Search results for: thermal%20radiation
2461 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt
Authors: Eman Ghoneim, Amr S. Fahil
Abstract:
Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS
Procedia PDF Downloads 1252460 Thermal Characterisation of Multi-Coated Lightweight Brake Rotors for Passenger Cars
Authors: Ankit Khurana
Abstract:
The sufficient heat storage capacity or ability to dissipate heat is the most decisive parameter to have an effective and efficient functioning of Friction-based Brake Disc systems. The primary aim of the research was to analyse the effect of multiple coatings on lightweight disk rotors surface which not only alleviates the mass of vehicle & also, augments heat transfer. This research is projected to aid the automobile fraternity with an enunciated view over the thermal aspects in a braking system. The results of the project indicate that with the advent of modern coating technologies a brake system’s thermal curtailments can be removed and together with forced convection, heat transfer processes can see a drastic improvement leading to increased lifetime of the brake rotor. Other advantages of modifying the surface of a lightweight rotor substrate will be to reduce the overall weight of the vehicle, decrease the risk of thermal brake failure (brake fade and fluid vaporization), longer component life, as well as lower noise and vibration characteristics. A mathematical model was constructed in MATLAB which encompassing the various thermal characteristics of the proposed coatings and substrate materials required to approximate the heat flux values in a free and forced convection environment; resembling to a real-time braking phenomenon which could easily be modelled into a full cum scaled version of the alloy brake rotor part in ABAQUS. The finite element of a brake rotor was modelled in a constrained environment such that the nodal temperature between the contact surfaces of the coatings and substrate (Wrought Aluminum alloy) resemble an amalgamated solid brake rotor element. The initial results obtained were for a Plasma Electrolytic Oxidized (PEO) substrate wherein the Aluminum alloy gets a hard ceramic oxide layer grown on its transitional phase. The rotor was modelled and then evaluated in real-time for a constant ‘g’ braking event (based upon the mathematical heat flux input and convective surroundings), which reflected the necessity to deposit a conducting coat (sacrificial) above the PEO layer in order to inhibit thermal degradation of the barrier coating prematurely. Taguchi study was then used to bring out certain critical factors which may influence the maximum operating temperature of a multi-coated brake disc by simulating brake tests: a) an Alpine descent lasting 50 seconds; b) an Autobahn stop lasting 3.53 seconds; c) a Six–high speed repeated stop in accordance to FMVSS 135 lasting 46.25 seconds. Thermal Barrier coating thickness and Vane heat transfer coefficient were the two most influential factors and owing to their design and manufacturing constraints a final optimized model was obtained which survived the 6-high speed stop test as per the FMVSS -135 specifications. The simulation data highlighted the merits for preferring Wrought Aluminum alloy 7068 over Grey Cast Iron and Aluminum Metal Matrix Composite in coherence with the multiple coating depositions.Keywords: lightweight brakes, surface modification, simulated braking, PEO, aluminum
Procedia PDF Downloads 4122459 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application
Authors: M. Rahou, A. J. Andrews, G. Rosengarten
Abstract:
One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission
Procedia PDF Downloads 5702458 Pool Fire Tests of Dual Purpose Casks for Spent Nuclear Fuel
Authors: K. S. Bang, S. H. Yu, J. C. Lee, K. S. Seo, S. H. Lee
Abstract:
Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. Therefore, they satisfy the requirements prescribed in the Korea NSSC Act 2013-27, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package, and state that a Type B package must be able to withstand a temperature of 800°C for a period of 30 min. Therefore, a fire test was conducted using a one-sixth slice of a real cask to estimate the thermal integrity of the dual purpose cask at a temperature of 800°C. The neutron shield reached a maximum temperature of 183°C, which indicates that dual purpose cask was properly insulated from the heat of the flames. The temperature rise of the basket during the fire test was 29°C. Therefore, the integrity of a spent nuclear fuel is estimated to be maintained. The temperature was lower when a cooling pin was installed. The neutron shielding was therefore protected adequately by cooling pin. As a result, the thermal integrity of the dual purpose cask was maintained and the cask is judged to be sufficiently safe for temperatures under 800°C.Keywords: dual purpose cask, spent nuclear fuel, pool fire test, integrity
Procedia PDF Downloads 4652457 Prediction of Welding Induced Distortion in Thin Metal Plates Using Temperature Dependent Material Properties and FEA
Authors: Rehan Waheed, Abdul Shakoor
Abstract:
Distortion produced during welding of thin metal plates is a problem in many industries. The purpose of this research was to study distortion produced during welding in 2mm Mild Steel plate by simulating the welding process using Finite Element Analysis. Simulation of welding process requires a couple field transient analyses. At first a transient thermal analysis is performed and the temperature obtained from thermal analysis is used as input in structural analysis to find distortion. An actual weld sample is prepared and the weld distortion produced is measured. The simulated and actual results were in quite agreement with each other and it has been found that there is profound deflection at center of plate. Temperature dependent material properties play significant role in prediction of weld distortion. The results of this research can be used for prediction and control of weld distortion in large steel structures by changing different weld parameters.Keywords: welding simulation, FEA, welding distortion, temperature dependent mechanical properties
Procedia PDF Downloads 3942456 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics
Authors: Puneet Kumar, Jonnalagadda Srinivas
Abstract:
The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.Keywords: hygrothermal effect, free vibration, buckling load, agglomeration
Procedia PDF Downloads 2682455 Utilization of Municipal Solid Waste in Thermal Power Production: A Techno-Economic Study of Kasur City, Punjab, Pakistan
Authors: Hafiz Muhammad Umer Aslam, Mohammad Rafiq Khan
Abstract:
This techno-economic study reports the feasibility of generating thermoelectric power from municipal solid waste (MSW) of Kasur City by incineration process. The data was gathered from different establishments of Kasur, through appropriate permission from their heads, and processed to design different alternative projects for installation of a thermal power plant in the city of Kasur. A technique of discounted cash flow was used to evaluate alternative projects so that their Benefit to Cost Ratio, Net Present Value, Internal Rate of Return and Payback Period can be determined. The study revealed that Kasur City currently consumes 18MWh electricity and generates 179 tons/day MSW. The generated waste has the ability to produce 2.1MWh electricity at the cost of USD 0.0581/unit with an expenditure of USD 3,907,692 as initial fixed investment of forming about 1/7th of consumption of Kasur. The cost from this source, when compared to current rate of electricity in Pakistan (USD 0.1346), is roughly half.Keywords: Kasur City, resource recovery, thermoelectric power, waste management
Procedia PDF Downloads 1752454 Analyzing Nonsimilar Convective Heat Transfer in Copper/Alumina Nanofluid with Magnetic Field and Thermal Radiations
Authors: Abdulmohsen Alruwaili
Abstract:
A partial differential system featuring momentum and energy balance is often used to describe simulations of flow initiation and thermal shifting in boundary layers. The buoyancy force in terms of temperature is factored in the momentum balance equation. Buoyancy force causes the flow quantity to fluctuate along the streamwise direction 𝑋; therefore, the problem can be, to our best knowledge, analyzed through nonsimilar modeling. In this analysis, a nonsimilar model is evolved for radiative mixed convection of a magnetized power-law nanoliquid flow on top of a vertical plate installed in a stationary fluid. The upward linear stretching initiated the flow in the vertical direction. Assuming nanofluids are composite of copper (Cu) and alumina (Al₂O₃) nanoparticles, the viscous dissipation in this case is negligible. The nonsimilar system is dealt with analytically by local nonsimilarity (LNS) via numerical algorithm bvp4c. Surface temperature and flow field are shown visually in relation to factors like mixed convection, magnetic field strength, nanoparticle volume fraction, radiation parameters, and Prandtl number. The repercussions of magnetic and mixed convection parameters on the rate of energy transfer and friction coefficient are represented in tabular forms. The results obtained are compared to the published literature. It is found that the existence of nanoparticles significantly improves the temperature profile of considered nanoliquid. It is also observed that when the estimates of the magnetic parameter increase, the velocity profile decreases. Enhancement in nanoparticle concentration and mixed convection parameter improves the velocity profile.Keywords: nanofluid, power law model, mixed convection, thermal radiation
Procedia PDF Downloads 402453 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study
Authors: Thomas Arink, Isam Janajreh
Abstract:
The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires
Procedia PDF Downloads 5242452 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites
Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt
Abstract:
Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.Keywords: copper based composites, mechanical properties, wear properties, microstructure
Procedia PDF Downloads 3672451 Synthesis, Structure and Properties of NZP/NASICON Structured Materials
Authors: E. A. Asabina, V. I. Pet'kov, P. A. Mayorov, A. V. Markin, N. N. Smirnova, A. M. Kovalskii, A. A. Usenko
Abstract:
The purpose of this work was to synthesize and investigate phase formation, structure and thermophysical properties of the phosphates M0.5+xM'xZr2–x(PO4)3 (M – Cd, Sr, Pb; M' – Mg, Co, Mn). The compounds were synthesized by sol-gel method. The results showed formation of limited solid solutions of NZP/NASICON type. The crystal structures of triple phosphates of the compositions MMg0.5Zr1.5(PO4)3 were refined by the Rietveld method using XRD data. Heat capacity (8–660 K) of the phosphates Pb0.5+xMgxZr2-x(PO4)3 (x = 0, 0.5) was measured, and reversible polymorphic transitions were found at temperatures, close to the room temperature. The results of Rietveld structure refinement showed the polymorphism caused by disordering of lead cations in the cavities of NZP/NASICON structure. Thermal expansion (298−1073 K) of the phosphates MMg0.5Zr1.5(PO4)3 was studied by XRD method, and the compounds were found to belong to middle and low-expanding materials. Thermal diffusivity (298–573 K) of the ceramic samples of phosphates slightly decreased with temperature increasing. As was demonstrated, the studied phosphates are characterized by the better thermophysical characteristics than widespread fire-resistant materials, such as zirconia and etc.Keywords: NASICON, NZP, phosphate, structure, synthesis, thermophysical properties
Procedia PDF Downloads 1432450 Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor
Authors: Vijay Kumar, Jaspreet Singh, Manoj Wadhwa
Abstract:
Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration.Keywords: piezo-resistive, pressure sensor, doping concentration, TCR, TCS
Procedia PDF Downloads 1862449 Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation
Authors: Fangyuan Shao, Wei Liu, Deli Gao
Abstract:
Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers.Keywords: axe-shaped cutter, PDC cutter, rotary cutting test, vertical turret lathe
Procedia PDF Downloads 2092448 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa
Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak
Abstract:
Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens
Procedia PDF Downloads 2042447 The Electrical Properties of Polyester Materials as Outdoor Insulators
Authors: R. M. EL-Sharkawy, L. S. Nasrat, K. B. Ewiss
Abstract:
This work presents a study of flashover voltage for outdoor polyester and composite insulators under dry, ultra-violet and contaminated conditions. Cylindrical of polyester composite samples (with different lengths) have been prepared after incorporated with different concentration of inorganic filler e.g. Magnesium Hydroxide [Mg(OH)2] to improve the electrical and thermal properties in addition to maximize surface flashover voltage and decrease tracking phenomena. Results showed that flashover voltage reaches to 46 kV for samples without filler and 52.6 kV for samples containing 40% of [Mg(OH)2] filler in dry condition. A comparison between different concentrations of filler under various environmental conditions (dry and contaminated conditions) showed higher flashover voltage values for samples containing filler with ratio 40% [Mg(OH)2] and length 3cm than that of samples containing filler [Mg(OH)2] with ratios 20%, 30% and lengths 0.5cm, 1cm, 2cm and 2.5cm. Flashover voltage decreases by adding [Mg(OH)2] filler for polyester samples under ultra-violet condition; as the ratio of filler increases, the value of flashover voltage decreases Also, in this study, the effect of thermal performance with respect to surface of the sample under test have been investigated in details.Keywords: flashover voltage, filler, polymers, ultra-violet radiation
Procedia PDF Downloads 3202446 The Evaporation Study of 1-ethyl-3-methylimidazolium chloride
Authors: Kirill D. Semavin, Norbert S. Chilingarov, Eugene.V. Skokan
Abstract:
The ionic liquids (ILs) based on imidazolium cation are well known nowadays. The changing anions and substituents in imidazolium ring may lead to different physical and chemical properties of ILs. It is important that such ILs with halogen as anion are characterized by a low thermal stability. The data about thermal stability of 1-ethyl-3-methylimidazolium chloride are ambiguous. In the works of last years, thermal stability of this IL was investigated by thermogravimetric analysis and obtained results are contradictory. Moreover, in the last study, it was shown that the observed temperature of the beginning of decomposition significantly depends on the experimental conditions, for example, the heating rate of the sample. The vapor pressure of this IL is not presented at the literature. In this study, the vapor pressure of 1-ethyl-3-methylimidazolium chloride was obtained by Knudsen effusion mass-spectrometry (KEMS). The samples of [ЕMIm]Cl (purity > 98%) were supplied by Sigma–Aldrich and were additionally dried at dynamic vacuum (T = 60 0C). Preliminary procedures with Il were derived into glove box. The evaporation studies of [ЕMIm]Cl were carried out by KEMS with using original research equipment based on commercial MI1201 magnetic mass spectrometer. The stainless steel effusion cell had an effective evaporation/effusion area ratio of more than 6000. The cell temperature, measured by a Pt/Pt−Rh (10%) thermocouple, was controlled by a Termodat 128K5 device with an accuracy of ±1 K. In first step of this study, the optimal temperature of experiment and heating rate of samples were customized: 449 K and 5 K/min, respectively. In these conditions the sample is decomposed, but the experimental measurements of the vapor pressures are possible. The thermodynamic activity of [ЕMIm]Cl is close to 1 and products of decomposition don’t affect it at firstly 50 hours of experiment. Therefore, it lets to determine the saturated vapor pressure of IL. The electronic ionization mass-spectra shows that the decomposition of [ЕMIm]Cl proceeds with two ways. Nonetheless, the MALDI mass spectra of the starting sample and residue in the cell were similar. It means that the main decomposition products are gaseous under experimental conditions. This result allows us to obtain information about the kinetics of [ЕMIm]Cl decomposition. Thus, the original KEMS-based procedure made it possible to determine the IL vapor pressure under decomposition conditions. Also, the loss of sample mass due to the evaporation was obtained.Keywords: ionic liquids, Knudsen effusion mass spectrometry, thermal stability, vapor pressure
Procedia PDF Downloads 1912445 Experimental and Numerical Analyses of Tehran Research Reactor
Authors: A. Lashkari, H. Khalafi, H. Khazeminejad, S. Khakshourniya
Abstract:
In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes.Keywords: thermal-hydraulic, research reactor, reactivity insertion, numerical modeling
Procedia PDF Downloads 4042444 Implementation of Ecological and Energy-Efficient Building Concepts
Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler
Abstract:
A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.Keywords: energy-efficiency, green architecture, renewable resources, sustainable building
Procedia PDF Downloads 1552443 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip
Authors: Sina Saadati
Abstract:
Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence
Procedia PDF Downloads 1062442 A Modular Reactor for Thermochemical Energy Storage Examination of Ettringite-Based Materials
Authors: B. Chen, F. Kuznik, M. Horgnies, K. Johannes, V. Morin, E. Gengembre
Abstract:
More attention on renewable energy has been done after the achievement of Paris Agreement against climate change. Solar-based technology is supposed to be one of the most promising green energy technologies for residential buildings since its widely thermal usage for hot water and heating. However, the seasonal mismatch between its production and consumption makes buildings need an energy storage system to improve the efficiency of renewable energy use. Indeed, there exist already different kinds of energy storage systems using sensible or latent heat. With the consideration of energy dissipation during storage and low energy density for above two methods, thermochemical energy storage is then recommended. Recently, ettringite (3CaO∙Al₂O₃∙3CaSO₄∙32H₂O) based materials have been reported as potential thermochemical storage materials because of high energy density (~500 kWh/m³), low material cost (700 €/m³) and low storage temperature (~60-70°C), compared to reported salt hydrates like SrBr₂·6H₂O (42 k€/m³, ~80°C), LaCl₃·7H₂O (38 k€/m³, ~100°C) and MgSO₄·7H₂O (5 k€/m³, ~150°C). Therefore, they have the possibility to be largely used in building sector with being coupled to normal solar panel systems. On the other side, the lack in terms of extensive examination leads to poor knowledge on their thermal properties and limit maturity of this technology. The aim of this work is to develop a modular reactor adapting to thermal characterizations of ettringite-based material particles of different sizes. The filled materials in the reactor can be self-compacted vertically to ensure hot air or humid air goes through homogenously. Additionally, quick assembly and modification of reactor, like LEGO™ plastic blocks, make it suitable to distinct thermochemical energy storage material samples with different weights (from some grams to several kilograms). In our case, quantity of stored and released energy, best work conditions and even chemical durability of ettringite-based materials have been investigated.Keywords: dehydration, ettringite, hydration, modular reactor, thermochemical energy storage
Procedia PDF Downloads 1422441 Nanotechnology-Based Treatment of Liver Cancer
Authors: Lucian Mocan
Abstract:
We present method of Nanoparticle enhanced laser thermal ablation of HepG2 cells (Human hepatocellular liver carcinomacell line), using gold nanoparticles combuned with a specific growth factor and demonstrate its selective therapeutic efficacy usig ex vivo specimens. Ex vivo-perfused liver specimens were obtained from hepatocellular carcinoma patients similarly to the surgical technique of transplantation. Ab bound to GNPs was inoculated intra-arterially onto the resulting specimen and determined the specific delivery of the nano-bioconjugate into the malignant tissue by means of the capillary bed. The extent of necrosis was considerable following laser therapy and at the same time surrounding parenchyma was not seriously affected. The selective photothermal ablation of the malignant liver tissue was obtained after the selective accumulation of Ab bound to GNPs into tumor cells following ex-vivo intravascular perfusion. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.Keywords: HepG2 cells, gold nanoparticles, nanoparticle functionalization, laser irradiation
Procedia PDF Downloads 3712440 Adaptation Mechanisms of the Polyextremophile Natranaerobius Thermophilus to Saline-Alkaline-Hermal Environments
Authors: Qinghua Xing, Xinyi Tao, Haisheng Wang, Baisuo Zhao
Abstract:
The first true anaerobic, halophilic alkali thermophile, Natranaerobius thermophilus DSM 18059T, serves as a valuable model for studying cellular adaptations to saline, alkaline and thermal extremes. To uncover the adaptive strategies employed by N. thermophilus in coping with these challenges, we conducted a comprehensive iTRAQ-based quantitative proteomic analysis under different conditions of salinity (3.5 M vs. 2.5 M Na+), pH (pH 9.6 vs. pH 8.6), and temperature (52°C vs. 42°C). The increased intracellular accumulation of glycine betaine, through both synthesis and transport, plays a critical role in N. thermophilus' adaptation to these combined stresses. Under all three stress conditions, the up-regulation of Trk family proteins responsible for K+ transport is observed. Intracellular K+ concentration rises in response to salt and pH levels. Multiple types of Na+/H+ antiporter (NhaC family, Mrp family and CPA family) and a diverse range of FOF1-ATP synthase are identified as vital components for maintaining ionic balance under different stress conditions. Importantly, proteins involved in amino acid metabolism, carbohydrate metabolism, ABC transporters, signaling and chemotaxis, as well as biological macromolecule repair and protection, exhibited significant up-regulation in response to these extreme conditions. These metabolic pathways emerge as critical factors in N. thermophilus' adaptation mechanisms under extreme environmental stress. To validate the proteomic data, ddPCR analysis confirmed changes in mRNA expression, thereby corroborating the up-regulation and down-regulation patterns of 19 co-up-regulated and 36 key proteins under saline, alkaline and thermal stresses. This research enriches our understanding of the complex regulatory systems that enable polyextremophiles to survive in combined extreme conditions.Keywords: polyextremophiles, natranaerobius thermophilus, saline- alkaline- thermal stresses, combined extremes
Procedia PDF Downloads 612439 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry
Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas
Abstract:
This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors.” The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups. The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared. REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies.Keywords: complex fuel geometry, PARET, RELAP5, WWR-SM reactor
Procedia PDF Downloads 3382438 Experimental Study of Solar Drying of Verbena in Three Types of Solar Dryers
Authors: Llham Lhoume, Rachid Tadili, Nora Arbaoui
Abstract:
One of the most crucial ways to combat food insecurity is to minimize crop losses, food drying is one of the most organic, effective, low-cost and energy-efficient food preservation methods. In this regard, we undertake in this study an experimental evaluation and analysis of the thermal performance of different natural convection drying systems: a solar greenhouse dryer, an indirect solar dryer with a single compartment and a solar dryer with two compartments. These systems have been implemented at the Solar Energy and Environment Laboratory of Mohammed V University (Morocco). The objective of this work is to study the feasibility of converting a solar greenhouse into a solar dryer for use during the summer. On the other hand, to study the thermal performances of this greenhouse dryer by comparing it with other solar dryers. The experimental study showed that the drying of verbena leaves took 6 hours in the indirect dryer 1, 3 hours in the indirect dryer, 2 and 4 hours in the greenhouse dryer, but the amortization period of the solar greenhouse dryer is lower than the other two solar dryers. The results of this study provide key information on the implementation and performance of these systems for drying a food of great global interest.Keywords: solar energy, drying, agriculture, biotechnologie
Procedia PDF Downloads 862437 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea
Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young
Abstract:
As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption
Procedia PDF Downloads 1072436 Feasibility and Energy Efficiency Analysis of Chilled Water Radiant Cooling System of Office Apartment in Nigeria’s Tropical Climate City
Authors: Rasaq Adekunle Olabomi
Abstract:
More than 30% of the global building energy consumption is attributed to heating, ventilation and air-conditioning (HVAC) due to increasing urbanization and the need for more personal comfort. While heating is predominant in the temperate regions (especially during winter), comfort cooling is constantly needed in tropical regions such as Nigeria. This makes cooling a major contributor to the peak electrical load in the tropics. Meanwhile, the high solar energy availability in the tropical climate region presents a higher application potentials for solar thermal cooling systems; more so, the need for cooling mostly coincides with the solar energy availability. In addition to huge energy consumption, conventional (compressor type) air-conditioning systems mostly use refrigerants that are regarded as environmental unfriendly because of their ozone depletion potentials; this has made the alternative cooling systems to become popular in the present time. The better thermal capacity and less pumping power requirement of chilled water than chilled air has also made chilled water a preferred option over the chilled air cooling system. Radiant floor chilled water cooling is particularly is also considered suitable for spaces such as meeting room, seminar hall, auditorium, airport arrival and departure halls among others. This study did the analysis of the feasibility and energy efficiency of solar thermal chilled water for radiant flood cooling of an office apartment in a tropical climate city in Nigeria with a view to recommend its up-scaling. The analysis considered the weather parameters including available solar irradiance (kWh/m2-day) as well as the technical details of the solar thermal cooling systems to determine the feasibility. Project cost, its energy savings, emission reduction potentials and cost-to-benefits ration are used to analyze its energy efficiency as well as the viability of the cooling system. The techno-economic analysis of the proposed system, carried out using RETScreen software shows that its viability in but SWOT analysis of policy and institutional framework to promote solar energy utilization for the cooling systems shows weakness such as poor infrastructure and inadequate local capacity for technological development as major challenges.Keywords: cooling load, absorption cooling system, coefficient of performance, radiant floor, cost saving, emission reduction
Procedia PDF Downloads 372435 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade
Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača
Abstract:
This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools
Procedia PDF Downloads 2362434 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions
Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin
Abstract:
The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).Keywords: aircraft, piston engine, heat, emission
Procedia PDF Downloads 1222433 Nanoindentation Behavior and Physical Properties of Polyvinyl Chloride /Styrene Co-Maleic Anhydride Blend Reinforced by Nano-Bentonite
Authors: Dalia Elsawy Abulyazied, Samia Mohamad Mokhtar, Ahmed Magdy Motawie
Abstract:
This article studies the effects of nano-bentonite on the structure and properties of polymer blends nanocomposites, based on polyvinyl chloride (PVC) and styrene co-maleic anhydride (SMA) blend. Modification of Egyptian bentonite (EB) is carried out using organo-modifier namely; octadecylamine (ODA). Octadecylamine bentonite (ODA-B) is characterized using FTIR, XRD and TEM. Nanocomposites of PVC/SMA/ODA-B are prepared by solution intercalation polymerization from 0.50 up to 5 phr. The nanocomposites are characterized by XRD and TEM. Thermal behavior of the nanocomposites is studied. The effect of different content of ODA-B on the nano-mechanical properties is investigated by a nano-indentation test method. Also the swelling and electrical properties of the nanocomposites are measured. The morphology of the nanocomposites shows that ODA-B achieved good dispersion in the PVC/SMA matrix. The thermal stability of the nanocomposites is enhanced due to the presence of the ODA-B. Incorporation of 0.5, 1, 3 and 5 phr. ODA-B into the PVC/SMA blends results in an improvement in nano-hardness of 16%, 76%, 92%, and 68% respectively. The elastic modulus increased by 37% from 4.59 GPa for unreinforced PVC/SMA blend to 6.30 GPa for 3 phr. The cross-link density and the electrical conductivity of the nanocomposites are increased with increasing the content of ODA-B.Keywords: PVC, SMA, nanocomposites, nano-bentonite, nanoindentation, crosslink density
Procedia PDF Downloads 4892432 Consequence of Multi-Templating of Closely Related Structural Analogues on a Chitosan-Methacryllic Acid Molecularly Imprinted Polymer Matrix-Thermal and Chromatographic Traits
Authors: O.Ofoegbu, S. Roongnapa, A.N. Eboatu
Abstract:
Most polluted environments, most challengingly, aerosol types, contain a cocktail of different toxicants. Multi-templating of matrices have been the recent target by researchers in a bid to solving complex mixed-toxicant challenges using single or common remediation systems. This investigation looks at the effect of such multi-templated system vis-a-vis the synthesis by non-covalent interaction, of a molecularly imprinted polymer architecture using nicotine and its structural analogue Phenylalanine amide individually and, in the blend, (50:50), as template materials in a Chitosan-Methacrylic acid functional monomer matrix. The temperature for polymerization is 60OC and time for polymerization, 12hrs (water bath heating), 4mins for (microwave heating). The characteristic thermal properties of the molecularly imprinted materials are investigated using Simultaneous Thermal Analysis (STA) profiling, while the absorption and separation efficiencies based on the relative retention times and peak areas of templates were studied amongst other properties. Transmission Electron Microscopy (TEM) results obtained, show the creation of heterogeneous nanocavities, regardless, the introduction of Caffeine a close structural analogue presented near-zero perfusion. This confirms the selectivity and specificity of the templated polymers despite its dual-templated nature. The STA results presented the materials as having decomposition temperatures above 250OC and a relative loss in mass of less than19% over a period within 50mins of heating. Consequent to this outcome, multi-templated systems can be fabricated to sequester specifically and selectively targeted toxicants in a mixed toxicant populated system effectively.Keywords: chitosan, dual-templated, methacrylic acid, mixed-toxicants, molecularly-imprinted-polymer
Procedia PDF Downloads 118