Search results for: prognosis prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2458

Search results for: prognosis prediction

1348 Development of Non-Intrusive Speech Evaluation Measure Using S-Transform and Light-Gbm

Authors: Tusar Kanti Dash, Ganapati Panda

Abstract:

The evaluation of speech quality and intelligence is critical to the overall effectiveness of the Speech Enhancement Algorithms. Several intrusive and non-intrusive measures are employed to calculate these parameters. Non-Intrusive Evaluation is most challenging as, very often, the reference clean speech data is not available. In this paper, a novel non-intrusive speech evaluation measure is proposed using audio features derived from the Stockwell transform. These features are used with the Light Gradient Boosting Machine for the effective prediction of speech quality and intelligibility. The proposed model is analyzed using noisy and reverberant speech from four databases, and the results are compared with the standard Intrusive Evaluation Measures. It is observed from the comparative analysis that the proposed model is performing better than the standard Non-Intrusive models.

Keywords: non-Intrusive speech evaluation, S-transform, light GBM, speech quality, and intelligibility

Procedia PDF Downloads 245
1347 Theoretical Prediction of the Structural, Elastic, Electronic, Optical, and Thermal Properties of Cubic Perovskites CsXF3 (X = Ca, Sr, and Hg) under Pressure Effect

Authors: M. A. Ghebouli, A. Bouhemadou, H. Choutri, L. Louaila

Abstract:

Some physical properties of the cubic perovskites CsXF3 (X = Sr, Ca, and Hg) have been investigated using pseudopotential plane–wave (PP-PW) method based on the density functional theory (DFT). The calculated lattice constants within GGA (PBE) and LDA (CA-PZ) agree reasonably with the available experiment data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young’s modulus, Poisson’s ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr, and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacities CV, CP, and Debye temperature was predicted.

Keywords: perovskite, PP-PW method, elastic constants, electronic band structure

Procedia PDF Downloads 419
1346 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing

Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn

Abstract:

Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.

Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency

Procedia PDF Downloads 100
1345 Random Variation of Treated Volumes in Fractionated 2D Image Based HDR Brachytherapy for Cervical Cancer

Authors: R. Tudugala, B. M. A. I. Balasooriya, W. M. Ediri Arachchi, R. W. M. W. K. Rathnayake, T. D. Premaratna

Abstract:

Brachytherapy involves placing a source of radiation near the cancer site which gives promising prognosis for cervical cancer treatments. The purpose of this study was to evaluate the effect of random variation of treated volumes in between fractions in the 2D image based fractionated high dose rate brachytherapy for cervical cancer at National Cancer Institute Maharagama, Sri Lanka. Dose plans were analyzed for 150 cervical cancer patients with orthogonal radiographs (2D) based brachytherapy. ICRU treated volumes was modeled by translating the applicators with the help of “Multisource HDR plus software”. The difference of treated volumes with respect to the applicator geometry was analyzed by using SPSS 18 software; to derived patient population based estimates of delivered treated volumes relative to ideally treated volumes. Packing was evaluated according to bladder dose, rectum dose and geometry of the dose distribution by three consultant radiation oncologist. The difference of treated volumes depends on types of the applicators, which was used in fractionated brachytherapy. The means of the “Difference of Treated Volume” (DTV) for “Evenly activated tandem (ET)” length” group was ((X_1)) -0.48 cm3 and ((X_2)) 11.85 cm3 for “Unevenly activated tandem length (UET) group. The range of the DTV for ET group was 35.80 cm3 whereas UET group 104.80 cm3. One sample T test was performed to compare the DTV with “Ideal treatment volume difference (0.00cm3)”. It is evident that P value was 0.732 for ET group and for UET it was 0.00 moreover independent two sample T test was performed to compare ET and UET groups and calculated P value was 0.005. Packing was evaluated under three categories 59.38% used “Convenient Packing Technique”, 33.33% used “Fairly Packing Technique” and 7.29% used “Not Convenient Packing” in their fractionated brachytherapy treatments. Random variation of treated volume in ET group is much lower than UET group and there is a significant difference (p<0.05) in between ET and UET groups which affects the dose distribution of the treatment. Furthermore, it can be concluded nearly 92.71% patient’s packing were used acceptable packing technique at NCIM, Sri Lanka.

Keywords: brachytherapy, cervical cancer, high dose rate, tandem, treated volumes

Procedia PDF Downloads 187
1344 Histopathological, Proliferative, Apoptotic, and Hormonal Characteristics of Various Types of Leiomyomas

Authors: Kiknadze T, Tevdorashvili G, Muzashvili T, Gachechiladze M, Burkadze G

Abstract:

Uterine leiomyomas decrease the quality of life by causing significant morbidity among women of reproductive age. Histologically various types of leiomyoma's can be differentiated. We have analysed th histopathological, proliferation, apoptotic, and hormonal profile in different types of leiomyomas. Study included altogether140 cases distributed into the following groups: group I-normal myometrium (20cases), group II-classic leiomyoma (69 cases), group III-cellular leiomyoma (15 cases), group IV-bizarre cell/atypical leiomyoma (22cases), group V-smooth muscle tumors of uncertain malignancy potential (STUMP) (8 cases) and group VI-leiomyosarcoma (6 cases). Together with classic histopathological features such as nuclear atypia, cellularity, presence of mitoses, vasculature and necrosis, immunohistochemical phenotype using antibodies against Ki67,Cas3, ER, and PR were analysed. The results of our study showed that leiomyomas are charterised with variable histopathological and immunohistocthemical phenotype. Histopathological parameters mainly correlate with the degree of malignancy except for two bizarre/atypical leiomyoma and STUMP, where two distinct subgroups could be identified. In bizarre/ atipycal leiomyoma, 31% of cases are characterized with the features of classic leiomyoma, whilst the rest of the cases reveal more atipycal phenotype. In STUMP 37.5 % of cases are characterized with the features of atipycal leiomyomas. The result of the immunohistochemical study also reveald that half of bizarre/atipycal leiomyomas are characterized with the low proliferation index, high apoptotic index, and high ER and PR index, whilst another half is characterized with high proliferation index, low apoptotic index, and low ER and PR index. Similarly, part of the STUMP cases are characterized with low proliferation index, high Er, and PR index and whilst part of the cases are characterized whith high proliferation index, low apoptotic index and low ER and PR index. The results of the histopathological and immunohistochemical study indicate that these two entities represent the heterogenous group of diseases, which might be the explanation of their different prognosis. Presented histopathological and immunohistochemical features should be considered in the diagnosis of myometrial smooth muscle tumors.

Keywords: proliferation, apoptosis, bizarre cell, leiomyosarcoma., leiomyoma

Procedia PDF Downloads 94
1343 Primary Fallopian Tube Carcinoma: A Case Report

Authors: Mary Abigail T. Ty, Mary Jocelyn Yu-Laygo, Jocelyn Z. Mariano

Abstract:

This is a case of L.S.T., a 61 year old, G6P4 (3124) who presented with a one month history of intermittent, brownish, watery, non foul smelling vaginal discharge. There were no other accompanying symptoms. On rectovaginal examination, a palpable adnexal mass on the left was appreciated, with the lower border measuring 3 cm. The mass was non-tender, had irregular borders and solid areas. On transvaginal sonography, it revealed a left pelvic mass measuring 3 x 4 x 2 cm, with a Sassone score of 9. It had vascularization. The primary consideration was Ovarian Newgrowth, probably malignant in nature. CA-125 results were slightly elevated at 43.2 u/ml (NV: 0-35 u/ml). After intraoperative evaluation, the left fallopian tube was converted into a 9 x 4.5 x 3 cm bulbous cystic mass with solid areas. On cut section, the ampullary portion of the fallopian tube contained necrotic and friable looking tissues. Specimen was sent for frozen section and results revealed adenocarcinoma of the left fallopian tube. Patient subsequently underwent complete surgical staging with unremarkable post-operative course. The Surg Ico pathologic diagnosis was G6P4 (3124) Fallopian tube serous cystadenocarcinoma stage 1. The mean incidence of PFTC is 3.6 per million women yearly. This is associated with a generally low survival rate. The primary diagnosis is very difficult to establish because only 0–10% of patients suffering from PFTC are diagnosed pre-operatively. Symptoms play a very important role in the discovery of this disease, because there will be no presentation to the hospital without symptoms. The most common of which may be vaginal bleeding, abdominal pain, a palpable mass and ascites. A conglomerate of manifestations may be encountered, but not at all times. This is termed hydrops tubae profluens where there is presence of colicky pain with relief from intermittent passage of serosanguinous vaginal discharge. The significance of this report is to emphasize the rarity of the case and how the dilemma in the diagnosis is almost always present despite ancillary procedures.

Keywords: fallopian tube carcinoma, prognosis, rare, risk factors

Procedia PDF Downloads 309
1342 A Prediction Model of Tornado and Its Impact on Architecture Design

Authors: Jialin Wu, Zhiwei Lian, Jieyu Tang, Jingyun Shen

Abstract:

Tornado is a serious and unpredictable natural disaster, which has an important impact on people's production and life. The probability of being hit by tornadoes in China was analyzed considering the principles of tornado formation. Then some suggestions on layout and shapes for newly-built buildings were provided combined with the characteristics of tornado wind fields. Fuzzy clustering and inverse closeness methods were used to evaluate the probability levels of tornado risks in various provinces based on classification and ranking. GIS was adopted to display the results. Finally, wind field single-vortex tornado was studied to discuss the optimized design of rural low-rise houses in Yancheng, Jiangsu as an example. This paper may provide enough data to support building and urban design in some specific regions.

Keywords: tornado probability, computational fluid dynamics, fuzzy mathematics, optimal design

Procedia PDF Downloads 116
1341 Prediction of a Nanostructure Called Porphyrin-Like Buckyball, Using Density Functional Theory and Investigating Electro Catalytic Reduction of Co₂ to Co by Cobalt– Porphyrin-Like Buckyball

Authors: Mohammad Asadpour, Maryam Sadeghi, Mahmoud Jafari

Abstract:

The transformation of carbon dioxide into fuels and commodity chemicals is considered one of the most attractive methods to meet energy demands and reduce atmospheric CO₂ levels. Cobalt complexes have previously shown high faradaic efficiency in the reduction of CO₂ to CO. In this study, a nanostructure, referred to as a porphyrin-like buckyball, is simulated and analyzed for its electrical properties. The investigation aims to understand the unique characteristics of this material and its potential applications in electronic devices. Through computational simulations and analysis, the electrocatalytic reduction of CO₂ to CO by Cobalt-porphyrin-like buckyball is explored. The findings of this study offer valuable insights into the electrocatalytic properties of this predicted structure, paving the way for further research and development in the field of nanotechnology.

Keywords: porphyrin-like buckyball, DFT, nanomaterials, CO₂ to CO

Procedia PDF Downloads 16
1340 The Effectiveness of Conflict Management of Factories' Employee in Thailand

Authors: Pacharaporn Lekyan

Abstract:

The purpose of this study is to explore the conflict management affecting the workplace and analyze the ability of the prediction of leadership of the headman and the methods to handle the conflict in an organization. The quantitative research and developed the questionnaire in order to collect information from the respondents from 200 samples from leader or manager who worked in frozen food factories in Thailand. The result analysis shows about the problem of the relationship between conflict management factors, leadership, and the confliction in organization. The emotion of the leader in the organization is not the only factor that can affect conflict management but also the emotion of surrounding people which this factor can happen all the time and shows that four out of five factors of interpersonal conflict management have affected on emotion intelligence and also shows that the behaviors of leadership have an influence on conflict management.

Keywords: conflict management, emotional intelligence, leadership, factories' employee

Procedia PDF Downloads 349
1339 Forecasting Solid Waste Generation in Turkey

Authors: Yeliz Ekinci, Melis Koyuncu

Abstract:

Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.

Keywords: forecast, solid waste generation, solid waste management, Turkey

Procedia PDF Downloads 492
1338 The Effect That the Data Assimilation of Qinghai-Tibet Plateau Has on a Precipitation Forecast

Authors: Ruixia Liu

Abstract:

Qinghai-Tibet Plateau has an important influence on the precipitation of its lower reaches. Data from remote sensing has itself advantage and numerical prediction model which assimilates RS data will be better than other. We got the assimilation data of MHS and terrestrial and sounding from GSI, and introduced the result into WRF, then got the result of RH and precipitation forecast. We found that assimilating MHS and terrestrial and sounding made the forecast on precipitation, area and the center of the precipitation more accurate by comparing the result of 1h,6h,12h, and 24h. Analyzing the difference of the initial field, we knew that the data assimilating about Qinghai-Tibet Plateau influence its lower reaches forecast by affecting on initial temperature and RH.

Keywords: Qinghai-Tibet Plateau, precipitation, data assimilation, GSI

Procedia PDF Downloads 221
1337 EMI Radiation Prediction and Final Measurement Process Optimization by Neural Network

Authors: Hussam Elias, Ninovic Perez, Holger Hirsch

Abstract:

The completion of the EMC regulations worldwide is growing steadily as the usage of electronics in our daily lives is increasing more than ever. In this paper, we introduce a novel method to perform the final phase of Electromagnetic compatibility (EMC) measurement and to reduce the required test time according to the norm EN 55032 by using a developed tool and the conventional neural network(CNN). The neural network was trained using real EMC measurements, which were performed in the Semi Anechoic Chamber (SAC) by CETECOM GmbH in Essen, Germany. To implement our proposed method, we wrote software to perform the radiated electromagnetic interference (EMI) measurements and use the CNN to predict and determine the position of the turntable that meets the maximum radiation value.

Keywords: conventional neural network, electromagnetic compatibility measurement, mean absolute error, position error

Procedia PDF Downloads 183
1336 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 112
1335 A Review of Pharmacological Prevention of Peri-and Post-Procedural Myocardial Injury After Percutaneous Coronary Intervention

Authors: Syed Dawood Md. Taimur, Md. Hasanur Rahman, Syeda Fahmida Afrin, Farzana Islam

Abstract:

The concept of myocardial injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. In recent years, percutaneous coronary intervention (PCI) has become a well-established technique for the treatment of coronary artery disease. PCI improves symptoms in patients with coronary artery disease and it has been increasing the safety of procedures. However, peri- and post-procedural myocardial injury, including angiographical slow coronary flow, microvascular embolization, and elevated levels of cardiac enzyme, such as creatine kinase and troponin-T and -I, has also been reported even in elective cases. Furthermore, myocardial reperfusion injury at the beginning of myocardial reperfusion, which causes tissue damage and cardiac dysfunction, may occur in cases of the acute coronary syndrome. Because patients with myocardial injury is related to larger myocardial infarction and have a worse long-term prognosis than those without myocardial injury, it is important to prevent myocardial injury during and/or after PCI in patients with coronary artery disease. To date, many studies have demonstrated that adjunctive pharmacological treatment suppresses myocardial injury and increases coronary blood flow during PCI procedures. In this review, we highlight the usefulness of pharmacological treatment in combination with PCI in attenuating myocardial injury in patients with coronary artery disease.

Keywords: coronary artery disease, percutaneous coronary intervention, myocardial injury, pharmacology

Procedia PDF Downloads 437
1334 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 173
1333 Impact of the Operation and Infrastructure Parameters to the Railway Track Capacity

Authors: Martin Kendra, Jaroslav Mašek, Juraj Čamaj, Matej Babin

Abstract:

The railway transport is considered as a one of the most environmentally friendly mode of transport. With future prediction of increasing of freight transport there are lines facing problems with demanded capacity. Increase of the track capacity could be achieved by infrastructure constructive adjustments. The contribution shows how the travel time can be minimized and the track capacity increased by changing some of the basic infrastructure and operation parameters, for example, the minimal curve radius of the track, the number of tracks, or the usable track length at stations. Calculation of the necessary parameter changes is based on the fundamental physical laws applied to the train movement, and calculation of the occupation time is dependent on the changes of controlling the traffic between the stations.

Keywords: curve radius, maximum curve speed, track mass capacity, reconstruction

Procedia PDF Downloads 326
1332 Screening of Ionic Liquids for Hydrogen Sulfide Removal Using COSMO-RS

Authors: Zulaika Mohd Khasiran

Abstract:

The capability of ionic liquids in various applications makes them attracted by many researchers. They have potential to be developed as “green” solvents for gas separation, especially H2S gas. In this work, it is attempted to predict the solubility of hydrogen sulfide (H2S) in ILs by COSMO-RS method. Since H2S is a toxic pollutant, it is difficult to work on it in the laboratory, therefore an appropriate model will be necessary in prior work. The COSMO-RS method is implemented to predict the Henry’s law constants and activity coefficient of H2S in 140 ILs with various combinations of cations and anions. It is found by the screening that more H2S can be absorbed in ILs with [Cl] and [Ac] anion. The solubility of H2S in ILs with different alkyl chain at the cations not much affected and with different type of cations are slightly influence H2S capture capacities. Even though the cations do not affect much in solubility of H2S, we still need to consider the effectiveness of cation in different way. The prediction results only show their physical absorption ability, but the absorption of H2S need to be consider chemically to get high capacity of absorption of H2S.

Keywords: H2S, hydrogen sulfide, ionic liquids, COSMO-RS

Procedia PDF Downloads 126
1331 Current of Drain for Various Values of Mobility in the Gaas Mesfet

Authors: S. Belhour, A. K. Ferouani, C. Azizi

Abstract:

In recent years, a considerable effort (experience, numerical simulation, and theoretical prediction models) has characterised by high efficiency and low cost. Then an improved physics analytical model for simulating is proposed. The performance of GaAs MESFETs has been developed for use in device design for high frequency. This model is based on mathematical analysis, and a new approach for the standard model is proposed, this approach allowed to conceive applicable model for MESFET’s operating in the turn-one or pinch-off region and valid for the short-channel and the long channel MESFET’s in which the two dimensional potential distribution contributed by the depletion layer under the gate is obtained by conventional approximation. More ever, comparisons between the analytical models with different values of mobility are proposed, and a good agreement is obtained.

Keywords: analytical, gallium arsenide, MESFET, mobility, models

Procedia PDF Downloads 58
1330 Autoimmune Diseases Associated with Celiac Disease in Adults

Authors: Soumaya Mrabet, Taieb Ach, Imen Akkari, Amira Atig, Neirouz Ghannouchi, Koussay Ach, Elhem Ben Jazia

Abstract:

Introduction: Celiac disease (CD) is an immune-mediated small intestinal disorder that occurs in genetically susceptible people. It is significantly associated with other autoimmune disorders represented mainly by type 1 diabetes and autoimmune dysthyroidism. The aim of our study is to determine the prevalence and the type of the various autoimmune diseases associated with CD in adult patients. Material and methods: This is a retrospective study including patients diagnosed with CD, explored in Internal Medicine, Gastroenterology and Endocrinology and Diabetology Departments of the Farhat Hached University Hospital, between January 2005 and January 2016. The diagnosis of CD was confirmed by serological tests and duodenal biopsy. The screening of autoimmune diseases was based on physical examination, biological and serological tests. Results: Sixty five patients with a female predominance were included, 48women (73.8%) and 17 men (26.2%). The mean age was 31.8 years (17-75). A family history of CD or other autoimmune diseases was present in 5 and 10 patients respectively. Clinical presentation of CD was made by recurrent abdominal pain in 49 cases, diarrhea in 29 cases, bloating in 17 cases, constipation in 25 cases and vomiting in 8 cases. Autoimmune diseases associated with CD were found in 30 cases (46.1%): type 1 diabetes in 15 patients attested by the positivity of anti-GAD antibodies in 11 cases and anti-IA2 in 4 cases, Hashimoto thyroiditis in 8 cases confirmed by the positivity of anti-TPO antibodies, Addison's disease in 2 patients, Anemia of Biermer in 2 patients, autoimmune hepatitis, Systemic erythematosus lupus, Gougerot Sjögren syndrome, rheumatoid arthritis, Vitiligo and antiphospholipid syndrome in one patient each. CD was associated with more than one autoimmune disease defining multiple autoimmune syndrome in 2 female patients. The first patient had Basedow disease, Addison disease and type 1 diabetes. The second patient had systemic erythematosus lupus and Gougerot Sjögren syndrome. Conclusion: In our study autoimmune diseases were associated with CD in 46.1% of cases and were dominated by diabetes and dysthroidism. After establishing the diagnosis of CD the search of associated autoimmune diseases is necessary in order to avoid any therapeutic delay which can alter the prognosis of the patient.

Keywords: association, autoimmune thyroiditis, celiac disease, diabetes

Procedia PDF Downloads 261
1329 Failure Pressure Prediction of a Corroded Pipeline Using a Finite Element Method

Authors: Lounes Aouane, Omar Bouledroua

Abstract:

Sonatrach uses 24,000 kilometers of pipelines to transport gas and oil. Over time, these pipes run the risk of bursting due to corrosion inside and/or outside the pipeline. For this reason, a check must be made with the help of an equipped scraper. This intelligent tool provides a detailed picture of all errors in the pipeline. Based on the ERF values, these wear defects are divided into two parts: acceptable defect and unacceptable defect. The objective of this work is to conduct a comparative study of the different methods of calculating the marginal pressure found in the literature (DNV RP F-101, SHELL, P-CORRC, NETTO and CSA Z662). This comparison will be made from a database of 329 burst tests published in the literature. Finally, we will propose a new approach based on the finite element method using the commercial software ANSYS.

Keywords: hydrogen embrittlement, pipelines, hydrogen, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 52
1328 Slugging Frequency Correlation for High Viscosity Oil-Gas Flow in Horizontal Pipeline

Authors: B. Y. Danjuma, A. Archibong-Eso, Aliyu M. Aliyu, H. Yeung

Abstract:

In this experimental investigation, a new data for slugging frequency for high viscosity oil-gas flow are reported. Scale experiments were carried out using a mixture of air and mineral oil as the liquid phase in a 17 m long horizontal pipe with 0.0762 ID. The data set was acquired using two high-speed Gamma Densitometers at a data acquisition frequency of 250 Hz over a time interval of 30 seconds. For the range of flow conditions investigated, increase in liquid oil viscosity was observed to strongly influence the slug frequency. A comparison of the present data with prediction models available in the literature revealed huge discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for the horizontal flow, which represents the main contribution of this work.

Keywords: gamma densitometer, flow pattern, pressure gradient, slug frequency

Procedia PDF Downloads 394
1327 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10

Procedia PDF Downloads 216
1326 Morphological Analysis of English L1-Persian L2 Adult Learners’ Interlanguage: From the Perspective of SLA Variation

Authors: Maassoumeh Bemani Naeini

Abstract:

Studies on interlanguage have long been engaged in describing the phenomenon of variation in SLA. Pursuing the same goal and particularly addressing the role of linguistic features, this study describes the use of Persian morphology in the interlanguage of two adult English-speaking learners of Persian L2. Taking the general approach of a combination of contrastive analysis, error analysis and interlanguage analysis, this study focuses on the identification and prediction of some possible instances of transfer from English L1 to Persian L2 across six elicitation tasks aiming to investigate whether any of contextual features may variably influence the learners’ order of morpheme accuracy in the areas of copula, possessives, articles, demonstratives, plural form, personal pronouns, and genitive cases.  Results describe the existence of task variation in the interlanguage system of Persian L2 learners.

Keywords: English L1, Interlanguage Analysis, Persian L2, SLA variation

Procedia PDF Downloads 304
1325 Effect of Outliers in Assessing Significant Wave Heights Through a Time-Dependent GEV Model

Authors: F. Calderón-Vega, A. D. García-Soto, C. Mösso

Abstract:

Recorded significant wave heights sometimes exhibit large uncommon values (outliers) that can be associated with extreme phenomena such as hurricanes and cold fronts. In this study, some extremely large wave heights recorded in NOAA buoys (National Data Buoy Center, noaa.gov) are used to investigate their effect in the prediction of future wave heights associated with given return periods. Extreme waves are predicted through a time-dependent model based on the so-called generalized extreme value distribution. It is found that the outliers do affect the estimated wave heights. It is concluded that a detailed inspection of outliers is envisaged to determine whether they are real recorded values since this will impact defining design wave heights for coastal protection purposes.

Keywords: GEV model, non-stationary, seasonality, outliers

Procedia PDF Downloads 180
1324 The Direct Deconvolutional Model in the Large-Eddy Simulation of Turbulence

Authors: Ning Chang, Zelong Yuan, Yunpeng Wang, Jianchun Wang

Abstract:

The utilization of Large Eddy Simulation (LES) has been extensive in turbulence research. LES concentrates on resolving the significant grid-scale motions while representing smaller scales through subfilter-scale (SFS) models. The deconvolution model, among the available SFS models, has proven successful in LES of engineering and geophysical flows. Nevertheless, the thorough investigation of how sub-filter scale dynamics and filter anisotropy affect SFS modeling accuracy remains lacking. The outcomes of LES are significantly influenced by filter selection and grid anisotropy, factors that have not been adequately addressed in earlier studies. This study examines two crucial aspects of LES: Firstly, the accuracy of direct deconvolution models (DDM) is evaluated concerning sub-filter scale (SFS) dynamics across varying filter-to-grid ratios (FGR) in isotropic turbulence. Various invertible filters are employed, including Gaussian, Helmholtz I and II, Butterworth, Chebyshev I and II, Cauchy, Pao, and rapidly decaying filters. The importance of FGR becomes evident as it plays a critical role in controlling errors for precise SFS stress prediction. When FGR is set to 1, the DDM models struggle to faithfully reconstruct SFS stress due to inadequate resolution of SFS dynamics. Notably, prediction accuracy improves when FGR is set to 2, leading to accurate reconstruction of SFS stress, except for cases involving Helmholtz I and II filters. Remarkably high precision, nearly 100%, is achieved at an FGR of 4 for all DDM models. Furthermore, the study extends to filter anisotropy and its impact on SFS dynamics and LES accuracy. By utilizing the dynamic Smagorinsky model (DSM), dynamic mixed model (DMM), and direct deconvolution model (DDM) with anisotropic filters, aspect ratios (AR) ranging from 1 to 16 are examined in LES filters. The results emphasize the DDM’s proficiency in accurately predicting SFS stresses under highly anisotropic filtering conditions. Notably high correlation coefficients exceeding 90% are observed in the a priori study for the DDM’s reconstructed SFS stresses, surpassing those of the DSM and DMM models. However, these correlations tend to decrease as filter anisotropy increases. In the a posteriori analysis, the DDM model consistently outperforms the DSM and DMM models across various turbulence statistics, including velocity spectra, probability density functions related to vorticity, SFS energy flux, velocity increments, strainrate tensors, and SFS stress. It is evident that as filter anisotropy intensifies, the results of DSM and DMM deteriorate, while the DDM consistently delivers satisfactory outcomes across all filter-anisotropy scenarios. These findings underscore the potential of the DDM framework as a valuable tool for advancing the development of sophisticated SFS models for LES in turbulence research.

Keywords: deconvolution model, large eddy simulation, subfilter scale modeling, turbulence

Procedia PDF Downloads 57
1323 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict

Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez

Abstract:

This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.

Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks

Procedia PDF Downloads 469
1322 Investigating the Demand of Short-Shelf Life Food Products for SME Wholesalers

Authors: Yamini Raju, Parminder S. Kang, Adam Moroz, Ross Clement, Alistair Duffy, Ashley Hopwell

Abstract:

Accurate prediction of fresh produce demand is one the challenges faced by Small Medium Enterprise (SME) wholesalers. Current research in this area focused on limited number of factors specific to a single product or a business type. This paper gives an overview of the current literature on the variability factors used to predict demand and the existing forecasting techniques of short shelf life products. It then extends it by adding new factors and investigating if there is a time lag and possibility of noise in the orders. It also identifies the most important factors using correlation and Principal Component Analysis (PCA).

Keywords: demand forecasting, deteriorating products, food wholesalers, principal component analysis, variability factors

Procedia PDF Downloads 502
1321 Trans-Activator of Transcription-Tagged Active AKT1 Variants for Delivery to Mammalian Cells

Authors: Tarana Siddika, Ilka U. Heinemann, Patrick O’Donoghue

Abstract:

Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Threonine308, Serine473), yet cell stimulation also activates many other kinases and fails to differentiate the effect of the two main activating sites of AKT1 on downstream substrate phosphorylation and cell growth. While both AKT1 activating sites are associated with disease and used as clinical markers, in some cancers, high levels of Threonine308 phosphorylation are associated with poor prognosis while in others poor survival correlates with high Serine473 levels. To produce cells with specific AKT1 activity, a system was developed to deliver active AKT1 to human cells. AKT1 phospho-variants were produced from Escherichia coli with programmed phosphorylation by genetic code expansion. Tagging of AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) helped to enter AKT1 proteins in mammalian cells. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308, TAT-pAKT1S473 and TAT-pAKT1T308S473 proteins induced selective phosphorylation of the known AKT1 substrate GSK-3αβ, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Serine240/244 in transfected cells. Increase in cell growth and proliferation was observed due to the transfection of different phosphorylated AKT1 protein variants compared to cells with TAT-AKT1 protein. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on specific AKT1 activity and phosphorylation.

Keywords: cell penetrating peptide, cell signaling, protein kinase b (AKT1), phosphorylation

Procedia PDF Downloads 99
1320 The Influence of Chevron Angle on Plate Heat Exchanger Thermal Performance with Considering Maldistribution

Authors: Hossein Shokouhmand, Majid Hasanpour

Abstract:

A new modification to the Strelow method of chevron-type plate heat exchangers (PHX) modeling is proposed. The effects of maldistribution are accounted in the resulting equation. The results of calculations are validated by reported experiences. The good accuracy of heat transfer performance prediction is shown. The results indicate that considering flow maldistribution improve the accuracy of predicting the flow and thermal behavior of the plate exchanger. Additionally, a wide range of the parametric study has been presented which brings out the effects of chevron angle of PHE on its thermal efficiency with considering maldistribution effect. In addition, the thermally optimal corrugation discussed for the chevron-type PHEs.

Keywords: chevron angle, plate heat exchangers, maldistribution, strelow method

Procedia PDF Downloads 177
1319 A General Strategy for Noise Assessment in Open Mining Industries

Authors: Diego Mauricio Murillo Gomez, Enney Leon Gonzalez Ramirez, Hugo Piedrahita, Jairo Yate

Abstract:

This paper proposes a methodology for the management of noise in open mining industries based on an integral concept, which takes into consideration occupational and environmental noise as a whole. The approach relies on the characterization of sources, the combination of several measurements’ techniques and the use of acoustic prediction software. A discussion about the difference between frequently used acoustic indicators such as Leq and LAV is carried out, aiming to establish common ground for homologation. The results show that the correct integration of this data not only allows for a more robust technical analysis but also for a more strategic route of intervention as several departments of the company are working together. Noise control measurements can be designed to provide a healthy acoustic surrounding in which the exposure workers but also the outdoor community is benefited.

Keywords: environmental noise, noise control, occupational noise, open mining

Procedia PDF Downloads 243