Search results for: strain fields
2712 Quantile Coherence Analysis: Application to Precipitation Data
Authors: Yaeji Lim, Hee-Seok Oh
Abstract:
The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.Keywords: coherence, cross periodogram, spectrum, quantile
Procedia PDF Downloads 3902711 Structural Performance Evaluation of Power Boiler for the Pressure Release Valve in Consideration of the Thermal Expansion
Authors: Young-Hun Lee, Tae-Gwan Kim, Jong-Kyu Kim, Young-Chul Park
Abstract:
In this study, Spring safety valve Heat - structure coupled analysis was carried out. Full analysis procedure and performing thermal analysis at a maximum temperature, them to the results obtained through to give an additional load and the pressure on the valve interior, and Disc holder Heat-Coupled structure Analysis was carried out. Modeled using a 3D design program Solidworks, For the modeling of the safety valve was used 3D finite element analysis program ANSYS. The final result to be obtained through the Analysis examined the stability of the maximum displacement and the maximum stress to the valve internal components occurring in the high-pressure conditions.Keywords: finite element method, spring safety valve, gap, stress, strain, deformation
Procedia PDF Downloads 3682710 Nondecoupling Signatures of Supersymmetry and an Lμ-Lτ Gauge Boson at Belle-II
Authors: Heerak Banerjee, Sourov Roy
Abstract:
Supersymmetry, one of the most celebrated fields of study for explaining experimental observations where the standard model (SM) falls short, is reeling from the lack of experimental vindication. At the same time, the idea of additional gauge symmetry, in particular, the gauged Lμ-Lτ symmetric models have also generated significant interest. They have been extensively proposed in order to explain the tantalizing discrepancy in the predicted and measured value of the muon anomalous magnetic moment alongside several other issues plaguing the SM. While very little parameter space within these models remain unconstrained, this work finds that the γ + Missing Energy (ME) signal at the Belle-II detector will be a smoking gun for supersymmetry (SUSY) in the presence of a gauged U(1)Lμ-Lτ symmetry. A remarkable consequence of breaking the enhanced symmetry appearing in the limit of degenerate (s)leptons is the nondecoupling of the radiative contribution of heavy charged sleptons to the γ-Z΄ kinetic mixing. The signal process, e⁺e⁻ →γZ΄→γ+ME, is an outcome of this ubiquitous feature. Taking the severe constraints on gauged Lμ-Lτ models by several low energy observables into account, it is shown that any significant excess in all but the highest photon energy bin would be an undeniable signature of such heavy scalar fields in SUSY coupling to the additional gauge boson Z΄. The number of signal events depends crucially on the logarithm of the ratio of stau to smuon mass in the presence of SUSY. In addition, the number is also inversely proportional to the e⁺e⁻ collision energy, making a low-energy, high-luminosity collider like Belle-II an ideal testing ground for this channel. This process can probe large swathes of the hitherto free slepton mass ratio vs. additional gauge coupling (gₓ) parameter space. More importantly, it can explore the narrow slice of Z΄ mass (MZ΄) vs. gₓ parameter space still allowed in gauged U(1)Lμ-Lτ models for superheavy sparticles. The spectacular finding that the signal significance is independent of individual slepton masses is an exciting prospect indeed. Further, the prospect that signatures of even superheavy SUSY particles that may have escaped detection at the LHC may show up at the Belle-II detector is an invigorating revelation.Keywords: additional gauge symmetry, electron-positron collider, kinetic mixing, nondecoupling radiative effect, supersymmetry
Procedia PDF Downloads 1272709 Efficient Hydrosilylation of Functionalized Alkenes via Heterogeneous Zinc Oxide Nanoparticle Catalysis
Authors: Ahlam Chennani, Nadia Anter, Abdelouahed Médaghri Alaoui, Abdellah Hannioui
Abstract:
Non-precious metals such as zinc, copper, iron, and nickel are promising hydrosilylation catalysts due to their abundance, affordability, and low toxicity. This study focuses on the preparation of zinc nanoparticles using a simple, scalable method. Advanced techniques such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize these catalysts, revealing their crystal structure and morphology. ZnO nanoparticles demonstrate high efficiency and selectivity in hydrosilylation reactions, producing silylated products. These results highlight the potential of ZnO nanocatalysts for advanced chemical transformations and practical applications in various industrial fields.Keywords: nanoparticles, hydrosilylation, catalysts, non-precious metal
Procedia PDF Downloads 272708 Reduction of the Risk of Secondary Cancer Induction Using VMAT for Head and Neck Cancer
Authors: Jalil ur Rehman, Ramesh C, Tailor, Isa Khan, Jahanzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott
Abstract:
The purpose of this analysis is to estimate secondary cancer risks after VMAT compared to other modalities of head and neck radiotherapy (IMRT, 3DCRT). Computer tomography (CT) scans of Radiological Physics Center (RPC) head and neck phantom were acquired with CT scanner and exported via DICOM to the treatment planning system (TPS). Treatment planning was done using four arc (182-178 and 180-184, clockwise and anticlockwise) for volumetric modulated arc therapy (VMAT) , Nine fields (200, 240, 280, 320,0,40,80,120 and 160), which has been commonly used at MD Anderson Cancer Center Houston for intensity modulated radiation therapy (IMRT) and four fields for three dimensional radiation therapy (3DCRT) were used. True beam linear accelerator of 6MV photon energy was used for dose delivery, and dose calculation was done with CC convolution algorithm with prescription dose of 6.6 Gy. Primary Target Volume (PTV) coverage, mean and maximal doses, DVHs and volumes receiving more than 2 Gy and 3.8 Gy of OARs were calculated and compared. Absolute point dose and planar dose were measured with thermoluminescent dosimeters (TLDs) and GafChromic EBT2 film, respectively. Quality Assurance of VMAT and IMRT were performed by using ArcCHECK method with gamma index criteria of 3%/3mm dose difference to distance to agreement (DD/DTA). PTV coverage was found 90.80 %, 95.80 % and 95.82 % for 3DCRT, IMRT and VMAT respectively. VMAT delivered the lowest maximal doses to esophagus (2.3 Gy), brain (4.0 Gy) and thyroid (2.3 Gy) compared to all other studied techniques. In comparison, maximal doses for 3DCRT were found higher than VMAT for all studied OARs. Whereas, IMRT delivered maximal higher doses 26%, 5% and 26% for esophagus, normal brain and thyroid, respectively, compared to VMAT. It was noted that esophagus volume receiving more than 2 Gy was 3.6 % for VMAT, 23.6 % for IMRT and up to 100 % for 3DCRT. Good agreement was observed between measured doses and those calculated with TPS. The averages relative standard errors (RSE) of three deliveries within eight TLD capsule locations were, 0.9%, 0.8% and 0.6% for 3DCRT, IMRT and VMAT, respectively. The gamma analysis for all plans met the ±5%/3 mm criteria (over 90% passed) and results of QA were greater than 98%. The calculations for maximal doses and volumes of OARs suggest that the estimated risk of secondary cancer induction after VMAT is considerably lower than IMRT and 3DCRT.Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD
Procedia PDF Downloads 5072707 Numerical Study of Two Mechanical Stirring Systems for Yield Stress Fluid
Authors: Amine Benmoussa, Mebrouk Rebhi, Rahmani Lakhdar
Abstract:
Mechanically agitated vessels are commonly used for various operations within a wide range process in chemical, pharmaceutical, polymer, biochemical, mineral, petroleum industries. Depending on the purpose of the operation carried out in mixer, the best choice for geometry of the tank and agitator type can vary widely. In this paper, the laminar 2D agitation flow and power consumption of viscoplastic fluids with straight and circular gate impellers in a stirring tank is studied by using computational fluid dynamics (CFD), where the velocity profile, the velocity fields and power consumption was analyzed.Keywords: CFD, mechanical stirring, power consumption, yield stress fluid
Procedia PDF Downloads 3532706 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint
Authors: Richard Colwell, Thomas Englert
Abstract:
In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface
Procedia PDF Downloads 2182705 The High Precision of Magnetic Detection with Microwave Modulation in Solid Spin Assembly of NV Centres in Diamond
Authors: Zongmin Ma, Shaowen Zhang, Yueping Fu, Jun Tang, Yunbo Shi, Jun Liu
Abstract:
Solid-state quantum sensors are attracting wide interest because of their high sensitivity at room temperature. In particular, spin properties of nitrogen–vacancy (NV) color centres in diamond make them outstanding sensors of magnetic fields, electric fields and temperature under ambient conditions. Much of the work on NV magnetic sensing has been done so as to achieve the smallest volume, high sensitivity of NV ensemble-based magnetometry using micro-cavity, light-trapping diamond waveguide (LTDW), nano-cantilevers combined with MEMS (Micro-Electronic-Mechanical System) techniques. Recently, frequency-modulated microwaves with continuous optical excitation method have been proposed to achieve high sensitivity of 6 μT/√Hz using individual NV centres at nanoscale. In this research, we built-up an experiment to measure static magnetic field through continuous wave optical excitation with frequency-modulated microwaves method under continuous illumination with green pump light at 532 nm, and bulk diamond sample with a high density of NV centers (1 ppm). The output of the confocal microscopy was collected by an objective (NA = 0.7) and detected by a high sensitivity photodetector. We design uniform and efficient excitation of the micro strip antenna, which is coupled well with the spin ensembles at 2.87 GHz for zero-field splitting of the NV centers. Output of the PD signal was sent to an LIA (Lock-In Amplifier) modulated signal, generated by the microwave source by IQ mixer. The detected signal is received by the photodetector, and the reference signal enters the lock-in amplifier to realize the open-loop detection of the NV atomic magnetometer. We can plot ODMR spectra under continuous-wave (CW) microwave. Due to the high sensitivity of the lock-in amplifier, the minimum detectable value of the voltage can be measured, and the minimum detectable frequency can be made by the minimum and slope of the voltage. The magnetic field sensitivity can be derived from η = δB√T corresponds to a 10 nT minimum detectable shift in the magnetic field. Further, frequency analysis of the noise in the system indicates that at 10Hz the sensitivity less than 10 nT/√Hz.Keywords: nitrogen-vacancy (NV) centers, frequency-modulated microwaves, magnetic field sensitivity, noise density
Procedia PDF Downloads 4402704 Numerical Investigation on the Effects of Deep Excavation on Adjacent Pile Groups Subjected to Inclined Loading
Authors: Ashkan Shafee, Ahmad Fahimifar
Abstract:
There is a growing demand for construction of high-rise buildings and infrastructures in large cities, which sometimes require deep excavations in the vicinity of pile foundations. In this study, a two-dimensional finite element analysis is used to gain insight into the response of pile groups adjacent to deep excavations in sand. The numerical code was verified by available experimental works, and a parametric study was performed on different working load combinations, excavation depth and supporting system. The results show that the simple two-dimensional plane strain model can accurately simulate the excavation induced changes on adjacent pile groups. It was found that further excavation than pile toe level and also inclined loading on adjacent pile group can severely affect the serviceability of the foundation.Keywords: deep excavation, inclined loading, lateral deformation, pile group
Procedia PDF Downloads 2742703 Obstacles in Integrating ICT in Education: A Cross-Sectional Study in GCC Countries
Authors: Mohammed Alhawiti
Abstract:
This paper investigates the insight of educational practitioners concerning challenges that seriously obstruct the comprehension of ICT-related goals of educational institutes. ICT education is a broad area encircling a variety of discipline; both those traditionally classified as IT such as information systems, engineering etc., as well as recent areas, which cross over a variety of educational fields. The results are from a local survey among national representative samples of institutes across GCC countries. The research entails a brief synopsis of the design of this project, a review of key indicators regarding ICT (Information and Communication Technologies) in various institutions, key obstacles and an investigation of the co-variation between challenges and related factors at the country-level.Keywords: information, communication technology, GCC countries, education sector
Procedia PDF Downloads 4312702 Probing Mechanical Mechanism of Three-Hinge Formation on a Growing Brain: A Numerical and Experimental Study
Authors: Mir Jalil Razavi, Tianming Liu, Xianqiao Wang
Abstract:
Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns can provide useful clues into normal and pathological brain function. During the development, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied by tremendous tissue folding which may be attributed to many possible factors. Despite decades of endeavors, the fundamental mechanism and key regulators of this crucial process remain incompletely understood. Therefore, to taking even a small role in unraveling of brain folding mystery, we present a mechanical model to find mechanism of 3-hinges formation in a growing brain that it has not been addressed before. A 3-hinge is defined as a gyral region where three gyral crests (hinge-lines) join. The reasons that how and why brain prefers to develop 3-hinges have not been answered very well. Therefore, we offer a theoretical and computational explanation to mechanism of 3-hinges formation in a growing brain and validate it by experimental observations. In theoretical approach, the dynamic behavior of brain tissue is examined and described with the aid of a large strain and nonlinear constitutive model. Derived constitute model is used in the computational model to define material behavior. Since the theoretical approach cannot predict the evolution of cortical complex convolution after instability, non-linear finite element models are employed to study the 3-hinges formation and secondary morphological folds of the developing brain. Three-dimensional (3D) finite element analyses on a multi-layer soft tissue model which mimics a small piece of the brain are performed to investigate the fundamental mechanism of consistent hinge formation in the cortical folding. Results show that after certain amount growth of cortex, mechanical model starts to be unstable and then by formation of creases enters to a new configuration with lower strain energy. By further growth of the model, formed shallow creases start to form convoluted patterns and then develop 3-hinge patterns. Simulation results related to 3-hinges in models show good agreement with experimental observations from macaque, chimpanzee and human brain images. These results have great potential to reveal fundamental principles of brain architecture and to produce a unified theoretical framework that convincingly explains the intrinsic relationship between cortical folding and 3-hinges formation. This achieved fundamental understanding of the intrinsic relationship between cortical folding and 3-hinges formation would potentially shed new insights into the diagnosis of many brain disorders such as schizophrenia, autism, lissencephaly and polymicrogyria.Keywords: brain, cortical folding, finite element, three hinge
Procedia PDF Downloads 2362701 Effect of the Poisson’s Ratio on the Behavior of Epoxy Microbeam
Authors: Mohammad Tahmasebipour, Hosein Salarpour
Abstract:
Researchers suggest that variations in Poisson’s ratio affect the behavior of Timoshenko micro beam. Therefore, in this study, two epoxy Timoshenko micro beams with different dimensions were modeled using the finite element method considering all boundary conditions and initial conditions that govern the problem. The effect of Poisson’s ratio on the resonant frequency, maximum deflection, and maximum rotation of the micro beams was examined. The analyses suggest that an increased Poisson’s ratio reduces the maximum rotation and the maximum rotation and increases the resonant frequency. Results were consistent with those obtained using the couple stress, classical, and strain gradient elasticity theories.Keywords: microbeam, microsensor, epoxy, poisson’s ratio, dynamic behavior, static behavior, finite element method
Procedia PDF Downloads 4602700 Bioremediation Effect on Shear Strength of Contaminated Soils
Authors: Samira Abbaspour
Abstract:
Soil contamination by oil industry is unavoidable issue; irrespective of environmental impact, which occurs during the process of soil contaminating and remediating. Effect of this phenomenon on the geotechnical properties of the soil has not been investigated thoroughly. Some researchers studied the environmental aspects of these phenomena more than geotechnical point of view. In this research, compaction and unconfined compression tests were conducted on samples of natural, contaminated and treated soil after 50 days of bio-treatment. The results manifest that increasing the amount of crude oil, leads to decreased values of maximum dry density and optimum water content and increased values of unconfined compression strength (UCS). However, almost 65% of this contamination terminated by using a Bioremer as a bioremediation agent. Foremost, as bioremediation takes place, values of maximum dry density, unconfined compression strength and failure strain increase.Keywords: contamination, shear strength, compaction, oil contamination
Procedia PDF Downloads 1842699 Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks
Authors: D. K. Soni
Abstract:
A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption.Keywords: sedimentary rocks, split tensile test, deformation rate, saturation rate, sand stone, lime stone
Procedia PDF Downloads 4102698 Traditional Phytotherapy among Tribes of Madhya Pradesh, India Used in the Treatment of Ear, Nose and Throat Disorders
Authors: Sumeet Dwivedi, Shweta Shriwas, Raghvendra Dubey
Abstract:
Madhya Pradesh, a Central State of India is rich in natural heritage due to tribal impact. Herbal harmony present either cultivated or by naturally being used by the tribes of the state in the treatment of several human and animal disorders. Diseases of ear, nose and throat (ENT) often have serious consequences including hearing impairment, and emotional strain that lower the quality of life of patients. Traditional phytotherapy have now been found to be instrumental in improving chances of discovering plants with antimicrobial activity in new drug development. The present paper enumerates the uses of ten herbs viz., garlic, eucalyptus, marigold, tulsi, euphorbia, lemon grass, haldi, bhringraj, ginger and ajwain. An attempt has also been made to reveal the method of preparation, dose, duration possible MOA of these herbs used for ENT disorders.Keywords: ENT, traditional phytotherapy, herbs, Madhya Pradesh
Procedia PDF Downloads 2492697 Computational Tool for Surface Electromyography Analysis; an Easy Way for Non-Engineers
Authors: Fabiano Araujo Soares, Sauro Emerick Salomoni, Joao Paulo Lima da Silva, Igor Luiz Moura, Adson Ferreira da Rocha
Abstract:
This paper presents a tool developed in the Matlab platform. It was developed to simplify the analysis of surface electromyography signals (S-EMG) in a way accessible to users that are not familiarized with signal processing procedures. The tool receives data by commands in window fields and generates results as graphics and excel tables. The underlying math of each S-EMG estimator is presented. Setup window and result graphics are presented. The tool was presented to four non-engineer users and all of them managed to appropriately use it after a 5 minutes instruction period.Keywords: S-EMG estimators, electromyography, surface electromyography, ARV, RMS, MDF, MNF, CV
Procedia PDF Downloads 5592696 The Relations Between Hans Kelsen’s Concept of Law and the Theory of Democracy
Authors: Monika Zalewska
Abstract:
Hans Kelsen was a versatile legal thinker whose achievements in the fields of legal theory, international law, and the theory of democracy are remarkable. All of the fields tackled by Kelsen are regarded as part of his “pure theory of law.” While the link between international law and Kelsen’s pure theory of law is apparent, the same cannot be said about the link between the theory of democracy and his pure theory of law. On the contrary, the general thinking concerning Kelsen’s thought is that it can be used to legitimize authoritarian regimes. The aim of this presentation is to address this concern by identifying the common ground between Kelsen’s pure theory of law and his theory of democracy and to show that they are compatible in a way that his pure theory of law and authoritarianism cannot be. The conceptual analysis of the purity of Kelsen’s theory and his goal of creating ideology-free legal science hints at how Kelsen’s pure theory of law and the theory of democracy are brought together. The presentation will first demonstrate that these two conceptions have common underlying values and meta-ethical convictions. Both are founded on relativism and a rational worldview, and the aim of both is peaceful co-existence. Second, it will be demonstrated that the separation of law and morality provides the maximum space for deliberation within democratic processes. The conclusion of this analysis is that striking similarities exist between Kelsen’s legal theory and his theory of democracy. These similarities are grounded in the Enlightenment tradition and its values, including rationality, a scientific worldview, tolerance, and equality. This observation supports the claim that, for Kelsen, legal positivism and the theory of democracy are not two separate theories but rather stem from the same set of values and from Kelsen’s relativistic worldview. Furthermore, three main issues determine Kelsen’s orientation toward a positivistic and democratic outlook. The first, which is associated with personality type, is the distinction between absolutism and relativism. The second, which is associated with the values that Kelsen favors in the social order, is peace. The third is legality, which creates the necessary condition for democracy to thrive and reveals that democracy is capable of fulfilling Kelsen’s ideal of law at its fullest. The first two categories exist in the background of Kelsen’s pure theory of law, while the latter is an inherent part of Kelsen’s concept of law. The analysis of the text concerning natural law doctrine and democracy indicates that behind the technical language of Kelsen’s pure theory of law is a strong concern with the trends that appeared after World War I. Despite his rigorous scientific mind, Kelsen was deeply humanistic. He tried to create a powerful intellectual weapon to provide strong arguments for peaceful coexistence and a rational outlook in Europe. The analysis provided by this presentation facilitates a broad theoretical, philosophical, and political understanding of Kelsen’s perspectives and, consequently, urges a strong endorsement of Kelsen’s approach to constitutional democracy.Keywords: hans kelsen, democracy, legal positivism, pure theory of law
Procedia PDF Downloads 1102695 Load Balancing Algorithms for SIP Server Clusters in Cloud Computing
Authors: Tanmay Raj, Vedika Gupta
Abstract:
For its groundbreaking and substantial power, cloud computing is today’s most popular breakthrough. It is a sort of Internet-based computing that allows users to request and receive numerous services in a cost-effective manner. Virtualization, grid computing, and utility computing are the most widely employed emerging technologies in cloud computing, making it the most powerful. However, cloud computing still has a number of key challenges, such as security, load balancing, and non-critical failure adaption, to name a few. The massive growth of cloud computing will put an undue strain on servers. As a result, network performance will deteriorate. A good load balancing adjustment can make cloud computing more productive and in- crease client fulfillment execution. Load balancing is an important part of cloud computing because it prevents certain nodes from being overwhelmed while others are idle or have little work to perform. Response time, cost, throughput, performance, and resource usage are all parameters that may be improved using load balancing.Keywords: cloud computing, load balancing, computing, SIP server clusters
Procedia PDF Downloads 1242694 Heat Stress a Risk Factor for Poor Maternal Health- Evidence from South India
Authors: Vidhya Venugopal, Rekha S.
Abstract:
Introduction: Climate change and the growing frequency of higher average temperatures and heat waves have detrimental health effects, especially for certain vulnerable groups with limited socioeconomic status (SES) or physiological capacity to adapt to or endure high temperatures. Little research has been conducted on the effects of heat stress on pregnant women and fetuses in tropical regions such as India. Very high ambient temperatures may worsen Adverse Pregnancy Outcomes (APOs) and are a major worry in the scenario of climate change. The relationship between rising temperatures and APO must be better understood in order to design more effective interventions. Methodology: We conducted an observational cohort study involving 865 pregnant women in various districts of Tamil Nadu districts between 2014 and 2021. Physiological Heat Strain Indicators (HSI) such as morning and evening Core Body Temperature (CBT) and Urine Specific Gravity (USG) were monitored using an infrared thermometer and refractometer, respectively. A validated, modified version of the HOTHAPS questionnaire was utilised to collect self-reported health symptoms. A follow-up was undertaken with the mothers to collect information regarding birth outcomes and APOs, such as spontaneous abortions, stillbirths, Preterm Birth (PTB), birth abnormalities, and Low Birth Weight (LBW). Major findings of the study: According to the findings of our study, ambient temperatures (mean WBGT°C) were substantially higher (>28°C) for approximately 46% of women performing moderate daily life activities. 82% versus 43% of these women experienced dehydration and heat-related complaints. 34% of women had USG >1.020, which is symptomatic of dehydration. APOs, which include spontaneous abortions, were prevalent at 2.2%, stillbirth/preterm birth/birth abnormalities were prevalent at 2.2%, and low birth weight was prevalent at 16.3%. With exposures to WBGT>28°C, the incidence of miscarriage or unexpected abortion rose by approximately 2.7 times (95% CI: 1.1-6.9). In addition, higher WBGT exposures were associated with a 1.4-fold increased risk of unfavorable birth outcomes (95% Confidence Interval [CI]: 1.02-1.09). The risk of spontaneous abortions was 2.8 times higher among women who conceived during the hotter months (February – September) compared to those women who conceived in the cooler months (October – January) (95% CI: 1.04-7.4). Positive relationships between ambient heat and APOs found in this study necessitate further exploration into the underlying factors for extensive cohort studies to generate information to enable the formulation of policies that can effectively protect these women against excessive heat stress for enhanced maternal and fetal health.Keywords: heat exposures, community, pregnant women, physiological strain, adverse outcome, interventions
Procedia PDF Downloads 842693 Efficient Single Relay Selection Scheme for Cooperative Communication
Authors: Sung-Bok Choi, Hyun-Jun Shin, Hyoung-Kyu Song
Abstract:
This paper proposes a single relay selection scheme in cooperative communication. Decode and forward scheme is considered when a source node wants to cooperate with a single relay for data transmission. To use the proposed single relay selection scheme, the source node make a little different pattern signal which is not complex pattern and broadcasts it. The proposed scheme does not require the channel state information between the source node and candidates of the relay during the relay selection. Therefore, it is able to be used in many fields.Keywords: relay selection, cooperative communication, df, channel codes
Procedia PDF Downloads 6702692 Vibration Characteristics of Functionally Graded Thick Hollow Cylinders Using Galerkin Method
Authors: Pejman Daryabor, Kamal Mohammadi
Abstract:
In the present work, the study of vibration characteristics of a functionally graded thick hollow cylinder is investigated. The cylinder natural frequencies are obtained using Galerkin finite element method. The functionally graded cylinder is assumed to be made from many subcylinders. Each subcylinder is considered as an isotropic layer. Material’s properties in each layer are constant and functionally graded properties result by exponential function of layer radius in multilayer cylinder. To validate the FE results code, plane strain model of functionally graded cylinder are also modeled in ABAQUS. Analytical results are validated for both models. Also, a good agreement is found between the present results and those reported in the literature.Keywords: natural frequency, functionally graded material, finite element method, thick cylinder
Procedia PDF Downloads 4732691 An Enhanced Support Vector Machine Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects
Authors: Gehad S. Kaseb, Mona F. Ahmed
Abstract:
Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. Few studies apply SA to Arabic dialects. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-AATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.Keywords: Arabic, classification, sentiment analysis, tweets
Procedia PDF Downloads 1492690 Development of Forging Technology of Cam Ring Gear for Truck Using Small Bar
Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim
Abstract:
This study focused on developing forging technology of a large-diameter cam ring gear from the small bar. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the finite element method was used to simulate the forging process of cam ring gear parts. Test results were in good agreement with the simulations. An existing cam ring gear is presented the chips generated by cutting the rod material and the durability issues, but this would be to develop a large-diameter cam ring gear forging parts for truck in order to solve the durability problem and the material waste.Keywords: forging technology, cam ring, gear, truck, small bar
Procedia PDF Downloads 2972689 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure
Authors: Tokuei Sako
Abstract:
Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity
Procedia PDF Downloads 5092688 Analysis of Changes Being Done of the Mine Legislation of Turkey: Mining Operation Activity Process
Authors: Taşkın Deniz Yıldız, Mustafa Topaloğlu, Orhan Kural
Abstract:
The right to operate a fairly long periods of prior periods and after the 3213 Mining Law has been observed to be shortened in Turkey. Permit the realization of business activities (or concession) requested the purchase of the mine operated "found mine" position, as well as the financial and technical capability to have the owner of the right to operate the mines as well as the principle of equality is important in terms of assessing the best way be. In particular, in this context, license fields "negligence" (downsizing) have noted that the current arrangement for all periods. However, in the period after 3213 Mining Act and a permit to operate more effectively within the framework of implementation of negligence is laid down.Keywords: mining legislation, operation, permit, Turkey
Procedia PDF Downloads 4032687 Determination of Johnson-Cook Material and Failure Model Constants for High Tensile Strength Tendon Steel in Post-Tensioned Concrete Members
Authors: I. Gkolfinopoulos, N. Chijiwa
Abstract:
To evaluate the remaining capacity in concrete tensioned members, it is important to accurately estimate damage in precast concrete tendons. In this research Johnson-Cook model and damage parameters of high-strength steel material were calculated by static and dynamic uniaxial tensile tests. Replication of experimental results was achieved through finite element analysis for both single 8-noded three-dimensional element as well as the full-scale dob-bone shaped model and relevant model parameters are proposed. Finally, simulation results in terms of strain and deformation were verified using digital image correlation analysis.Keywords: DIC analysis, Johnson-Cook, quasi-static, dynamic, rupture, tendon
Procedia PDF Downloads 1472686 Stagnation Point Flow Over a Stretching Cylinder with Variable Thermal Conductivity and Slip Conditions
Authors: M. Y. Malik, Farzana Khan
Abstract:
In this article, we discuss the behavior of viscous fluid near stagnation point over a stretching cylinder with variable thermal conductivity. The effects of slip conditions are also encountered. Thermal conductivity is considered as a linear function of temperature. By using homotopy analysis method and Fehlberg method we compare the graphical results for both momentum and energy equations. The effect of different parameters on velocity and temperature fields are shown graphically.Keywords: slip conditions, stretching cylinder, heat generation/absorption, stagnation point flow, variable thermal conductivity
Procedia PDF Downloads 4232685 A Deep Learning Approach for Optimum Shape Design
Authors: Cahit Perkgöz
Abstract:
Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)Keywords: deep learning, shape design, optimization, artificial intelligence
Procedia PDF Downloads 1532684 Multivariate Simulations of the Process of Forming the Automotive Connector Forging from ZK60 Alloy
Authors: Anna Dziubinska
Abstract:
The article presents the results of numerical simulations of the new forging process of the automotive connector forging from cast preform. The high-strength ZK60 alloy (belonging to the Mg-Zn-Zr group of Mg alloys) was selected for numerical tests. Currently, this part of the industry is produced by multi-stage forging consisting of operations: bending, preforming, and finishing. The use of the cast preform would enable forging this component in one operation. However, obtaining specific mechanical properties requires inducing a certain level of strain within the forged part. Therefore, the design of the preform, its shape, and volume are of paramount importance. In work presented in this article, preforms of different shapes were designed and assessed using Finite Element (FE) analysis. The research was funded by the Polish National Agency for Academic Exchange within the framework of the Bekker programme.Keywords: automotive connector, forging, magnesium alloy, numerical simulation, preform, ZK60
Procedia PDF Downloads 1322683 Comparison of the Response of TLD-100 and TLD-100H Dosimeters in Diagnostic Radiology
Authors: S. Sina, B. Zeinali, M. Karimipourfard, F. Lotfalizadeh, M. Sadeghi, E. Zamani, M. Zehtabian, R. Faghihi
Abstract:
Proper dosimetery is very essential in diagnostic radiology. The goal of this study is to verify the application of LiF:Mg, Cu, P (TLD100H) in obtaining the entrance skin dose (ESD) of patients undergoing diagnostic radiology. The results of dosimetry performed by TLD-100H were compared with those obtained by TLD100, which is a common dosimeter in diagnostic radiology. The results show a close agreement between the dose measured by the two dosimeters. According to the results of this study, the TLD-100H dosimeters have higher sensitivities (i.e. signal(nc)/dose) than TLD-100. Therefore, it is suggested that the TLD-100H are effective dosimeters for dosimetry in low dose fields.Keywords: entrance skin dose, TLD, diagnostic radiology, dosimeter
Procedia PDF Downloads 475