Search results for: financial market prediction
6637 Extent of Derivative Usage, Firm Value and Risk: An Empirical Study on Pakistan Non-Financial Firms
Authors: Atia Alam
Abstract:
Growing liberalisation and intense market competition increase firm’s risk exposure and induce corporations to use derivatives extensively as a risk management instrument, which results in decrease in firm’s risk, and increase in value. Present study contributes towards existing literature by providing an in-depth analysis regarding the effect of extent of derivative usage on firm’s risk and value by using panel data models and seemingly unrelated regression technique. New evidence is established in current literature by dividing the sample data based on firm’s Exchange Rate (ER) and Interest Rate (IR) exposure. Analysis is performed for the effect of extent of derivative usage on firm’s risk and value and its variation with respect to the ER and IR exposure. Sample data consists of 166 Pakistani firms listed on Pakistan stock exchange for the period of 2004-2010. Results show that extensive usage of derivative instruments significantly increases firm value and reduces firm’s risk. Furthermore, comprehensive analysis depicts that Pakistani corporations having higher exchange rate exposure, with respect to foreign sales, and higher interest rate exposure, on the basis of industry adjusted leverage, have higher firm value and lower risk. Findings from seemingly unrelated regression also provide robustness to results obtained through panel data analysis. Study also highlights the role of derivative usage as a risk management instrument in high and low ER and IR risk and helps practitioners in understanding how value increasing effect of extent of derivative usage varies with the intensity of firm’s risk exposure.Keywords: extent of derivative usage, firm value, risk, Pakistan, non-financial firms
Procedia PDF Downloads 3566636 A Relational View for Financial Metrics in Logistics Service Providers
Authors: Paulo Sergio Altman Ferreira
Abstract:
Relationship development plays an essential role in every logistics company. Logistics companies are service-based businesses essentially performing the flow of materials, housing, and inventory management for a wide range of customers. The service encounter between the logistics provider’s personnel and the customers may form a connection that will demonstrate a strong impact, not only to the customers' overall satisfaction but may also provide the perception of individualized services. Logistics services must drive value. It also shows a close influence on the quality and costs of client-centered services. If we describe logistics value creation as the function of quality perception of the client divided by service costs, there is a requirement to better outline and explain the measures and analytics for logistics costs and relationship performance. This critical shift to understand logistics services is a relevant contribution to capture how relationship value can be quantified. This might involve changing our current perspective on logistics providers beyond uniquely measuring the services in terms of activities, personnel levels, and financial/costs ratios. This paper argues that measuring value creation accomplishments of logistics services needs to consider the relational improvements for the wider range of logistics companies. Accurate logistics value requires a description of the financial impact of the relational perspective of the service.Keywords: logistics services providers, financial metrics, relationship management, value creation
Procedia PDF Downloads 1506635 Identifying Business Opportunities Based on Patent and Trademark Portfolios: a Technology-Based Service Industry Case
Authors: Mingook Lee, Sungjoo Lee
Abstract:
As technology-based service industries grow drastically worldwide; companies are recognizing the importance of market preoccupancy and have made an effort to capture a large market to gain the upper hand. To this end, a focus on patents can be used to determine the properties of a technology, as well as to capture advantages in technical skills, in comparison with the firm’s competitors. However, technology-based services largely depend not only on their technological value but also their economic value, due to the recognized worth that is passed to a plurality of users. Thus, it is important to determine whether there are any competitors in the target areas and what services they provide in any field. Despite this importance, little effort has been made to systematically benchmark competitors in order to identify business opportunities. Thus, this study aims to not only identify each position of technology-centered service companies in complex market dynamics, but also to discover new business opportunities. For this, we try to consider both technology and market environments simultaneously by utilizing patent data as a representative proxy for technology and trademark dates as an index for a firm’s target goods and services. Theoretically, this is one of the earliest attempts to combine patent data and trademark data to analyze corporate strategies. In practice, the research results are expected to be used as a decision criterion to diagnose the economic value that companies can obtain by entering the market, as well as the technological value to be passed onto their customers. Thus, the proposed approach can be useful to support effective technology and business strategies in a firm.Keywords: business opportunity, patent, Portfolio analysis, trademark
Procedia PDF Downloads 2946634 A Support Vector Machine Learning Prediction Model of Evapotranspiration Using Real-Time Sensor Node Data
Authors: Waqas Ahmed Khan Afridi, Subhas Chandra Mukhopadhyay, Bandita Mainali
Abstract:
The research paper presents a unique approach to evapotranspiration (ET) prediction using a Support Vector Machine (SVM) learning algorithm. The study leverages real-time sensor node data to develop an accurate and adaptable prediction model, addressing the inherent challenges of traditional ET estimation methods. The integration of the SVM algorithm with real-time sensor node data offers great potential to improve spatial and temporal resolution in ET predictions. In the model development, key input features are measured and computed using mathematical equations such as Penman-Monteith (FAO56) and soil water balance (SWB), which include soil-environmental parameters such as; solar radiation (Rs), air temperature (T), atmospheric pressure (P), relative humidity (RH), wind speed (u2), rain (R), deep percolation (DP), soil temperature (ST), and change in soil moisture (∆SM). The one-year field data are split into combinations of three proportions i.e. train, test, and validation sets. While kernel functions with tuning hyperparameters have been used to train and improve the accuracy of the prediction model with multiple iterations. This paper also outlines the existing methods and the machine learning techniques to determine Evapotranspiration, data collection and preprocessing, model construction, and evaluation metrics, highlighting the significance of SVM in advancing the field of ET prediction. The results demonstrate the robustness and high predictability of the developed model on the basis of performance evaluation metrics (R2, RMSE, MAE). The effectiveness of the proposed model in capturing complex relationships within soil and environmental parameters provide insights into its potential applications for water resource management and hydrological ecosystem.Keywords: evapotranspiration, FAO56, KNIME, machine learning, RStudio, SVM, sensors
Procedia PDF Downloads 696633 Application of Universal Distribution Factors for Real-Time Complex Power Flow Calculation
Authors: Abdullah M. Alodhaiani, Yasir A. Alturki, Mohamed A. Elkady
Abstract:
Complex power flow distribution factors, which relate line complex power flows to the bus injected complex powers, have been widely used in various power system planning and analysis studies. In particular, AC distribution factors have been used extensively in the recent power and energy pricing studies in free electricity market field. As was demonstrated in the existing literature, many of the electricity market related costing studies rely on the use of the distribution factors. These known distribution factors, whether the injection shift factors (ISF’s) or power transfer distribution factors (PTDF’s), are linear approximations of the first order sensitivities of the active power flows with respect to various variables. This paper presents a novel model for evaluating the universal distribution factors (UDF’s), which are appropriate for an extensive range of power systems analysis and free electricity market studies. These distribution factors are used for the calculations of lines complex power flows and its independent of bus power injections, they are compact matrix-form expressions with total flexibility in determining the position on the line at which line flows are measured. The proposed approach was tested on IEEE 9-Bus system. Numerical results demonstrate that the proposed approach is very accurate compared with exact method.Keywords: distribution factors, power system, sensitivity factors, electricity market
Procedia PDF Downloads 4736632 One-Step Time Series Predictions with Recurrent Neural Networks
Authors: Vaidehi Iyer, Konstantin Borozdin
Abstract:
Time series prediction problems have many important practical applications, but are notoriously difficult for statistical modeling. Recently, machine learning methods have been attracted significant interest as a practical tool applied to a variety of problems, even though developments in this field tend to be semi-empirical. This paper explores application of Long Short Term Memory based Recurrent Neural Networks to the one-step prediction of time series for both trend and stochastic components. Two types of data are analyzed - daily stock prices, that are often considered to be a typical example of a random walk, - and weather patterns dominated by seasonal variations. Results from both analyses are compared, and reinforced learning framework is used to select more efficient between Recurrent Neural Networks and more traditional auto regression methods. It is shown that both methods are able to follow long-term trends and seasonal variations closely, but have difficulties with reproducing day-to-day variability. Future research directions and potential real world applications are briefly discussed.Keywords: long short term memory, prediction methods, recurrent neural networks, reinforcement learning
Procedia PDF Downloads 2296631 Evaluation of Organizational Culture and Its Effects on Innovation in the IT Sector: A Case Study from UAE
Authors: Amir M. Shikhli, Refaat H. Abdel-Razek, Salaheddine Bendak
Abstract:
Innovation is considered to be one of the key factors that influence long-term success of any company. The problem of many organizations in developing countries is trying to implement innovation without a strong basis within the organizational culture to support it. The objective of this study is to assess the effects of organizational culture on innovation in one of the biggest information technology organizations in UAE, Injazat Data System. First, an Organizational Culture Assessment Instrument (OCAI) was used as a survey and Competing Value Framework as a model to analyze the existing culture within the organization and determine its characteristics. Following that, a modified version of the Community Innovation Survey (CIS) was used to determine innovation types introduced by the organization. Then multiple linear regression analysis was used to find out the effects of existing organizational culture on innovation. Results show that existing organizational culture is composed of a combination of Hierarchy (29.4%), Clan (25.8%), Market (24.9%) and Adhocracy (19.9%). Results of the second survey show that the organization focuses on organizational innovation (26.8%) followed by market and product innovations (25.6%) and finally process innovation (22.0%). Regression analysis results reveal that for each innovation type there is a recommended combination of the four culture types. For product innovation, the combination is 47.4% Clan, 17.9% Adhocracy, 1.0% Market and 33.3% Hierarchy; for process innovation it is 19.7% Clan, 45.2% Adhocracy, 32.0% Market and 3.1% Hierarchy; for organizational innovation the combination is 5.4% Clan, 32.7% Adhocracy, 6.0% Market and 55.9% Hierarchy; and for market innovation it is 25.5% Clan, 42.6% Adhocracy, 32.6% Market and 8.4% Hierarchy. Based on these recommended combinations, this study suggests two ways to enhance the innovation culture in the organization. First, if the management decides on the innovation type to be enhanced, a comparison between the existing culture and the recommended combination of selected innovation types will lead to difference in percentages of each culture type. Then further analysis should show how to modify the existing culture to match the recommended combination. Second, if the innovation type is not selected, but the management wants to enhance innovation culture in the organization, the difference in percentages of each culture type will lead to finding out the recommended combination of culture types that gives the narrowest gap between existing culture and recommended combination.Keywords: developing countries, organizational culture, innovation types, product innovation, process innovation, organizational innovation, marketing innovation
Procedia PDF Downloads 2746630 Non-Fungible Token (NFT) - Used in the Music Industry for Independent Artists without a Music Recording Label
Authors: Bartholomew Badar
Abstract:
An NFT is a digital certificate with rights to own an asset, including various valuable digital goods such as art pieces, music items, collectibles, etc. The market for NFTs started developing in 2017 and has lately seen increased growth as crypto-currencies and the blockchain market continue to gain popularity. This study aims to understand potential uses for NFTs concerning the music industry and record labels. Independent artists struggle to distribute and sell their music without the help of a record label. The NFT marketplace could be a great tool to eliminate this problem. The research objective is to identify possibilities for independent artists to own their music rights and share value with an audience. We see a trend of new-school music artists trying to enter the music NFT market by creating visualizers, beats, cover art, etc. To analyze various existing music NFT assets and determine whether or not independent artists could monetize their music without a record label is the main focus of this scholarly paper.Keywords: blockchain, crypto-currency, music, artist, NFT
Procedia PDF Downloads 1776629 Convergence with IFRS: Evidence from Financial Statements
Authors: M. S. Turan, Dimple
Abstract:
Due to implementation of IFRS by several developed and developing countries, India has no option other than to converge their accounting standards with IFRS. There are over 10,000 listed companies required to implement IFRS in India. IFRS based financial information presented by a company is different from the same information provided by Indian GAAPs. In this study, we have brought out and analyzed the effect of IFRS reporting on the financial statements of selected companies. The results reveal that convergence with IFRS brought prominent positive variations in the values of quick ratio, debt/equity ratio, proprietary ratio and net profit ratio, while negative variation is brought in the values of current ratio, debt to total assets ratio, operating profit ratio, return on capital employed and return on shareholders’ equity ratios. It also presents significant changes in the values of items of balance sheet, profit and loss account and cash flow statement.Keywords: IFRS, reporting standards, convergence process, results
Procedia PDF Downloads 3346628 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model
Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl
Abstract:
Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.Keywords: dexel, process stability, material removal, milling
Procedia PDF Downloads 5256627 Grey Prediction of Atmospheric Pollutants in Shanghai Based on GM(1,1) Model Group
Authors: Diqin Qi, Jiaming Li, Siman Li
Abstract:
Based on the use of the three-point smoothing method for selectively processing original data columns, this paper establishes a group of grey GM(1,1) models to predict the concentration ranges of four major air pollutants in Shanghai from 2023 to 2024. The results indicate that PM₁₀, SO₂, and NO₂ maintain the national Grade I standards, while the concentration of PM₂.₅ has decreased but still remains within the national Grade II standards. Combining the forecast results, recommendations are provided for the Shanghai municipal government's efforts in air pollution prevention and control.Keywords: atmospheric pollutant prediction, Grey GM(1, 1), model group, three-point smoothing method
Procedia PDF Downloads 356626 State of Freelancing in IT and Future Trends
Authors: Mihai Gheorghe
Abstract:
Freelancing in IT has seen an increased popularity during the last years mainly because of the fast Internet adoption in the countries with emerging economies, correlated with the continuous seek for reduced development costs as well with the rise of online platforms which address planning, coordination, and various development tasks. This paper conducts an overview of the most relevant Freelance Marketplaces available and studies the market structure, distribution of the workforce and trends in IT freelancing.Keywords: freelancing in IT, freelance marketplaces, freelance market structure, globalization, online staffing, trends in freelancing
Procedia PDF Downloads 2076625 Imbalance on the Croatian Housing Market in the Aftermath of an Economic Crisis
Authors: Tamara Slišković, Tomislav Sekur
Abstract:
This manuscript examines factors that affect demand and supply of the housing market in Croatia. The period from the beginning of this century, until 2008, was characterized by a strong expansion of construction, housing and real estate market in general. Demand for residential units was expanding, and this was supported by favorable lending conditions of banks. Indicators on the supply side, such as the number of newly built houses and the construction volume index were also increasing. Rapid growth of demand, along with the somewhat slower supply growth, led to the situation in which new apartments were sold before the completion of residential buildings. This resulted in a rise of housing price which was indication of a clear link between the housing prices with the supply and demand in the housing market. However, after 2008 general economic conditions in Croatia worsened and demand for housing has fallen dramatically, while supply descended at much slower pace. Given that there is a gap between supply and demand, it can be concluded that the housing market in Croatia is in imbalance. Such trend is accompanied by a relatively small decrease in housing price. The final result of such movements is the large number of unsold housing units at relatively high price levels. For this reason, it can be argued that housing prices are sticky and that, consequently, the price level in the aftermath of a crisis does not correspond to the discrepancy between supply and demand on the Croatian housing market. The degree of rigidity of the housing price can be determined by inclusion of the housing price as the explanatory variable in the housing demand function. Other independent variables are demographic variable (e.g. the number of households), the interest rate on housing loans, households' disposable income and rent. The equilibrium price is reached when the demand for housing equals its supply, and the speed of adjustment of actual prices to equilibrium prices reveals the extent to which the prices are rigid. The latter requires inclusion of the housing prices with time lag as an independent variable in estimating demand function. We also observe the supply side of the housing market, in order to explain to what extent housing prices explain the movement of new construction activity, and other variables that describe the supply. In this context, we test whether new construction on the Croatian market is dependent on current prices or prices with a time lag. Number of dwellings is used to approximate new construction (flow variable), while the housing prices (current or lagged), quantity of dwellings in the previous period (stock variable) and a series of costs related to new construction are independent variables. We conclude that the key reason for the imbalance in the Croatian housing market should be sought in the relative relationship of price elasticities of supply and demand.Keywords: Croatian housing market, economic crisis, housing prices, supply imbalance, demand imbalance
Procedia PDF Downloads 2726624 The Russian-Ukrainian Conflict: An Imperial, Neoliberal Limbo
Authors: Anna Savchenko
Abstract:
The dissolution of the Soviet Union brought about a wave of decolonisation throughout the Soviet space in the 1990s. While this emancipation ushered in an era of reform in the newly independent states, it also opened up the opportunity for countries such as Ukraine to be (re)colonised by a different ruling power: the European Union. Ukraine’s relationship with the EU has been further complicated by the fact that the country’s political leadership has aligned itself with a Western agenda of democratisation. This article challenges the neoliberal belief that the global market can spurn democratisation by analysing the way in which market privatisation in Ukraine has allowed for mass corruption to flourish. I submit that neoliberalism, or the sheer force of the global market, is just as colonising as modern-day imperialism has proven to be by providing an analytical synthesis of Russia and Ukraine’s century-old conflict. The EU’s demonstrated inability to mediate cross-border conflict in the region foreshadows that Ukraine may have been economically colonised by another failing state.Keywords: neoliberalism, imperealism, Russian-Ukrainian conflict, democratisation, colonisation
Procedia PDF Downloads 1836623 Enhancing the Pricing Expertise of an Online Distribution Channel
Authors: Luis N. Pereira, Marco P. Carrasco
Abstract:
Dynamic pricing is a revenue management strategy in which hotel suppliers define, over time, flexible and different prices for their services for different potential customers, considering the profile of e-consumers and the demand and market supply. This means that the fundamentals of dynamic pricing are based on economic theory (price elasticity of demand) and market segmentation. This study aims to define a dynamic pricing strategy and a contextualized offer to the e-consumers profile in order to improve the number of reservations of an online distribution channel. Segmentation methods (hierarchical and non-hierarchical) were used to identify and validate an optimal number of market segments. A profile of the market segments was studied, considering the characteristics of the e-consumers and the probability of reservation a room. In addition, the price elasticity of demand was estimated for each segment using econometric models. Finally, predictive models were used to define rules for classifying new e-consumers into pre-defined segments. The empirical study illustrates how it is possible to improve the intelligence of an online distribution channel system through an optimal dynamic pricing strategy and a contextualized offer to the profile of each new e-consumer. A database of 11 million e-consumers of an online distribution channel was used in this study. The results suggest that an appropriate policy of market segmentation in using of online reservation systems is benefit for the service suppliers because it brings high probability of reservation and generates more profit than fixed pricing.Keywords: dynamic pricing, e-consumers segmentation, online reservation systems, predictive analytics
Procedia PDF Downloads 2346622 Financial Burden of Family for the Children with Autism Spectrum Disorder
Authors: M. R. Bhuiyan, S. M. M. Hossain, M. Z. Islam
Abstract:
Autism Spectrum Disorder (ASD) is the fastest growing serious developmental disorder characterized by social deficits, communicative difficulties, and repetitive behaviors. ASD is an emerging public health issue globally which is associated with huge financial burden to the family, community and the nation. The aim of this study was to assess the financial burden of family for the children with Autism spectrum Disorder. This cross-sectional study was carried out from July 2015 to June 2016 among 154 children with ASD to assess the financial burden of family. Data were collected by face-to-face interview with semi-structured questionnaire following systematic random sampling technique. Majority (73.4%) children were male and mean (±SD) age was 6.66 ± 2.97 years. Most (88.8%) of the children were from urban areas with average monthly family income Tk. 41785.71±23936.45. Average monthly direct cost of the children was Tk.17656.49 ± 9984.35, while indirect cost was Tk. 13462.90 ± 9713.54 and total treatment cost was Tk. 23076.62 ± 15341.09. Special education cost (Tk. 4871.00), cost of therapy (Tk. 4124.07) and travel cost (Tk. 3988.31) were the major types of direct cost, while loss of income (Tk.14570.18) was the chief indirect cost incurred by the families. The study found that majority (59.8%) of the children attended special schools were incurred Tk.20001-78700 as total treatment cost, which were statistically significant (p<0.001). Again, families with higher monthly family income incurred higher treatment cost (r=0.526, p<0.05). Difference between mean direct and indirect cost was found significant (t=4.190, df=61, p<0.001). According to the analysis of variance, mean difference of father’s educational status among direct cost (F=10.337, p<0.001) and total treatment cost (F=7.841, p<0.001), which were statistically significant. The study revealed that maximum children with ASD were under five years, three-fourth were male. According to monthly family income, maximum family were in middle class. The study recommends cost effective interventions and financial safety-net measures to reduce the financial burden of families for the children with ASD.Keywords: autism spectrum disorder, financial burden, direct cost, indirect cost, special education
Procedia PDF Downloads 1366621 The International Monetary Fund’s Treatment Towards Argentina and Brazil During Financial Negotiations for Their First Adjustment Programs, 1958-64
Authors: Fernanda Conforto de Oliveira
Abstract:
The International Monetary Fund (IMF) has a central role in global financial governance as the world’s leading crisis lender. Its practice of conditional lending – conditioning loans on the implementation of economic policy adjustments – is the primary lever by which the institution interacts with and influences the policy choices of member countries and has been a key topic of interest to scholars and public opinion. However, empirical evidence about the economic and (geo)political determinants of IMF lending behavior remains inconclusive, and no model that explains IMF policies has been identified. This research moves beyond panel analysis to focus on financial negotiations for the first IMF programs in Argentina and Brazil in the early post-war period. It seeks to understand why negotiations achieved distinct objectives: Argentinean officials cooperated and complied with IMF policies, whereas their Brazilian counterparts hesitated. Using qualitative and automated text analysis, this paper analyses the hypothesis about whether a differential IMF treatment could help to explain these distinct outcomes. This paper contributes to historical studies on IMF-Latin America relations and the broader literature in international policy economy about IMF policies.Keywords: international monetary fund, international history, financial history, Latin American economic history, natural language processing, sentiment analysis
Procedia PDF Downloads 636620 Brexit and Financial Stability: An Agent-Based Simulation
Authors: Aristeidis Samitas, Stathis Polyzos
Abstract:
As the UK and the EU prepare to start negotiations for Brexit, it is important for both sides to comprehend the full extent of the consequences of this process. In this paper, we employ an object oriented simulation framework in order to test for the short-term and long-term effects of Brexit on both sides of the Channel. The relative strength of the UK economy and the banking sector vis-à-vis the EU is taken under consideration. Our results confirm predictions in the relevant literature regarding the output cost of Brexit, with particular emphasis on the EU. Furthermore, we show that financial stability is also an important issue on both sides, with the banking system suffering significant losses, particularly over the longer term. Our findings suggest that policymakers should be extremely careful in handling Brexit negotiations, making sure to consider dynamic effects that may be caused by UK bank assets moving to the EU after Brexit. The model results show that, as the UK banking system loses its assets, the end state of the UK economy is deteriorated while the end state of EU economy is improved.Keywords: Banking Crises, Brexit, Financial Stability, VBanking
Procedia PDF Downloads 2806619 Financial Risk Tolerance and Its Impact on Terrorism-Tourism Relation in Pakistan
Authors: Sania Sana, Afnan Nasim, Usman Malik, Maroof Tahir
Abstract:
The aim of this research is to scrutinize the interdependent relationship between terrorism and behavioral changes in the tourism activities in Pakistan with the moderating impact of a unique variable titled 'Financial Risk Tolerance'. The article looks at the inter-reliant relationship with the alleged political and economic aspects and behavioral changes in the tourists and the consumers by these variables over time. The researchers used many underlying theories like the catastrophe theory by (Svyantek, Deshon and Siler 1991), information integration theory (Anderson 1981, 1982) and prospect theory (Kahneman and Tversky 1979) to shape the study’s framework as per tourist decision making model. A sample of around 110 locals was used for this purpose and the data was gathered by convenience sampling. The responses were analyzed using regression analysis. The results exhibited how terrorism along with the influence of financial risk tolerance had inclined a behavioral shift in the travelling patterns and vacation destination choice of the local tourists. Lastly, the paper proposes a number of suggestive measures for the tourism industry and the legislative bodies to ensure the safety of travelers and to boost the tourist activities in the vacation industry of Pakistan.Keywords: terrorism, tourism, financial risk tolerance, tourist decision-making, destination choice
Procedia PDF Downloads 2366618 Revisiting the Link between Corporate Social Performance and Corporate Financial Performance Post 2008 Global Economic Crisis
Authors: Anand Choudhary
Abstract:
Following the global economic crisis in 2008, businesses and more especially the big multinational conglomerates were increasingly viewed by the people world over as one of the major causes of the economic problems faced by millions globally, in terms of job loss and lifetime savings being wiped out as banks and pension funds went bankrupt and people stared at an insecure financial future. This caused a lot of resentment in the public against big businesses and fueled several protest movements by the people such as “Occupy Wall Street” in different parts of the world. This forced the big businesses to respond to the challenge by adopting more people-centric policies and initiatives for local communities in societies where they operate as part of their corporate social responsibility (CSR), in order to regain their social acceptance among the people whilst earning their ‘social license to operate’. The current paper studies many of such large MNCs across the United States of America, India and South Africa, which changed the way they did business earlier, following the global economic crisis in 2008, by incorporating capacity building initiatives for local communities as part of their CSR strategy and explores whether it has contributed to improving their financial performance. It is a conceptual research paper using secondary source data. The findings reveal that there is a positive correlation between the companies’ corporate social performance and corporate financial performance. In addition, the findings also bring to light that the MNCs examined as part of the current paper have improved their image in the eyes of their stakeholders following the change in their CSR strategy and initiatives.Keywords: corporate social responsibility (CSR), Corporate Social Performance (CSP), Corporate Financial Performance (CFP), local communities
Procedia PDF Downloads 3356617 A Computational Analysis of Flow and Acoustics around a Car Wing Mirror
Authors: Aidan J. Bowes, Reaz Hasan
Abstract:
The automotive industry is continually aiming to develop the aerodynamics of car body design. This may be for a variety of beneficial reasons such as to increase speed or fuel efficiency by reducing drag. However recently there has been a greater amount of focus on wind noise produced while driving. Designers in this industry seek a combination of both simplicity of approach and overall effectiveness. This combined with the growing availability of commercial CFD (Computational Fluid Dynamics) packages is likely to lead to an increase in the use of RANS (Reynolds Averaged Navier-Stokes) based CFD methods. This is due to these methods often being simpler than other CFD methods, having a lower demand on time and computing power. In this investigation the effectiveness of turbulent flow and acoustic noise prediction using RANS based methods has been assessed for different wing mirror geometries. Three different RANS based models were used, standard k-ε, realizable k-ε and k-ω SST. The merits and limitations of these methods are then discussed, by comparing with both experimental and numerical results found in literature. In general, flow prediction is fairly comparable to more complex LES (Large Eddy Simulation) based methods; in particular for the k-ω SST model. However acoustic noise prediction still leaves opportunities for more improvement using RANS based methods.Keywords: acoustics, aerodynamics, RANS models, turbulent flow
Procedia PDF Downloads 4466616 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 3576615 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers
Authors: Nishank Raisinghani
Abstract:
Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.Keywords: drug discovery, transformers, graph neural networks, multiomics
Procedia PDF Downloads 1536614 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 1276613 A Literature Review on ISO 10014
Authors: Rafael Feldmann Farias, Fernando Tobal Berssaneti
Abstract:
Since its emergence in 1998, ISO 10014 has been developed as a response to the need to demonstrate the economic and financial benefits that an organization can obtain from the implementation of a quality management system. With the publication of the new edition in 2021, this article aims to identify how this standard has been addressed through a literature review. Among the results, it was found that, of the 282 documents identified, only 0.7% of the publications used the standard and 1.4% of the publications cited it. This low adherence seems to be linked to the highly technical nature of the content of the standard.Keywords: quality management system, ISO 10014, economical benefits, financial benefits
Procedia PDF Downloads 1146612 Technological Applications in Automobile Manufacturing Sector - A Case Study Analysis
Authors: Raja Kannusamy
Abstract:
The research focuses on the applicable technologies in the automobile industry and their effects on the productivity and annual revenue of the industry. A study has been conducted on 6 major automobile manufacturing industries represented in this research as M1, M2, M3, M4, M5 and M6. The results indicate that M1, which is a pioneer in technological applications, remains the market leader, followed by M5 & M2 taking the second and third positions, respectively. M3, M6 and M4 are the followers and are placed next in positions. It has also been observed that M1 and M2 have entered into an agreement to share the basic structural technologies and they maintain long-term and trusted relationships with their suppliers through the Keiretsu system. With technological giants such as Apple, Microsoft, Uber and Google entering the automobile industry in recent years, an upward trend is expected in the futuristic market with self-driving cars to dominate the automobile sector. To keep up with the market trend, it is essential for automobile manufacturers to understand the importance of developing technological capabilities and skills to be competitive in the marketplace.Keywords: automobile manufacturing industries, competitiveness, performance improvement, technological applications
Procedia PDF Downloads 1756611 Mathematical Modeling of the Fouling Phenomenon in Ultrafiltration of Latex Effluent
Authors: Amira Abdelrasoul, Huu Doan, Ali Lohi
Abstract:
An efficient and well-planned ultrafiltration process is becoming a necessity for monetary returns in the industrial settings. The aim of the present study was to develop a mathematical model for an accurate prediction of ultrafiltration membrane fouling of latex effluent applied to homogeneous and heterogeneous membranes with uniform and non-uniform pore sizes, respectively. The models were also developed for an accurate prediction of power consumption that can handle the large-scale purposes. The model incorporated the fouling attachments as well as chemical and physical factors in membrane fouling for accurate prediction and scale-up application. Both Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 µm and a molecular weight cut-off of 60,000, respectively, were used under a constant feed flow rate and a cross-flow mode in ultrafiltration of the simulated paint effluent. Furthermore, hydrophilic ultrafilic and hydrophobic PVDF membranes with MWCO of 100,000 were used to test the reliability of the models. Monodisperse particles of 50 nm and 100 nm in diameter, and a latex effluent with a wide range of particle size distributions were utilized to validate the models. The aggregation and the sphericity of the particles indicated a significant effect on membrane fouling.Keywords: membrane fouling, mathematical modeling, power consumption, attachments, ultrafiltration
Procedia PDF Downloads 4706610 Participatory Financial Inclusion Hypothesis: A Preliminary Empirical Validation Using Survey Design
Authors: Edward A. Osifodunrin, Jose Manuel Dias Lopes
Abstract:
In Nigeria, enormous efforts/resources had, over the years, been expended on promoting financial inclusion (FI); however, it is seemingly discouraging that many of its self-declared targets on FI remained unachieved, especially amongst the Rural Dwellers and Actors in the Informal Sectors (RDAIS). Expectedly, many reasons had been earmarked for these failures: low literacy level, huge informal/rural sectors, etc. This study posits that in spite of these truly-debilitating factors, these FI policy failures could have been avoided or mitigated if the principles of active and better-managed citizens’ participation had been strictly followed in the (re)design/implementation of its FI policies. In other words, in a bid to mitigate the prevalent FE in Nigeria, this study hypothesizes the positive impact of increased/active citizens’ participation on FI outcome(s), backed by a preliminary empirical validation. Also, the study introduces the RDAIS-focused participatory financial inclusion policy (PFIP) as a major FI policy regeneration/improvement tool. The three categories of respondents that served as research subjects are FI experts in Nigeria (n = 72), RDAIS from the very rural/remote village of Unguwar Dogo in Northern Nigeria (n = 43), and RDAIS from another rural village of Sekere (n = 56) in the Southern region of Nigeria. Using survey design (5-point Likert scale questionnaires), random/stratified sampling, and descriptive/inferential statistics, the study often recorded independent consensus (amongst these three categories of respondents) that RDAIS’s active participation in iterative FI policy initiation, (re)design, implementation, (re)evaluation could indeed give improved FI outcomes. However, some questionnaire items also recorded divergent opinions and various statistically significant differences in the mean scores of these three categories. The PFIP (or any customized version of it) should then be carefully integrated into the NFIS of Nigeria (and possibly in the NFIS of other developing countries) to truly/fully provide FI policy integration for these excluded RDAIS and arrest the prevalence of FE.Keywords: citizens’ participation, development, financial inclusion, formal financial services, national financial inclusion strategy, participatory financial inclusion policy, rural dwellers and actors in the informal sectors
Procedia PDF Downloads 1046609 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India
Authors: Palash Bandyopadhyay
Abstract:
Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.Keywords: financial performance, crude oil and natural gas companies, India, linear regression
Procedia PDF Downloads 3226608 Understanding the Nature of Capital Allocation Problem in Corporate Finance
Authors: Meltem Gurunlu
Abstract:
One of the central problems in corporate finance is the allocation of funds. This usually takes two forms: allocation of funds across firms in an economy or allocation of funds across projects or business units within a firm. The first one is typically related to the external markets (the bond market, the stock market, banks and finance companies) whereas the second form of the capital allocation is related to the internal capital markets in which corporate headquarters allocate capital to their business units. (within-group transfers, within-group credit markets, and within-group equity market). The main aim of this study is to investigate the nature of capital allocation dynamics by comparing the relevant studies carried out on external and internal capital markets with paying special significance to the business groups.Keywords: internal capital markets, external capital markets, capital structure, capital allocation, business groups, corporate finance
Procedia PDF Downloads 194