Search results for: M. Baucal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: M. Baucal

2 Computation of Radiotherapy Treatment Plans Based on CT to ED Conversion Curves

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Radiotherapy treatment planning computers use CT data of the patient. For the computation of a treatment plan, treatment planning system must have an information on electron densities of tissues scanned by CT. This information is given by the conversion curve CT (CT number) to ED (electron density), or simply calibration curve. Every treatment planning system (TPS) has built in default CT to ED conversion curves, for the CTs of different manufacturers. However, it is always recommended to verify the CT to ED conversion curve before actual clinical use. Objective of this study was to check how the default curve already provided matches the curve actually measured on a specific CT, and how much it influences the calculation of a treatment planning computer. The examined CT scanners were from the same manufacturer, but four different scanners from three generations. The measurements of all calibration curves were done with the dedicated phantom CIRS 062M Electron Density Phantom. The phantom was scanned, and according to real HU values read at the CT console computer, CT to ED conversion curves were generated for different materials, for same tube voltage 140 kV. Another phantom, CIRS Thorax 002 LFC which represents an average human torso in proportion, density and two-dimensional structure, was used for verification. The treatment planning was done on CT slices of scanned CIRS LFC 002 phantom, for selected cases. Interest points were set in the lungs, and in the spinal cord, and doses recorded in TPS. The overall calculated treatment times for four scanners and default scanner did not differ more than 0.8%. Overall interest point dose in bone differed max 0.6% while for single fields was maximum 2.7% (lateral field). Overall interest point dose in lungs differed max 1.1% while for single fields was maximum 2.6% (lateral field). It is known that user should verify the CT to ED conversion curve, but often, developing countries are facing lack of QA equipment, and often use default data provided. We have concluded that the CT to ED curves obtained differ in certain points of a curve, generally in the region of higher densities. This influences the treatment planning result which is not significant, but definitely does make difference in the calculated dose.

Keywords: Computation of treatment plan, conversion curve, radiotherapy, electron density

Procedia PDF Downloads 445
1 [Keynote] Implementation of Quality Control Procedures in Radiotherapy CT Simulator

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Purpose/Objective: Radiotherapy treatment planning requires use of CT simulator, in order to acquire CT images. The overall performance of CT simulator determines the quality of radiotherapy treatment plan, and at the end, the outcome of treatment for every single patient. Therefore, it is strongly advised by international recommendations, to set up a quality control procedures for every machine involved in radiotherapy treatment planning process, including the CT scanner/ simulator. The overall process requires number of tests, which are used on daily, weekly, monthly or yearly basis, depending on the feature tested. Materials/Methods: Two phantoms were used: a dedicated phantom CIRS 062QA, and a QA phantom obtained with the CT simulator. The examined CT simulator was Siemens Somatom Definition as Open, dedicated for radiation therapy treatment planning. The CT simulator has a built in software, which enables fast and simple evaluation of CT QA parameters, using the phantom provided with the CT simulator. On the other hand, recommendations contain additional test, which were done with the CIRS phantom. Also, legislation on ionizing radiation protection requires CT testing in defined periods of time. Taking into account the requirements of law, built in tests of a CT simulator, and international recommendations, the intitutional QC programme for CT imulator is defined, and implemented. Results: The CT simulator parameters evaluated through the study were following: CT number accuracy, field uniformity, complete CT to ED conversion curve, spatial and contrast resolution, image noise, slice thickness, and patient table stability.The following limits are established and implemented: CT number accuracy limits are +/- 5 HU of the value at the comissioning. Field uniformity: +/- 10 HU in selected ROIs. Complete CT to ED curve for each tube voltage must comply with the curve obtained at comissioning, with deviations of not more than 5%. Spatial and contrast resultion tests must comply with the tests obtained at comissioning, otherwise machine requires service. Result of image noise test must fall within the limit of 20% difference of the base value. Slice thickness must meet manufacturer specifications, and patient stability with longitudinal transfer of loaded table must not differ of more than 2mm vertical deviation. Conclusion: The implemented QA tests gave overall basic understanding of CT simulator functionality and its clinical effectiveness in radiation treatment planning. The legal requirement to the clinic is to set up it’s own QA programme, with minimum testing, but it remains user’s decision whether additional testing, as recommended by international organizations, will be implemented, so to improve the overall quality of radiation treatment planning procedure, as the CT image quality used for radiation treatment planning, influences the delineation of a tumor and calculation accuracy of treatment planning system, and finally delivery of radiation treatment to a patient.

Keywords: CT simulator, radiotherapy, quality control, QA programme

Procedia PDF Downloads 493