Search results for: deep hole
1333 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1551332 Effect of Tool Size and Cavity Depth on Response Characteristics during Electric Discharge Machining on Superalloy Metal - An Experimental Investigation
Authors: Sudhanshu Kumar
Abstract:
Electrical discharge machining, also known as EDM, process is one of the most applicable machining process for removal of material in hard to machine materials like superalloy metals. EDM process utilizes electrical energy into sparks to erode the metals in presence of dielectric medium. In the present investigation, superalloy, Inconel 718 has been selected as workpiece and electrolytic copper as tool electrode. Attempt has been made to understand the effect of size of tool with varying cavity depth during drilling of hole through EDM process. In order to systematic investigate, tool size in terms of tool diameter and cavity depth along with other important electrical parameters namely, peak current, pulse-on time and servo voltage have been varied at three different values and the experiments has been designed using fractional factorial (Taguchi) method. Each experiment has been repeated twice under the same condition in order to understand the variability within the experiments. The effect of variations in parameters has been evaluated in terms of material removal rate, tool wear rate and surface roughness. Results revel that change in tool diameter during machining affects the response characteristics significantly. Larger tool diameter yielded 13% more material removal rate than smaller tool diameter. Analysis of the effect of variation in cavity depth is notable. There is no significant effect of cavity depth on material removal rate, tool wear rate and surface quality. This indicates that number of experiments can be performed to analyze other parameters effect even at smaller depth of cavity which can reduce the cost and time of experiments. Further, statistical analysis has been carried out to identify the interaction effect between parameters.Keywords: EDM, Inconel 718, material removal rate, roughness, tool wear, tool size
Procedia PDF Downloads 2161331 Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP
Authors: Diptiman Dinda, Shyamal Kumar Saha
Abstract:
In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution.Keywords: graphene, functionalization, fluorescence quenching, FRET, nitroexplosive detection
Procedia PDF Downloads 4391330 Effect of Base Coarse Layer on Load-Settlement Characteristics of Sandy Subgrade Using Plate Load Test
Authors: A. Nazeri, R. Ziaie Moayed, H. Ghiasinejad
Abstract:
The present research has been performed to investigate the effect of base course application on load-settlement characteristics of sandy subgrade using plate load test. The main parameter investigated in this study was the subgrade reaction coefficient. The model tests were conducted in a 1.35 m long, 1 m wide, and 1 m deep steel test box of Imam Khomeini International University (IKIU Calibration Chamber). The base courses used in this research were in three different thicknesses of 15 cm, 20 cm, and 30 cm. The test results indicated that in the case of using base course over loose sandy subgrade, the values of subgrade reaction coefficient can be increased from 7 to 132 , 224 , and 396 in presence of 15 cm, 20 cm, and 30 cm base course, respectively.Keywords: modulus of subgrade reaction, plate load test, base course, sandy subgrade
Procedia PDF Downloads 2471329 The Kafrah Dam (The Oldest Dam in History)
Authors: Mohamed Bekhit Gad Khalil
Abstract:
This dam is the oldest dam in history. It was built by the ancient Egyptian around (2650 B.C) control flooding. It is believed to have been built between the third and fourth dynasties .It contains the oldest dam in history. Many studies have been conducted for the dam. This report was prepared under my supervision and in cooperation with the Ministry of Tourism and Antiquities. The dam was re-documented and photographed again. The dam on the northern side Consists of irregularly shaped stones of varying sizes used randomly. Sand and soil fill the gaps between the stones. creating layers to form the body of the dam. The eastern. side of the dam Consists of a series of regular shaped stones that have been cut and constructed into a stepped pyramid-like structure with width of (15,7) meters and height of (10) meters. The surface has significant erosion and wear on the stones due to weather Conditions. which has resulted in deep cavities in most of the stone blocks forming the surface.Keywords: ministry of tourism and antiquities, excavations, registration, documentation
Procedia PDF Downloads 321328 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 6461327 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets
Authors: Najmeh Abedzadeh, Matthew Jacobs
Abstract:
An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.Keywords: IDS, imbalanced datasets, sampling algorithms, big data
Procedia PDF Downloads 3271326 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source
Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev
Abstract:
One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement
Procedia PDF Downloads 4691325 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 2051324 Efficacy of Pooled Sera in Comparison with Commercially Acquired Quality Control Sample for Internal Quality Control at the Nkwen District Hospital Laboratory
Authors: Diom Loreen Ndum, Omarine Njimanted
Abstract:
With increasing automation in clinical laboratories, the requirements for quality control materials have greatly increased in order to monitor daily performance. The constant use of commercial control material is not economically feasible for many developing countries because of non-availability or the high-cost of the materials. Therefore, preparation and use of in-house quality control serum will be a very cost-effective measure with respect to laboratory needs.The objective of this study was to determine the efficacy of in-house prepared pooled sera with respect to commercially acquired control sample for routine internal quality control at the Nkwen District Hospital Laboratory. This was an analytical study, serum was taken from leftover serum samples of 5 healthy adult blood donors at the blood bank of Nkwen District Hospital, which had been screened negative for human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Hepatitis B antigens (HBsAg), and were pooled together in a sterile container. From the pooled sera, sixty aliquots of 150µL each were prepared. Forty aliquots of 150µL each of commercially acquired samples were prepared after reconstitution and stored in a deep freezer at − 20°C until it was required for analysis. This study started from the 9th June to 12th August 2022. Every day, alongside with commercial control sample, one aliquot of pooled sera was removed from the deep freezer and allowed to thaw before analyzed for the following parameters: blood urea, serum creatinine, aspartate aminotransferase (AST), alanine aminotransferase (ALT), potassium and sodium. After getting the first 20 values for each parameter of pooled sera, the mean, standard deviation and coefficient of variation were calculated, and a Levey-Jennings (L-J) chart established. The mean and standard deviation for commercially acquired control sample was provided by the manufacturer. The following results were observed; pooled sera had lesser standard deviation for creatinine, urea and AST than commercially acquired control samples. There was statistically significant difference (p<0.05) between the mean values of creatinine, urea and AST for in-house quality control when compared with commercial control. The coefficient of variation for the parameters for both commercial control and in-house control samples were less than 30%, which is an acceptable difference. The L-J charts revealed shifts and trends (warning signs), so troubleshooting and corrective measures were taken. In conclusion, in-house quality control sample prepared from pooled serum can be a good control sample for routine internal quality control.Keywords: internal quality control, levey-jennings chart, pooled sera, shifts, trends, westgard rules
Procedia PDF Downloads 771323 Reservoir-Triggered Seismicity of Water Level Variation in the Lake Aswan
Authors: Abdel-Monem Sayed Mohamed
Abstract:
Lake Aswan is one of the largest man-made reservoirs in the world. The reservoir began to fill in 1964 and the level rose gradually, with annual irrigation cycles, until it reached a maximum water level of 181.5 m in November 1999, with a capacity of 160 km3. The filling of such large reservoir changes the stress system either through increasing vertical compressional stress by loading and/or increased pore pressure through the decrease of the effective normal stress. The resulted effect on fault zones changes stability depending strongly on the orientation of pre-existing stress and geometry of the reservoir/fault system. The main earthquake occurred on November 14, 1981, with magnitude 5.5. This event occurred after 17 years of the reservoir began to fill, along the active part of the Kalabsha fault and located not far from the High Dam. Numerous of small earthquakes follow this earthquake and continue till now. For this reason, 13 seismograph stations (radio-telemetry network short-period seismometers) were installed around the northern part of Lake Aswan. The main purpose of the network is to monitor the earthquake activity continuously within Aswan region. The data described here are obtained from the continuous record of earthquake activity and lake-water level variation through the period from 1982 to 2015. The seismicity is concentrated in the Kalabsha area, where there is an intersection of the easterly trending Kalabsha fault with the northerly trending faults. The earthquake foci are distributed in two seismic zones, shallow and deep in the crust. Shallow events have focal depths of less than 12 km while deep events extend from 12 to 28 km. Correlation between the seismicity and the water level variation in the lake provides great suggestion to distinguish the micro-earthquakes, particularly, those in shallow seismic zone in the reservoir–triggered seismicity category. The water loading is one factor from several factors, as an activating medium in triggering earthquakes. The common factors for all cases of induced seismicity seem to be the presence of specific geological conditions, the tectonic setting and water loading. The role of the water loading is as a supplementary source of earthquake events. So, the earthquake activity in the area originated tectonically (ML ≥ 4) and the water factor works as an activating medium in triggering small earthquakes (ML ≤ 3). Study of the inducing seismicity from the water level variation in Aswan Lake is of great importance and play great roles necessity for the safety of the High Dam body and its economic resources.Keywords: Aswan lake, Aswan seismic network, seismicity, water level variation
Procedia PDF Downloads 3701322 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media
Authors: Andrew Kurochkin, Kostiantyn Bokhan
Abstract:
In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction
Procedia PDF Downloads 1381321 Development of Composite Materials for CO2 Reduction and Organic Compound Decomposition
Authors: H. F. Shi, C. L. Zhang
Abstract:
Visible-light-responsive g-C3N4/NaNbO3 nanowires photocatalysts were fabricated by introducing polymeric g-C3N4 on NaNbO3 nanowires. The microscopic mechanisms of interface interaction, charge transfer and separation, as well as the influence on the photocatalytic activity of g-C3N4/NaNbO3 composite were systematic investigated. The HR-TEM revealed that an intimate interface between C3N4 and NaNbO3 nanowires formed in the g-C3N4/NaNbO3 heterojunctions. The photocatalytic performance of photocatalysts was evaluated for CO2 reduction under visible-light illumination. Significantly, the activity of g-C3N4/NaNbO3 composite photocatalyst for photoreduction of CO2 was higher than that of either single-phase g-C3N4 or NaNbO3. Such a remarkable enhancement of photocatalytic activity was mainly ascribed to the improved separation and transfer of photogenerated electron-hole pairs at the intimate interface of g-C3N4/NaNbO3 heterojunctions, which originated from the well-aligned overlapping band structures of C3N4 and NaNbO3. Pt loaded NaNbO3-xNx (Pt-NNON), a visible-light-sensitive photocatalyst, was synthesized by an in situ photodeposition method from H2PtCl6•6H2O onto NaNbO3-xNx (NNON) sample. Pt-NNON exhibited a much higher photocatalytic activity for gaseous 2-propanol (IPA) degradation under visible-light irradiation in contrast to NNON. The apparent quantum efficiency (AQE) of Pt-NNON sample for IPA photodegradation achieved up to 8.6% at the wavelength of 419 nm. The notably enhanced photocatalytic performance was attributed to the promoted charge separation and transfer capability in the Pt-NNON system. This work suggests that surface nanosteps possibly play an important role as an electron transfer at high way, which facilitates to the charge carrier collection onto Pt rich zones and thus suppresses recombination between photogenerated electrons and holes. This method can thus be considered as an excellent strategy to enhance photocatalytic activity of organic decomposition in addition to the commonly applied noble metal doping method.Keywords: CO2 reduction, NaNbO3, nanowires, g-C3N4
Procedia PDF Downloads 1991320 The Incubation of University Spin-Offs: An Exploratory Study of a Deep Tech Venture
Authors: Jerome D. Donovan
Abstract:
The pandemic has resulted in a dramatic re-consideration of the reliance on international student fees to support university models in Australia. A key resulting initiative for the Australian Federal Government has been shifting the way universities consider their research model, emphasising the importance of commercialising research. This study specifically examines this shift from the perspective of a university spin-off, examining how university support structures and incubation models have assisted in the translation of fundamental research into a high-growth university spin-off. A focused case study approach is adopted in this study, using an auto-ethnographic research method to document the experiences and insights drawn from being a co-founder in a university spin-off in a time where research commercialisation has emerged as a central focus in Australian universities.Keywords: research commercialisation, spin-offs, university incubation, entrepreneurship
Procedia PDF Downloads 811319 Computer Aided Assembly Attributes Retrieval Methods for Automated Assembly Sequence Generation
Authors: M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, B. B. V. L. Deepak
Abstract:
Achieving an appropriate assembly sequence needs deep verification for its physical feasibility. For this purpose, industrial engineers use several assembly predicates; namely, liaison, geometric feasibility, stability and mechanical feasibility. However, testing an assembly sequence for these predicates requires huge assembly information. Extracting such assembly information from an assembled product is a time consuming and highly skillful task with complex reasoning methods. In this paper, computer aided methods are proposed to extract all the necessary assembly information from computer aided design (CAD) environment in order to perform the assembly sequence planning efficiently. These methods use preliminary capabilities of three-dimensional solid modelling and assembly modelling methods used in CAD software considering equilibrium laws of physical bodies.Keywords: assembly automation, assembly attributes, assembly, CAD
Procedia PDF Downloads 3051318 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach
Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier
Abstract:
Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube
Procedia PDF Downloads 1541317 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation
Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran
Abstract:
Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen
Procedia PDF Downloads 751316 Developing an AI-Driven Application for Real-Time Emotion Recognition from Human Vocal Patterns
Authors: Sayor Ajfar Aaron, Mushfiqur Rahman, Sajjat Hossain Abir, Ashif Newaz
Abstract:
This study delves into the development of an artificial intelligence application designed for real-time emotion recognition from human vocal patterns. Utilizing advanced machine learning algorithms, including deep learning and neural networks, the paper highlights both the technical challenges and potential opportunities in accurately interpreting emotional cues from speech. Key findings demonstrate the critical role of diverse training datasets and the impact of ambient noise on recognition accuracy, offering insights into future directions for improving robustness and applicability in real-world scenarios.Keywords: artificial intelligence, convolutional neural network, emotion recognition, vocal patterns
Procedia PDF Downloads 521315 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging
Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui
Abstract:
Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture
Procedia PDF Downloads 3281314 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1381313 Correction of Skeletal Deformity by Surgical Approach – A Case Report
Authors: Davender Kumar, Virender Singh, Rekha Sharma
Abstract:
Correction of skeletal deformities in adult patients with orthodontics is limited. In adult severe cases, the combined approach, orthodontic and orthognathic surgery, is always the treatment of choice, and the results obtained usually ensure a better esthetic, functional, and stable results Orthognathic surgery is the best option for cases when camouflage treatment is questionable and growth modulation is not possible. This case report illustrates the benefit of the team approach in correcting mandible retrusion along with class II skeletal deformity with 100% deep bite. Correction was achieved by anterior repositioning of mandible osteotomy along with orthodontic treatment. The patient's facial appearance was markedly improved along with functional and stable occlusion.Keywords: camouflage, skeletal, orthognathic, dental
Procedia PDF Downloads 4271312 Valorization of Mining Waste (Sand of Djemi Djema) from the Djbel Onk Mine (Eastern Algeria)
Authors: Rachida Malaoui, Leila Arabet , Asma Benbouza
Abstract:
The use of mining waste rock as a material for construction is one of the biggest concerns grabbing the attention of many mining countries. As these materials are abandoned, more effective solutions have been made to offset some of the building materials, and to avoid environmental pollution. The sands of the Djemi Djema deposit mines of the Djebel Onk mines are sedimentary materials of several varieties of layers with varying thicknesses and are worth far more than 300m deep. The sands from the Djemi Djema business area are medium to coarse and are discharged and accumulated, generating a huge estimated quantity of more than 77424250 tonnes. This state of "resource" is of great importance so as to be oriented towards the fields of public works and civil engineering after having reached the acceptable properties of this resourceKeywords: reuse, sands, shear tests, waste rock
Procedia PDF Downloads 1451311 Numerical Modelling of the Influence of Meteorological Forcing on Water-Level in the Head Bay of Bengal
Authors: Linta Rose, Prasad K. Bhaskaran
Abstract:
Water-level information along the coast is very important for disaster management, navigation, planning shoreline management, coastal engineering and protection works, port and harbour activities, and for a better understanding of near-shore ocean dynamics. The water-level variation along a coast attributes from various factors like astronomical tides, meteorological and hydrological forcing. The study area is the Head Bay of Bengal which is highly vulnerable to flooding events caused by monsoons, cyclones and sea-level rise. The study aims to explore the extent to which wind and surface pressure can influence water-level elevation, in view of the low-lying topography of the coastal zones in the region. The ADCIRC hydrodynamic model has been customized for the Head Bay of Bengal, discretized using flexible finite elements and validated against tide gauge observations. Monthly mean climatological wind and mean sea level pressure fields of ERA Interim reanalysis data was used as input forcing to simulate water-level variation in the Head Bay of Bengal, in addition to tidal forcing. The output water-level was compared against that produced using tidal forcing alone, so as to quantify the contribution of meteorological forcing to water-level. The average contribution of meteorological fields to water-level in January is 5.5% at a deep-water location and 13.3% at a coastal location. During the month of July, when the monsoon winds are strongest in this region, this increases to 10.7% and 43.1% respectively at the deep-water and coastal locations. The model output was tested by varying the input conditions of the meteorological fields in an attempt to quantify the relative significance of wind speed and wind direction on water-level. Under uniform wind conditions, the results showed a higher contribution of meteorological fields for south-west winds than north-east winds, when the wind speed was higher. A comparison of the spectral characteristics of output water-level with that generated due to tidal forcing alone showed additional modes with seasonal and annual signatures. Moreover, non-linear monthly mode was found to be weaker than during tidal simulation, all of which point out that meteorological fields do not cause much effect on the water-level at periods less than a day and that it induces non-linear interactions between existing modes of oscillations. The study signifies the role of meteorological forcing under fair weather conditions and points out that a combination of multiple forcing fields including tides, wind, atmospheric pressure, waves, precipitation and river discharge is essential for efficient and effective forecast modelling, especially during extreme weather events.Keywords: ADCIRC, head Bay of Bengal, mean sea level pressure, meteorological forcing, water-level, wind
Procedia PDF Downloads 2201310 Strategy Research for the Development of Thematic Commercial Streets - Based On the Survey of Eight Typical Thematic Commercial Streets in Harbin
Authors: Wang Zhenzhen, Wang Xu, Hong Liangping
Abstract:
The construction of thematic commercial streets has been on the hotspot with the rapid development of cities. In order to improve the image and competitiveness of cities, many cities are building or rebuilding thematic commercial streets. However, many contradictions and problems have emerged during this process. Therefore, it is significant, for both the practice and the research, to analyse the development of thematic commercial streets and provide some useful suggestions. Through the deep research and comparative study of the eight typical thematic commercial streets in Harbin, this paper summarize the current situations, laws and influencing factors of the development of these streets, and then put forward some suggestions about the plan, constructions and developments of the thematic commercial streets.Keywords: thematic commercial streets, laws of the development, influence factors, the constructions and developments, degrees of aggregation
Procedia PDF Downloads 3731309 Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands
Authors: Amdy Moustapha Drame, Ilya V. Germashev, E. A. Markushevskaya
Abstract:
Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields.Keywords: asymmetry, breast cancer, tumors, deep learning, thermogram, convolutional transformation, classification
Procedia PDF Downloads 601308 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 1441307 A New Technology for Metformin Hydrochloride Mucoadhesive Microparticles Preparation Utilizing BÜCHI Nano-Spray Dryer B-90
Authors: Tamer M. Shehata
Abstract:
Objective: Currently, mucoadhesive microparticles acquired a high interest in both research and pharmaceutical technology fields. Recently, BÜCHI lunched its latest fourth generation nano spray dryer B-90 used for nanoparticle production. B-90 offers an elegant technology combined particle engineering and drying in one step. In our laboratory, we successfully developed a new formulation for metformin hydrochloride, mucoadhesive microparticles utilizing B-90 technology for treatment of type 2-diabetis. Method: Gelatin or sodium alginate, natural occurring polymers with mucoadhesive properties, solely or in combination was used in our formulation trials. Preformulation studies (atomization head mesh size, flow rate, head temperature, polymer solution viscosity and surface tension) and postformulation characters (particle size, flowability, surface scan and dissolution profile) were evaluated. Finally, hypoglycemic effect of the selected formula was evaluated in streptozotocin-induced diabetic rats. Spray head with 7 µm hole, flow rate of 3.5 mL/min and head temperature 120 ºC were selected. Polymer viscosity was less than 11.5 cP with surface tension less than 70.1 dyne/cm. Result: Discrete, non aggregated particles and free flowing powders with particle size was less than 2000 nm were obtained. Gelatin and sodium alginate combination in ratio 1:3 were successfully sustained the in vitro release profile of the drug. Hypoglycemic evaluation of the previous formula, showed a significant reduction of blood glucose level over 24 h. Conclusion: B-90 technology can open a new era of , mucoadhesive microparticles preparation offering convenient dosage form that can enhance compliance of type 2 diabetic patients.Keywords: mucoadhesive, microparticles, technology, diabetis
Procedia PDF Downloads 2931306 Estimating Cyclone Intensity Using INSAT-3D IR Images Based on Convolution Neural Network Model
Authors: Divvela Vishnu Sai Kumar, Deepak Arora, Sheenu Rizvi
Abstract:
Forecasting a cyclone through satellite images consists of the estimation of the intensity of the cyclone and predicting it before a cyclone comes. This research work can help people to take safety measures before the cyclone comes. The prediction of the intensity of a cyclone is very important to save lives and minimize the damage caused by cyclones. These cyclones are very costliest natural disasters that cause a lot of damage globally due to a lot of hazards. Authors have proposed five different CNN (Convolutional Neural Network) models that estimate the intensity of cyclones through INSAT-3D IR images. There are a lot of techniques that are used to estimate the intensity; the best model proposed by authors estimates intensity with a root mean squared error (RMSE) of 10.02 kts.Keywords: estimating cyclone intensity, deep learning, convolution neural network, prediction models
Procedia PDF Downloads 1261305 Research of Applicable Ground Reinforcement Method in Double-Deck Tunnel Junction
Authors: SKhan Park, Seok Jin Lee, Jong Sun Kim, Jun Ho Lee, Bong Chan Kim
Abstract:
Because of the large economic losses caused by traffic congestion in metropolitan areas, various studies on the underground network design and construction techniques has been performed various studies in the developed countries. In Korea, it has performed a study to develop a versatile double-deck of deep tunnel model. This paper is an introduction to develop a ground reinforcement method to enable the safe tunnel construction in the weakened pillar section like as junction of tunnel. Applicable ground reinforcement method in the weakened section is proposed and it is expected to verify the method by the field application tests.Keywords: double-deck tunnel, ground reinforcement, tunnel construction, weakened pillar section
Procedia PDF Downloads 4081304 Determination of Air Quality Index Using Respirable Dust Sampler
Authors: Sapan Bhatnagar, Danish Akhtar, Salman Ahmed, Asif Ekbal, Gufran Beig
Abstract:
Particulates are the solid and liquid droplets present in the atmosphere, they have serious negative effects on human health and environment. PM10 and PM2.5 are so small that they can penetrate deep into our lungs through the respiratory system. Determination of the amount of particulates present in the atmosphere per cubic meter is necessary to monitor, regulate and model atmospheric particulate levels. Air Quality Index is an index tells us how clean or polluted our air is, and what associated health effects might be a concern for us. The AQI focuses on health affects you may experience within a few hours or days after breathing polluted air. The quality rating for each pollutant was calculated. The geometric mean of these quality ratings gives the Air Quality Index. The existing concentrations of pollutants were compared with ambient air quality standards.Keywords: air quality index, particulate, respirable dust sampler, dust sampler
Procedia PDF Downloads 575