedia PDF Downloads 79
1490 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks

Authors: Van Trieu, Shouhuai Xu, Yusheng Feng

Abstract:

Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.

Keywords: causality, multilevel graph, cyber-attacks, prediction

Procedia PDF Downloads 156
1489 Bio Based Agro Textiles

Authors: K. Sakthivel

Abstract:

With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.

Keywords: biodegradation, environment, mulching film, PLA, technical textiles

Procedia PDF Downloads 386
1488 Worldbuilding as Critical Architectural Pedagogy

Authors: Jesse Rafeiro

Abstract:

This paper discusses worldbuilding as a pedagogical approach to the first-year architectural design studio. The studio ran for three consecutive terms between 2016-2018. Taking its departure from the fifty-five city narratives in Italo Calvino’s Invisible Cities, students collectively designed in a “nowhere” space where intersecting and diverging narratives could be played out. Along with Calvino, students navigated between three main exercises and their imposed limits to develop architectural insight at three scales simulating the considerations of architectural practice: detail, building, and city. The first exercise asked each student to design and model a ruin based on randomly assigned incongruent fragments. Each student was given one plan fragment and two section fragments from different Renaissance Treatises. The students were asked to translate these in alternating axonometric projection and model-making explorations. Although the fragments themselves were imposed, students were free to interpret how the drawings fit together by imagining new details and atypical placements. An undulating terrain model was introduced in the second exercise to ground the worldbuilding exercises. Here, students were required to negotiate with one another to design a city of ruins. Free to place their models anywhere on the site, the students were restricted by the negotiation of territories marked by other students and the requirement to provide thresholds, open spaces, and corridors. The third exercise introduced new life into the ruined city through a series of design interventions. Each student was assigned an atypical building program suggesting a place for an activity, human or nonhuman. The atypical nature of the programs challenged the triviality of functional planning through explorations in spatial narratives free from preconceived assumptions. By contesting, playing out, or dreaming responses to realities taught in other coursework, this third exercise actualized learnings that are too often self-contained in the silos of differing course agendas. As such, the studio fostered an initial worldbuilding space within which to sharpen sensibility and criticality for subsequent years of education.

Keywords: architectural pedagogy, critical pedagogy, Italo Calvino, worldbuilding

Procedia PDF Downloads 132
1487 Structural Health Monitoring using Fibre Bragg Grating Sensors in Slab and Beams

Authors: Pierre van Tonder, Dinesh Muthoo, Kim twiname

Abstract:

Many existing and newly built structures are constructed on the design basis of the engineer and the workmanship of the construction company. However, when considering larger structures where more people are exposed to the building, its structural integrity is of great importance considering the safety of its occupants (Raghu, 2013). But how can the structural integrity of a building be monitored efficiently and effectively. This is where the fourth industrial revolution step in, and with minimal human interaction, data can be collected, analysed, and stored, which could also give an indication of any inconsistencies found in the data collected, this is where the Fibre Bragg Grating (FBG) monitoring system is introduced. This paper illustrates how data can be collected and converted to develop stress – strain behaviour and to produce bending moment diagrams for the utilisation and prediction of the structure’s integrity. Embedded fibre optic sensors were used in this study– fibre Bragg grating sensors in particular. The procedure entailed making use of the shift in wavelength demodulation technique and an inscription process of the phase mask technique. The fibre optic sensors considered in this report were photosensitive and embedded in the slab and beams for data collection and analysis. Two sets of fibre cables have been inserted, one purposely to collect temperature recordings and the other to collect strain and temperature. The data was collected over a time period and analysed used to produce bending moment diagrams to make predictions of the structure’s integrity. The data indicated the fibre Bragg grating sensing system proved to be useful and can be used for structural health monitoring in any environment. From the experimental data for the slab and beams, the moments were found to be64.33 kN.m, 64.35 kN.m and 45.20 kN.m (from the experimental bending moment diagram), and as per the idealistic (Ultimate Limit State), the data of 133 kN.m and 226.2 kN.m were obtained. The difference in values gave room for an early warning system, in other words, a reserve capacity of approximately 50% to failure.

Keywords: fibre bragg grating, structural health monitoring, fibre optic sensors, beams

Procedia PDF Downloads 139
1486 An Investigation into the Potential of Industrial Low Grade Heat in Membrane Distillation for Freshwater Production

Authors: Yehia Manawi, Ahmad Kayvanifard

Abstract:

Membrane distillation is an emerging technology which has been used to produce freshwater and purify different types of aqueous mixtures. Qatar is an arid country where almost 100% of its freshwater demand is supplied through the energy-intensive thermal desalination process. The country’s need for water has reached an all-time high which stipulates finding an alternative way to augment freshwater without adding any drastic affect to the environment. The objective of this paper was to investigate the potential of using the industrial low grade waste heat to produce freshwater using membrane distillation. The main part of this work was conducting a heat audit on selected Qatari chemical industries to estimate the amounts of freshwater produced if such industrial waste heat were to be recovered. By the end of this work, the main objective was met and the heat audit conducted on the Qatari chemical industries enabled us to estimate both the amounts of waste heat which can be potentially recovered in addition to the amounts of freshwater which can be produced if such waste heat were to be recovered. By the end, the heat audit showed that around 605 Mega Watts of waste heat can be recovered from the studied Qatari chemical industries which resulted in a total daily production of 5078.7 cubic meter of freshwater. This water can be used in a wide variety of applications such as human consumption or industry. The amount of produced freshwater may look small when compared to that produced through thermal desalination plants; however, one must bear in mind that this water comes from waste and can be used to supply water for small cities or remote areas which are not connected to the water grid. The idea of producing freshwater from the two widely-available wastes (thermal rejected brine and waste heat) seems promising as less environmental and economic impacts will be associated with freshwater production which may in the near future augment the conventional way of producing freshwater currently being thermal desalination. This work has shown that low grade waste heat in the chemical industries in Qatar and perhaps the rest of the world can contribute to additional production of freshwater using membrane distillation without significantly adding to the environmental impact.

Keywords: membrane distillation, desalination, heat recovery, environment

Procedia PDF Downloads 319
1485 Effects of Potassium Sorbate on Some Sexual Maturation Parameters in Immature Female Wistar Rats

Authors: Elisabeth Louise Ndjengue Mindang, Charline Florence Awounfack, Derek Tantoh Ndinteh, Rui W. M. Krause, Dieudonne Njamen

Abstract:

The evolution of human fertility over the last 50 years has shown considerable problems due to a growing number of couples that find it difficult to procreate without medical assistance. In Africa, this inability to conceive affect 30 to 40% of couples. A number of contaminants in the environment are thought to contribute significantly to the observed infertility epidemic. Methods: On this basis, the impact of 40-days unique oral administration (between 9 and 10 am) of potassium sorbate (at of 12.5, 45, and 78 mg/kg BW doses) was evaluated on sexual maturation and hematologic parameters on immature Wistar rats (21-22 days of age). At the end of the treatment, animals were sacrificed. Vaginal opening was evaluated before the sacrifice. After the sacrifice, relative weight of reproductive organs, pituitary gonadotrophin level (LH and FSH), and sexuals steroids (estrogen and progesterone), cholesterol level in ovaries, folliculogenesis, and some hematological parameters were evaluated. Results: Compared to the control group, no significant variation was observed in the body weight of the animals treated with patassium sorbate. On the other hand, potassium sorbate, a significantly lower percentage (25%) of vaginal-opening in these rats, was observed from day 46 of age (p <0.01); likewise, a significant decrease was observed on the relative weight of the ovaries (p <0.01), number of primary follicles (p <0.01), and a significant increase of follicle number (p <0.001) at 78 mg/kg BW have been obseved. Potassium sorbate always decreased the number of white blood cells (p <0.05). Taken together, these results confirm the disturbing effects on the endocrine system, causing a decrease in fertility by increasing the number of follicles in atresia. A deleterious effect on the immune system was also observed. Overall, these results validate at least in part the global observations on the growing decline in fertility in populationsfeeding increasingly on industrial processed foods.

Keywords: potassium sorbate, early puberty, folliculogenesis, endocrine disruptor, immatur wistar rat

Procedia PDF Downloads 153
1484 Cognitivism in Classical Japanese Art and Literature: The Cognitive Value of Haiku and Zen Painting

Authors: Benito Garcia-Valero

Abstract:

This paper analyses the cognitivist value of traditional Japanese theories about aesthetics, art, and literature. These reflections were developed several centuries before actual Cognitive Studies, which started in the seventies of the last century. A comparative methodology is employed to shed light on the similarities between traditional Japanese conceptions about art and current cognitivist principles. The Japanese texts to be compared are Zeami’s treatise on noh art, Okura Toraaki’s Waranbe-gusa on kabuki theatre, and several Buddhist canonical texts about wisdom and knowledge, like the Prajnaparamitahrdaya or Heart Sutra. Japanese contemporary critical sources on these works are also referred, like Nishida Kitaro’s reflections on Zen painting or Ichikawa Hiroshi’s analysis of body/mind dualism in Japanese physical practices. Their ideas are compared with cognitivist authors like George Lakoff, Mark Johnson, Mark Turner and Margaret Freeman. This comparative review reveals the anticipatory ideas of Japanese thinking on body/mind interrelationship, which agrees with cognitivist criticism against dualism, since both elucidate the physical grounds acting upon the formation of concepts and schemes during the production of knowledge. It also highlights the necessity of recovering ancient Japanese treatises on cognition to continue enlightening current research on art and literature. The artistic examples used to illustrate the theory are Sesshu’s Zen paintings and Basho’s classical haiku poetry. Zen painting is an excellent field to demonstrate how monk artists conceived human perception and guessed the active role of beholders during the contemplation of art. On the other hand, some haikus by Matsuo Basho aim at factoring subjectivity out from artistic praxis, which constitutes an ideal of illumination that cannot be achieved using art, due to the embodied nature of perception; a constraint consciously explored by the poet himself. These ideas consolidate the conclusions drawn today by cognitivism about the interrelation between subject and object and the concept of intersubjectivity.

Keywords: cognitivism, dualism, haiku, Zen painting

Procedia PDF Downloads 143
1483 Non Chemical-Based Natural Products in the Treatment and Control of Disease in Fish

Authors: Albert P. Ekanem, Austin I. Obiekezie, Elizabeth X. Ntia

Abstract:

Introduction: Some African plants and bile from animals have shown efficacies in the treatment and control of diseases in farmed fish. The background of the study is based on the fact the African rain forest is blessed with the abundance of medicinal plants that should be investigated for their use in the treatment of diseases. The significance of the study is informed by the fact that chemical-based substances accumulate in the tissues of food fish, thereby reducing the food values of such products and moreover, the continuous use of chemotherapeutics in the aquatic environments tends to degrade the affected environment. Methodology: Plants and animal products were extracted, purified and applied under in vitro and in vivo conditions to the affected organisms. Effective plants and bills were analyzed for biologically active substances responsible for the activities by both qualitative and HPLC methods. Results: Extracts of Carica papaya and Mucuna pruriens were effective in the treatment of Ichthyophthiriasis in goldfish (Carassius auratus auratus) with high host tolerance. Similarly, ectoparasitic monogeneans were effectively dislodged from the gills and skin of goldfish by the application of extracts of Piper guineense at therapeutic concentrations. Artemesia annua with known antimalarial activities in human was also effective against fish monogenean parasites of Clarias gariepinus in a concentration-related manner without detriments to the host. Effective antibacterial activities against Aeromonas and Pseudomonas diseases of the African catfish (Heterobranchus longifilis) were demonstrated in some plants such as Phylanthus amarus, Allium sativum, A. annua, and Citrus lemon. Bile from some animals (fish, goat, chicken, cow, and pig) showed great antibacterial activities against some gastrointestinal bacterial pathogens of fish. Conclusions: African plants and some animal bile have shown potential promise in the treatment of diseases in fish and other aquatic animals. The use of chemical-based substances for control of diseases in the aquatic environments should be restricted.

Keywords: control, diseases, fish, treatment

Procedia PDF Downloads 449
1482 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 259
1481 Computation of Radiotherapy Treatment Plans Based on CT to ED Conversion Curves

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Radiotherapy treatment planning computers use CT data of the patient. For the computation of a treatment plan, treatment planning system must have an information on electron densities of tissues scanned by CT. This information is given by the conversion curve CT (CT number) to ED (electron density), or simply calibration curve. Every treatment planning system (TPS) has built in default CT to ED conversion curves, for the CTs of different manufacturers. However, it is always recommended to verify the CT to ED conversion curve before actual clinical use. Objective of this study was to check how the default curve already provided matches the curve actually measured on a specific CT, and how much it influences the calculation of a treatment planning computer. The examined CT scanners were from the same manufacturer, but four different scanners from three generations. The measurements of all calibration curves were done with the dedicated phantom CIRS 062M Electron Density Phantom. The phantom was scanned, and according to real HU values read at the CT console computer, CT to ED conversion curves were generated for different materials, for same tube voltage 140 kV. Another phantom, CIRS Thorax 002 LFC which represents an average human torso in proportion, density and two-dimensional structure, was used for verification. The treatment planning was done on CT slices of scanned CIRS LFC 002 phantom, for selected cases. Interest points were set in the lungs, and in the spinal cord, and doses recorded in TPS. The overall calculated treatment times for four scanners and default scanner did not differ more than 0.8%. Overall interest point dose in bone differed max 0.6% while for single fields was maximum 2.7% (lateral field). Overall interest point dose in lungs differed max 1.1% while for single fields was maximum 2.6% (lateral field). It is known that user should verify the CT to ED conversion curve, but often, developing countries are facing lack of QA equipment, and often use default data provided. We have concluded that the CT to ED curves obtained differ in certain points of a curve, generally in the region of higher densities. This influences the treatment planning result which is not significant, but definitely does make difference in the calculated dose.

Keywords: Computation of treatment plan, conversion curve, radiotherapy, electron density

Procedia PDF Downloads 486
1480 Management of High Conservation Value Forests (HCVF) in Peninsular Malaysia as Part of Sustainable Forest Management Practices

Authors: Abu Samah Abdul Khalim, Hamzah Khali Aziz

Abstract:

Tropical forests in Malaysia safeguard enormous biological diversity while providing crucial benefits and services for the sustainable development of human communities. They are highly significant globally, both for their diverse and threatened species and as representative unique ecosystems. In order to promote the conservation and sustainable management of forest in this country, the Forestry Department (FD) is using ITTO guidelines on managing the forest under the Sustainable Forest Management practice (SFM). The fundamental principles of SFM are the sustained provision of products, goods and services; economic viability, social acceptability and the minimization of environmental/ecological impacts. With increased awareness and recognition of the importance of tropical forests and biodiversity in the global environment, efforts have been made to classify forests and natural areas with unique values or properties in a universally accepted scale. In line with that the concept of High Conservation Value Forest (HCVF) first used by the Forest Stewardship Council (FSC) in 1999, has been adopted and included as Principle ‘9’ in the Malaysia Criteria and Indicators for Forest Management Certification (MC&I 2002). The MC&I 2002 is a standard used for assessing forest management practices of the Forest Management Unit (FMU) level for purpose of certification. The key to the concept of HCVF is identification of HCVs of the forest. This paper highlighted initiative taken by the Forestry Department Peninsular Malaysia in establishing and managing HCVF areas within the Permanent Forest Reserves (PFE). To date almost all states forestry department in Peninsular Malaysia have established HCVFs in their respective states under different categories. Among others, the establishments of HCVF in this country are related to the importance of conserving biological diversity of the flora in the natural forest in particular endemic and threatened species such as Shorea bentongensis. As such it is anticipated that by taking this important initiatives, it will promote the conservation of biological diversity in the PFE of Peninsular Malaysia in line with the Sustainable Forest Management practice.

Keywords: high conservation value forest, sustainable forest management, forest management certification, Peninsular Malaysia

Procedia PDF Downloads 330
1479 Healthy Beverages Made from Grape Juice: Antioxidant, Energetic, and Isotonic Components

Authors: Yasmina Bendaali, Cristian Vaquero, Carlos Escott, Carmen González, Antonio Morata

Abstract:

Consumer tendencies to healthy eating habits and request for organic beverages led to the production of new drinks from fruit juices as a source of nutrients and bioactive compounds. Grape juice is a rich source of sugars, organic acids, and phenolic compounds, which define its beneficial effect on health and the attractive sensory profile for consumers' choices (color, taste, flavor). Thus, grape juice was used as a source of sugars, avoiding the addition of sweeteners by diluting it with mineral water to obtain the sugar concentration recommended for isotonic drinks (6% to 8%) to provide energy during physical activities. In addition, phenolic compounds of grape juice are associated with many human health benefits, mainly antioxidant activity, which helps to prevent different diseases associated with oxidative stress, including cancers and cardiovascular and neurodegenerative diseases. Furthermore, physical exercise has been shown to increase the production of free radicals and other reactive oxygen species. Thus, athletes need to improve their antioxidant defense systems to prevent oxidative damage. Different studies have demonstrated the positive effect of grape juice consumption during physical activities, which improves antioxidant activity and performance, protects against oxidative damage, and reduces inflammation. Thus, the use of grape juice to develop isotonic drinks can provide isotonic drinks with antioxidant and biological activities in addition to their principal role of rehydration and replacement of minerals and carbohydrates during physical exercises. Moreover, attractive sensory characteristics, mainly color, which is provided by anthocyanin content, have a great contribution to making the drinks more natural and help to dispense the use of synthetic dyes in addition to the health benefits which will be a novel product in the field of healthy beverages responding on the demand of consumers for new, innovative, and healthy products.

Keywords: grape juice, isotonic, antioxidants, anthocyanins, natural, sport

Procedia PDF Downloads 77
1478 Studies on Virulence Factors Analysis in Streptococcus agalactiae from the Clinical Isolates

Authors: Natesan Balasubramanian, Palpandi Pounpandi, Venkatraman Thamil Priya, Vellasamy Shanmugaiah, Karubbiah Balakrishnan, Mandayam Anandam Thirunarayan

Abstract:

Streptococcus agalactiae is commonly known as Group B Streptococcus (GBS) and it is the most common cause of life-threatening bacterial infection. GBS first considered as a veterinary pathogen causing mastitis in cattle later becomes a human pathogen for severe neonatal infections. In this present study, a total of 20 new clinical isolates of S. agalactiae were collected from male (6) and female patient (14) with different age group. The isolates were from Urinary tract infection (UTI), blood, pus and eye ulcer. All the 20 S. agalactiae isolates has clear hemolysis properties on blood agar medium and were identified by serogrouping and MALTI-TOF-MS analysis. Antibiotic susceptibility/resistance test was performed for 20 S. agalactiae isolates, further phenotypic resistance pattern was observed for tetracycline, vancomycin, ampicillin and penicillin. Genotypically we found two antibiotic resistance genes such as Betalactem antibiotic resistance gene (Tem) (70%) and tetracycline resistance gene Tet(O) 15% in our isolates. Six virulence factors encoding genes were performed by PCR in twenty GBS isolates, cfb gene (100%), followed by, cylE(90.47%), lmp(85.7%), bca(71.42%), rib (38%) and low frequency in bac gene (4.76%) were determined. Most of the S. agalactiae isolates produced strong biofilm in the polystyrene surface (hydrophobic), and low-level biofilm formation was found in glass tube (hydrophilic) surface. lytR is secreted protein and localized in bacterial cell wall, extra cellular membrane, and cytoplasm. In silico docking studies were performed for lytR protein with four antibiofilm compounds, including a peptide (PR39) with the docking study showed peptide has strong interaction followed by ellagic acid and interaction length is 2.95, 2.97 and 2.95 A°. In ligand EGCGO10 and O11 two atoms intract with lytR (Leu271), with binding bond affinity length is 3.24 and 3.14. The aminoacid Leu 271 is act as an impartant aminoacid, since ellagic acid and EGCG interact with same aminoacid.

Keywords: antibiotics, biofilms, clinical isolates, S. agalactiae, virulence

Procedia PDF Downloads 108
1477 Geospatial Analysis of Hydrological Response to Forest Fires in Small Mediterranean Catchments

Authors: Bojana Horvat, Barbara Karleusa, Goran Volf, Nevenka Ozanic, Ivica Kisic

Abstract:

Forest fire is a major threat in many regions in Croatia, especially in coastal areas. Although they are often caused by natural processes, the most common cause is the human factor, intentional or unintentional. Forest fires drastically transform landscapes and influence natural processes. The main goal of the presented research is to analyse and quantify the impact of the forest fire on hydrological processes and propose the model that best describes changes in hydrological patterns in the analysed catchments. Keeping in mind the spatial component of the processes, geospatial analysis is performed to gain better insight into the spatial variability of the hydrological response to disastrous events. In that respect, two catchments that experienced severe forest fire were delineated, and various hydrological and meteorological data were collected both attribute and spatial. The major drawback is certainly the lack of hydrological data, common in small torrential karstic streams; hence modelling results should be validated with the data collected in the catchment that has similar characteristics and established hydrological monitoring. The event chosen for the modelling is the forest fire that occurred in July 2019 and burned nearly 10% of the analysed area. Surface (land use/land cover) conditions before and after the event were derived from the two Sentinel-2 images. The mapping of the burnt area is based on a comparison of the Normalized Burn Index (NBR) computed from both images. To estimate and compare hydrological behaviour before and after the event, curve number (CN) values are assigned to the land use/land cover classes derived from the satellite images. Hydrological modelling resulted in surface runoff generation and hence prediction of hydrological responses in the catchments to a forest fire event. The research was supported by the Croatian Science Foundation through the project 'Influence of Open Fires on Water and Soil Quality' (IP-2018-01-1645).

Keywords: Croatia, forest fire, geospatial analysis, hydrological response

Procedia PDF Downloads 136
1476 Metamorphosis of Teaching-Learning During COVID-19 Crisis and Challenges of Education in India

Authors: Saroj Pandey

Abstract:

COVID-19, declared by the World Health Organization a pandemic (WHO,2020), has created an unprecedented crisis world over endangering the human survival itself. Corona induced lockdowns forced approximately 140 million students of 190 countries at various levels of education from preprimary to higher education to remain confined to their homes. In India, approximately 360 million students were affected by the forced shut down of schools due to the countrywide lockdown in March 2020 and resultant disruption of education. After the initial shock and anxiety the Indian polity and education system bounced back with a number of initiatives, and online education came as a major rescuer for the education system of the country. The distance and online mode of learning that was treated as the poor cousin of conventional mode and often criticized for its quality became the major crusader overnight changing the entire ecosystem of traditional teaching -leaning towards the virtual mode. Teachers who were averse to technology were forced to remodel their educational pedagogies and reorient themselves overnight to use various online platforms such as Zoom, Google meet, and other such platforms to reach the learners. This metamorphosis through ensured students was meaningfully engaged in their studies during the lockdown period but it has its own set of challenges. This paper deals with the government initiatives, and teachers' self-efforts to keep the channel of teaching learning on providing academic and socio emotional support to students during the most difficult period of their life as well as the digital divide between the rich and poor, rural and urban, and boys and girls in India and resultant challenges. It also provides an overview of few significant self-initiatives of teachers to reach their students during the crisis period, who did not have internet and smartphone facilities as well as the initiatives being taken at the government level to address the learning needs and mitigate the learning gaps of learners, bridge the digital divide, strategic planning and upskilling of teachers to overcome the effect of COVID-19 crisis.

Keywords: COVID-19, online education, initiatives, challenges

Procedia PDF Downloads 114
1475 Determination of Medians of Biochemical Maternal Serum Markers in Healthy Women Giving Birth to Normal Babies

Authors: Noreen Noreen, Aamir Ijaz, Hamza Akhtar

Abstract:

Background: Screening plays a major role to detect chromosomal abnormalities, Down syndrome, neural tube defects and other inborn diseases of the newborn. Serum biomarkers in the second trimester are useful in determining risk of most common chromosomal anomalies; these test include Alpha-fetoprotein (AFP), Human chorionic gonadotropin (hCG), Unconjugated Oestriol (UEȝ)and inhibin-A. Quadruple biomarkers are worth test in diagnosing the congenital pathology during pregnancy, these procedures does not form a part of routine health care of pregnant women in Pakistan, so the median value is lacking for population in Pakistan. Objective: To determine median values of biochemical maternal serum markers in local population during second trimester maternal screening. Study settings: Department of Chemical Pathology and Endocrinology, Armed Forces Institute of Pathology (AFIP) Rawalpindi. Methods: Cross-Sectional study for estimation of reference values. Non-probability consecutive sampling, 155 healthy pregnant women, of 30-40 years of age, will be included. As non-parametric statistics will be used, the minimum sample size is 120. Result: Total 155 women were enrolled into this study. The age of all women enrolled ranged from 30 to39 yrs. Among them, 39 per cent of women were less than 34 years. Mean maternal age 33.46±2.35 SD and maternal body weight were 54.98±2.88. Median value of quadruple markers calculated from 15-18th week of gestation that will be used for calculation of MOM for screening of trisomy21 in this gestational age. Median value at 15 week of gestation were observed hCG 36650 mIU/ml, AFP 23.3 IU/ml, UEȝ 3.5 nmol/L, InhibinA 198 ng/L, at 16 week of gestation hCG 29050 mIU/ml, AFP 35.4 IU/ml, UEȝ 4.1 nmol/L, InhibinA 179 ng/L, at 17 week of gestation hCG 28450 mIU/ml, AFP 36.0 IU/ml, UEȝ 6.7 nmol/L, InhibinA 176 ng/L and at 18 week of gestation hCG 25200 mIU/ml, AFP 38.2 IU/ml, UEȝ 8.2 nmol/L, InhibinA 190 ng/L respectively.All the comparisons were significant (p-Value <0.005) with 95% confidence Interval (CI) and level of significance of study set by going through literature and set at 5%. Conclusion: The median values for these four biomarkers in Pakistani pregnant women can be used to calculate MoM.

Keywords: screening, down syndrome, quadruple test, second trimester, serum biomarkers

Procedia PDF Downloads 180
1474 Investigating the Antimicrobial Activity of Essential Oil Derived from Pistacia atlantica Gum against Extensively Drug-Resistant Gram-Negative Acinetobacter baumannii

Authors: Zhala Ahmad, Zainab Lazim, Haider Hamzah

Abstract:

Bacterial resistance is a pressing global health issue, with multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) strains to pose a serious threat. In this context, researchers are investigating effective, safe, and affordable metabolites to combat these pathogens. This study focuses on gum essential oil (GEO) extracted from Pistacia atlantica and its activity and the mechanism of action against XDR Gram-negative Acinetobacter baumannii. GEO was extracted by hydrodistillation and analyzed using GC-MS. Eleven A. baumannii isolates were collected from the ward environment of Burn and Plastic Surgery Hospital in Al Sulaymaniyah City, Iraq. They were identified using the VITEK 2 system, 16S rRNA gene, and confirmed with the blaₒₓₐ₋₅₁ gene; A. baumannii ATCC 19606 was used as a reference strain. The isolates were identified as resistant to twelve different antibiotics spanning six distinct antibiotic classes while showing susceptibility to tetracycline and trimethoprim. Over 40 chemical constituents were detected in the gum's essential oils, with α-pinene being the most abundant. GEO was found to inhibit the growth of A. baumannii isolates; the minimum inhibitory concentration (MIC) of GEO was 2.5 µl/ml. GEO induced protein leakage, phosphate, and potassium ion efflux, distorted cell morphology, and cell death in the tested bacteria. GEO exhibited bacterial clearance and anti-adhesion activity using Band-Aids. This study's findings suggest that GEO could be used as a potential alternative treatment for infectious diseases caused by XRD pathogens, shedding further light on the importance of GEO in biomedical applications. Future studies must focus on generating clinically feasible sources of GEO for testing in small animal models before proceeding to human trials, ensuring safe and effective translation from the laboratory to the clinic.

Keywords: antibiotic resistance, Acinetobacter baumannii, essential oils, Pistacia atlantica, alpha-pinene

Procedia PDF Downloads 71
1473 Electrochemical Biosensor Based on Chitosan-Gold Nanoparticles, Carbon Nanotubes for Detection of Ovarian Cancer Biomarker

Authors: Parvin Samadi Pakchin, Reza Saber, Hossein Ghanbari, Yadollah Omidi

Abstract:

Ovarian cancer is one of the leading cause of mortality among the gynecological malignancies, and it remains the one of the most prevalent cancer in females worldwide. Tumor markers are biochemical molecules in blood or tissues which can indicates cancers occurrence in the human body. So, the sensitive and specific detection of cancer markers typically recruited for diagnosing and evaluating cancers. Recently extensive research efforts are underway to achieve a simple, inexpensive and accurate device for detection of cancer biomarkers. Compared with conventional immunoassay techniques, electrochemical immunosensors are of great interest, because they are specific, simple, inexpensive, easy to handling and miniaturization. Moreover, in the past decade nanotechnology has played a crucial role in the development of biosensors. In this study, a signal-off electrochemical immunosensor for the detection of CA125 antigen has been developed using chitosan-gold nanoparticles (CS-AuNP) and multi-wall carbon nanotubes (MWCNT) composites. Toluidine blue (TB) is used as redox probe which is immobilized on the electrode surface. CS-AuNP is synthesized by a simple one step method that HAuCl4 is reduced by NH2 groups of chitosan. The CS-AuNP-MWCNT modified electrode has shown excellent electrochemical performance compared with bare Au electrode. MWCNTs and AuNPs increased electrochemical conductivity and accelerate electrons transfer between solution and electrode surface while excessive amine groups on chitosan lead to the effective loading of the biological material (CA125 antibody) and TB on the electrode surface. The electrochemical, immobilization and sensing properties CS-AuNP-MWCNT-TB modified electrodes are characterized by cyclic voltammetry, electrochemical impedance spectroscopy, differential pulse voltammetry and square wave voltammetry with Fe(CN)63−/4−as an electrochemical redox indicator.

Keywords: signal-off electrochemical biosensor, CA125, ovarian cancer, chitosan-gold nanoparticles

Procedia PDF Downloads 290
1472 Simulation of Scaled Model of Tall Multistory Structure: Raft Foundation for Experimental and Numerical Dynamic Studies

Authors: Omar Qaftan

Abstract:

Earthquakes can cause tremendous loss of human life and can result in severe damage to a several of civil engineering structures especially the tall buildings. The response of a multistory structure subjected to earthquake loading is a complex task, and it requires to be studied by physical and numerical modelling. For many circumstances, the scale models on shaking table may be a more economical option than the similar full-scale tests. A shaking table apparatus is a powerful tool that offers a possibility of understanding the actual behaviour of structural systems under earthquake loading. It is required to use a set of scaling relations to predict the behaviour of the full-scale structure. Selecting the scale factors is the most important steps in the simulation of the prototype into the scaled model. In this paper, the principles of scaling modelling procedure are explained in details, and the simulation of scaled multi-storey concrete structure for dynamic studies is investigated. A procedure for a complete dynamic simulation analysis is investigated experimentally and numerically with a scale factor of 1/50. The frequency domain accounting and lateral displacement for both numerical and experimental scaled models are determined. The procedure allows accounting for the actual dynamic behave of actual size porotype structure and scaled model. The procedure is adapted to determine the effects of the tall multi-storey structure on a raft foundation. Four generated accelerograms were used as inputs for the time history motions which are in complying with EC8. The output results of experimental works expressed regarding displacements and accelerations are compared with those obtained from a conventional fixed-base numerical model. Four-time history was applied in both experimental and numerical models, and they concluded that the experimental has an acceptable output accuracy in compare with the numerical model output. Therefore this modelling methodology is valid and qualified for different shaking table experiments tests.

Keywords: structure, raft, soil, interaction

Procedia PDF Downloads 136
1471 LCA and LCC for the Evaluation of Sustainability of Rapeseed, Giant Reed, and Poplar Cultivation

Authors: Alessandro Suardi, Rodolfo Picchio, Domenico Coaloa, Maria Bonaventura Forleo, Nadia Palmieri, Luigi Pari

Abstract:

The reconversion process of the Italian sugar supply chain to bio-energy supply chains, as a result of the 2006 Sugar CMO reform, have involved research to define the best logistics, the most adapted energy crops for the Italian territory and their sustainability. Rapeseed (Brassica napus L.), Giant reed (Arundo donax L.) and Poplar (Poplar ssp.) are energy crops considered strategic for the development of Italian energy supply-chains. This study analyzed the environmental and the economic impacts on the farm level of these three energy crops. The environmental assessment included six farming units, two per crop, which were extracted from a sample of 251 rapeseed farm units (2751 ha), 7 giant reed farm units (7.8 ha), and 91 poplar farm units (440 ha) using a statistical multivariate analysis. Life Cycle Assessment (LCA) research method has been used to evaluate and compare the sustainability of the agricultural phases of the crops studied. The impact analyses have been performed at mid-point and end-point levels. The results of the analysis shown that the fertilization, is the major source of environmental impact of the agricultural phase due to the production of the fertilizers and the soil emissions of GHG following the treatment. The perennial energy crops studied (Arundo donax L., Poplar ssp.) were environmentally more sustainable if compared with the annual crop (Brassica napus L.) for all the impact categories at mid-point and end-point levels analyzed. The most relevant impact category influenced by the agricultural process result the fossil depletion, mainly due to the fossil fuels consumed during the mineral fertilizers production (urea). Human health was the most affected damage category at the end point level. Poplar result the energy crop with the best environmental performance for the Italian territory, in the distribution areas most suitable for its cultivation.

Keywords: LCA, energy crops, rapeseed, giant reed, poplar

Procedia PDF Downloads 481
1470 Synthesis, Characterization and Photocatalytic Activity of Electrospun Zinc and/or Titanium Oxide Nanofibers for Methylene Blue Degradation

Authors: Zainab Dahrouch, Beatrix Petrovičová, Claudia Triolo, Fabiola Pantò, Angela Malara, Salvatore Patanè, Maria Allegrini, Saveria Santangelo

Abstract:

Synthetic dyes dispersed in water cause environmental damage and have harmful effects on human health. Methylene blue (MB) is broadly used as a dye in the textile, pharmaceutical, printing, cosmetics, leather, and food industries. The complete removal of MB is difficult due to the presence of aromatic rings in its structure. The present study is focused on electrospun nanofibers (NFs) with engineered architecture and surface to be used as catalysts for the photodegradation of MB. Ti and/or Zn oxide NFs are produced by electrospinning precursor solutions with different Ti: Zn molar ratios (from 0:1 to 1:0). Subsequent calcination and cooling steps are operated at fast rates to generate porous NFs with capture centers to reduce the recombination rate of the photogenerated charges. The comparative evaluation of the NFs as photocatalysts for the removal of MB from an aqueous solution with a dye concentration of 15 µM under UV irradiation shows that the binary (wurtzite ZnO and anatase TiO₂) oxides exhibit higher catalytic activity compared to ternary (ZnTiO₃ and Zn₂TiO₄) oxides. The higher band gap and lower crystallinity of the ternary oxides are responsible for their lower photocatalytic activity. It has been found that the optimal load for the wurtzite ZnO is 0.66 mg mL⁻¹, obtaining a degradation rate of 7.94.10⁻² min⁻¹. The optimal load for anatase TiO₂ is lower (0.33 mg mL⁻¹) and the corresponding rate constant (1.12×10⁻¹ min⁻¹) is higher. This finding (higher activity with lower load) is of crucial importance for the scaling up of the process on an industrial scale. Indeed, the anatase NFs outperform even the commonly used P25-TiO₂ benchmark. Besides, they can be reused twice without any regeneration treatment, with 5.2% and 18.7% activity decrease after second and third use, respectively. Thanks to the scalability of the electrospinning technique, this laboratory-scale study provides a perspective towards the sustainable large-scale manufacture of photocatalysts for the treatment of industry effluents.

Keywords: anatase, capture centers, methylene blue dye, nanofibers, photodegradation, zinc oxide

Procedia PDF Downloads 157
1469 Cybernetic Model-Based Optimization of a Fed-Batch Process for High Cell Density Cultivation of E. Coli In Shake Flasks

Authors: Snehal D. Ganjave, Hardik Dodia, Avinash V. Sunder, Swati Madhu, Pramod P. Wangikar

Abstract:

Batch cultivation of recombinant bacteria in shake flasks results in low cell density due to nutrient depletion. Previous protocols on high cell density cultivation in shake flasks have relied mainly on controlled release mechanisms and extended cultivation protocols. In the present work, we report an optimized fed-batch process for high cell density cultivation of recombinant E. coli BL21(DE3) for protein production. A cybernetic model-based, multi-objective optimization strategy was implemented to obtain the optimum operating variables to achieve maximum biomass and minimized substrate feed rate. A syringe pump was used to feed a mixture of glycerol and yeast extract into the shake flask. Preliminary experiments were conducted with online monitoring of dissolved oxygen (DO) and offline measurements of biomass and glycerol to estimate the model parameters. Multi-objective optimization was performed to obtain the pareto front surface. The selected optimized recipe was tested for a range of proteins that show different extent soluble expression in E. coli. These included eYFP and LkADH, which are largely expressed in soluble fractions, CbFDH and GcanADH , which are partially soluble, and human PDGF, which forms inclusion bodies. The biomass concentrations achieved in 24 h were in the range 19.9-21.5 g/L, while the model predicted value was 19.44 g/L. The process was successfully reproduced in a standard laboratory shake flask without online monitoring of DO and pH. The optimized fed-batch process showed significant improvement in both the biomass and protein production of the tested recombinant proteins compared to batch cultivation. The proposed process will have significant implications in the routine cultivation of E. coli for various applications.

Keywords: cybernetic model, E. coli, high cell density cultivation, multi-objective optimization

Procedia PDF Downloads 258