Search results for: 16S rRNA gene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1527

Search results for: 16S rRNA gene

417 Clonal Dissemination of Pseudomonas aeruginosa Isolates in Kermanshah Hospitals, West of Iran

Authors: Alisha Akya, Afsaneh salami

Abstract:

Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen associated with nosocomial infections. One of the major concerns for the treatment of P. aeruginosa infections is its resistant to a variety of antibiotics. The purpose of this study was to assess the dissemination of p. aeruginosa isolates obtained from major hospitals in Kermanshah, west of Iran. Materials and Methods: Antibiotic susceptibility testing was performed using the minimal inhibitory concentrations. Mettalo-beta-lactamase was investigated using the double disk diffusion (DDST) test and PCR. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE). Results: The 60 P. aeruginosa isolates, 30 (50%) were resistant to gentamicin, 38 (63/3%) to piperacilin, 42 (70%) to ceftazidime, and 45 (75%) to cefepime. Twenty-nine (48/3%) isolates were MBLs producer based on the DDST test. Five (8/3%) isolates were positive for VIM gene and 4 of them were from burn specimens. PFGE analysis among MBLs producers revealed 12 distinct genotype patterns. A pattern covering the highest number of strains was determined as the dominant clone. Conclusions: Our study showed that P. aeruginosa strains can be spread between patients in hospitals or acquired from different environmental sources. P. aeruginosa isolates were highly resistant to antibiotics and, therefore, the susceptibility of isolates to antibiotics should be tested before treatment. Given the clinical significance of MBLs producing isolates, identification of these organisms is essential in the hospitals in order to get a better therapeutic response and control of bacterial dissemination.

Keywords: clonal dissemination, mettalo-beta-lactamase, Pseudomonas aeruginosa, PFGE

Procedia PDF Downloads 305
416 Role of Interleukin 6 on Cell Differentiations in Stem Cells Isolated from Human Exfoliated Deciduous Teeth

Authors: Nunthawan Nowwarote, Waleerat Sukarawan, Prasit Pavasant, Thanaphum Osathanon

Abstract:

Interleukin 6 (IL-6) is a multifunctional cytokine, regulating various biological responses in several tissues. A Recent study shows that IL-6 plays a role in stemness maintenance in stem cells isolated from human exfoliated deciduous teeth (SHEDs). However, the role of IL-6 on cell differentiation in SHEDs remains unknown. The present study investigated the effect of IL-6 on SHEDs differentiation. Cells were isolated from dental pulp tissues of human deciduous teeth. Flow cytometry was used to determined mesenchymal stem cell marker expression, and the multipotential differentiation (osteogenic, adipogenic and neurogenic lineage ) was also determined. The mRNA was determined using real-time quantitative polymerase chain reaction, and the phenotypes were confirmed by chemical and immunofluorescence staining. Results demonstrated that SHEDs expressed CD44, CD73, CD90, CD105 but not CD45. Further, the up-regulation of osteogenic, adipogenic and neurogenic marker genes was observed upon maintaining cells in osteogenic, adipogenic and neurogenic induction medium, respectively. The addition of IL-6 induced osteogenic by up-regulated osteogenic marker gene also increased in vitro mineralization. Under neurogenic medium supplement with IL-6, up-regulated neurogenic marker. Whereas, an addition of IL-6 attenuated adipogenic differentiation by SHEDs. In conclusion, this evidence implies that IL-6 may participate in cells differentiation ability of SHEDs.

Keywords: SHEDs, IL-6, cell differentiations, dental pulp

Procedia PDF Downloads 151
415 The Genetic Architecture Underlying Dilated Cardiomyopathy in Singaporeans

Authors: Feng Ji Mervin Goh, Edmund Chee Jian Pua, Stuart Alexander Cook

Abstract:

Dilated cardiomyopathy (DCM) is a common cause of heart failure. Genetic mutations account for 50% of DCM cases with TTN mutations being the most common, accounting for up to 25% of DCM cases. However, the genetic architecture underlying Asian DCM patients is unknown. We evaluated 68 patients (female= 17) with DCM who underwent follow-up at the National Heart Centre, Singapore from 2013 through 2014. Clinical data were obtained and analyzed retrospectively. Genomic DNA was subjected to next-generation targeted sequencing. Nextera Rapid Capture Enrichment was used to capture the exons of a panel of 169 cardiac genes. DNA libraries were sequenced as paired-end 150-bp reads on Illumina MiSeq. Raw sequence reads were processed and analysed using standard bioinformatics techniques. The average age of onset of DCM was 46.1±10.21 years old. The average left ventricular ejection fraction (LVEF), left ventricular diastolic internal diameter (LVIDd), left ventricular systolic internal diameter (LVIDs) were 26.1±11.2%, 6.20±0.83cm, and 5.23±0.92cm respectively. The frequencies of mutations in major DCM-associated genes were as follows TTN (5.88% vs published frequency of 20%), LMNA (4.41% vs 6%), MYH7 (5.88% vs 4%), MYH6 (5.88% vs 4%), and SCN5a (4.41% vs 3%). The average callability at 10 times coverage of each major gene were: TTN (99.7%), LMNA (87.1%), MYH7 (94.8%), MYH6 (95.5%), and SCN5a (94.3%). In conclusion, TTN mutations are not common in Singaporean DCM patients. The frequencies of other major DCM-associated genes are comparable to frequencies published in the current literature.

Keywords: heart failure, dilated cardiomyopathy, genetics, next-generation sequencing

Procedia PDF Downloads 226
414 Diversities, Antibiogram and Antibiotic Resistance Genes in Staphylococcus Species in Raw Meat from a Research Farm

Authors: Anthony Ayodeji Adegoke, Olayinka Ayobami Aiyegoro, Thor Axel Stenstrom

Abstract:

A study to investigate the species diversities, antibiogram and antibiotic resistance genes in Staphylococcus species from raw meat and dairy products collected from an abattoir and a farm shop of a research institute in Irene, South Africa over a six-month period was conducted. Polymerase Chain Reaction was used to speciate the bacteria and to detect the presence and otherwise of resistance genes. Antibiotic susceptibility testing was performed by disk diffusion method on Mueller-Hinton agar according to the Clinical Laboratory Standards Institute standards. A total of twenty-six (26) antibiotics were used to determine the antibiotic susceptibility. S. xylosus was the predominant isolate with 30% total occurrence, followed by S. epidermis, S. aureus, S. saprophyticus and S. haemolyticus with 25%, 15%, 15%, and 10% abundance respectively. The isolates were resistant to ceftezidime, gentamycin, nalidixic acid, nortrafuration, ampicillin, penicillin, oxytetracycline, tetracycline, doxycycline, clindamycin and lincomycin. mecA genes was detected among the methicillin resistant Staphylococcus species (MRSS) but no vancomycin resistance genes (van A and van B) were detected in these isolates. The presence of MRSS and multidrug resistant Staphylococcus species in meat affirms the need to avoid consumption of partially cooked meat currently rampant in South Africa, to avoid the spread of difficult to control pathogens in epidemiological proportion.

Keywords: Staphylococcus species, antibiotics, antibiotic resistance genes, food products, methicillin resistance, mecA gene

Procedia PDF Downloads 277
413 Transcriptome Analysis of Protestia brevitarsis seulensis with Focus On Wing Development and Metamorphosis in Developmental Stages

Authors: Jihye Hwang, Eun Hwa Choi, Su Youn Baek, Bia Park, Gyeongmin Kim, Chorong Shin, Joon Ha Lee, Jae-Sam Hwang, Ui Wook Hwang

Abstract:

White-spotted flower chafers are widely distributed in Asian countries and traditionally used for the treatment of chronic fatigue, blood circulation, and paralysis in the oriental medicine field. The evolution and development of insect wings and metamorphosis remain under-discovered subjects in arthropod evolutionary researches. Gene expression abundance analyses along with developmental stages based on the large-scale RNA-seq data are also still rarely done. Here we report the de novo assembly of a Protestia brevitarsis seulensis transcriptome along four different developmental stages (egg, larva, pupa, and adult) to explore its development and evolution of wings and metamorphosis. The de novo transcriptome assembly consists of 23,551 high-quality transcripts and is approximately 96.7% complete. Out of 8,545 transcripts, 5,183 correspond to the possible orthologs with Drosophila melanogaster. As a result, we could found 265 genes related to wing development and 19 genes related to metamorphosis. The comparison of transcript expression abundance with different developmental stages revealed developmental stage-specific transcripts especially working at the stage of wing development and metamorphosis of P. b. seulensis. This transcriptome quantification along the developmental stages may provide some meaningful clues to elucidate the genetic modulation mechanism of wing development and metamorphosis obtained during the insect evolution.

Keywords: white-spotted flower chafers, transcriptomics, RNA-seq, network biology, wing development, metamorphosis

Procedia PDF Downloads 208
412 Evaluation of Immunostimulant Potential of Proteoliposomes Derived from Vibrio anguillarum Administered by Immersion in Zebrafish (Danio rerio)

Authors: M. Caruffo, P. Navarrete, C. G. Feijoo, L. Sáenz

Abstract:

Disease prevention through the use of vaccines has been crucial to achieve the current level of production in the salmon industry. However, vaccines have been developed based largely on inactivated bacterial formulations, using the whole pathogen. These formulations have demonstrated excellent efficacy against extracellular bacterial pathogens. However diseases with the greatest economic impacts correspond to intracellular bacterial and viral pathogens, vaccines based on these types of agents have shown a discrete effectiveness. It is for these reasons that the development of subunit vaccines based on defined antigens offers a promising solution. The main problem is that subunit vaccines offer a low immunogenicity, since they lack immunostimulatory elements, so that the development of new adjuvants platforms becomes an important challenge for this type of formulations. We evaluate the effect of a formulation based on proteoliposomes of Vibrio anguillarum administered by immersion as a new adjuvant strategy, allowing efficient stimulation of the innate immune system. Proteoliposomes physicochemical properties were evaluated in its ability to produce an inflammatory process. Using zebrafish (Danio rerio) larvae as a model species and the transgenic line (Tg(mpx: GFP)i114) allowed us to track the neutrophil migration in real time. Additionally we evaluated the gene expression of some molecular markers involved in the development of the innate immune response characterizing the adjuvant capacity of the formulation.

Keywords: adjuvants, vaccine development, zebrafish, innate immunity

Procedia PDF Downloads 539
411 Bacterial Exposure and Microbial Activity in Dental Clinics during Cleaning Procedures

Authors: Atin Adhikari, Sushma Kurella, Pratik Banerjee, Nabanita Mukherjee, Yamini M. Chandana Gollapudi, Bushra Shah

Abstract:

Different sharp instruments, drilling machines, and high speed rotary instruments are routinely used in dental clinics during dental cleaning. Therefore, these cleaning procedures release a lot of oral microorganisms including bacteria in clinic air and may cause significant occupational bioaerosol exposure risks for dentists, dental hygienists, patients, and dental clinic employees. Two major goals of this study were to quantify volumetric airborne concentrations of bacteria and to assess overall microbial activity in this type of occupational environment. The study was conducted in several dental clinics of southern Georgia and 15 dental cleaning procedures were targeted for sampling of airborne bacteria and testing of overall microbial activity in settled dusts over clinic floors. For air sampling, a Biostage viable cascade impactor was utilized, which comprises an inlet cone, precision-drilled 400-hole impactor stage, and a base that holds an agar plate (Tryptic soy agar). A high-flow Quick-Take-30 pump connected to this impactor pulls microorganisms in air at 28.3 L/min flow rate through the holes (jets) where they are collected on the agar surface for approx. five minutes. After sampling, agar plates containing the samples were placed in an ice chest with blue ice and plates were incubated at 30±2°C for 24 to 72 h. Colonies were counted and converted to airborne concentrations (CFU/m3) followed by positive hole corrections. Most abundant bacterial colonies (selected by visual screening) were identified by PCR amplicon sequencing of 16S rRNA genes. For understanding overall microbial activity in clinic floors and estimating a general cleanliness of the clinic surfaces during or after dental cleaning procedures, ATP levels were determined in swabbed dust samples collected from 10 cm2 floor surfaces. Concentration of ATP may indicate both the cell viability and the metabolic status of settled microorganisms in this situation. An ATP measuring kit was used, which utilized standard luciferin-luciferase fluorescence reaction and a luminometer, which quantified ATP levels as relative light units (RLU). Three air and dust samples were collected during each cleaning procedure (at the beginning, during cleaning, and immediately after the procedure was completed (n = 45). Concentrations at the beginning, during, and after dental cleaning procedures were 671±525, 917±1203, and 899±823 CFU/m3, respectively for airborne bacteria and 91±101, 243±129, and 139±77 RLU/sample, respectively for ATP levels. The concentrations of bacteria were significantly higher than typical indoor residential environments. Although an increasing trend for airborne bacteria was observed during cleaning, the data collected at three different time points were not significantly different (ANOVA: p = 0.38) probably due to high standard deviations of data. The ATP levels, however, demonstrated a significant difference (ANOVA: p <0.05) in this scenario indicating significant change in microbial activity on floor surfaces during dental cleaning. The most common bacterial genera identified were: Neisseria sp., Streptococcus sp., Chryseobacterium sp., Paenisporosarcina sp., and Vibrio sp. in terms of frequencies of occurrences, respectively. The study concluded that bacterial exposure in dental clinics could be a notable occupational biohazard, and appropriate respiratory protections for the employees are urgently needed.

Keywords: bioaerosols, hospital hygiene, indoor air quality, occupational biohazards

Procedia PDF Downloads 292
410 The Preliminary Exposition of Soil Biological Activity, Microbial Diversity and Morpho-Physiological Indexes of Cucumber under Interactive Effect of Allelopathic Garlic Stalk: A Short-Term Dynamic Response in Replanted Alkaline Soil

Authors: Ahmad Ali, Muhammad Imran Ghani, Haiyan Ding, Zhihui Cheng, Muhammad Iqbal

Abstract:

Background and Aims: In recent years, protected cultivation trend, especially in the northern parts of China, spread dynamically where production area, structure, and crops diversity have expanded gradually under plastic greenhouse vegetable cropping (PGVC) system. Under this growing system, continuous monoculture with excessive synthetic fertilizers inputs are common cultivation practices frequently adopted by commercial producers. Such long-term cumulative wild exercise year after year sponsor the continuous cropping obstacles in PGVC soil, which have greatly threatened the regional soil eco-sustainability and further impose the continuous assault on soil ecological diversity leading to the exhaustion of agriculture productivity. The aim of this study was to develop new allelopathic insights by exploiting available biological resources in the favor of sustainable PGVC to illuminate the continuous obstacle factors in plastic greenhouse. Method: A greenhouse study was executed under plastic tunnel located at the Horticulture Experimental Station of the College of Horticulture, Northwest A&F University, Yangling, Shaanxi Province, one of the prominent regions for intensive commercial PGVC in China. Post-harvest garlic residues (stalk, leaves) mechanically smashed, homogenized into powder size and incorporated at the ratio of 1:100; 3:100; 5:100 as a soil amendment in a replanted soil that have been used for continuous cucumber monoculture for 7 years (annually double cropping system in a greenhouse). Results: Incorporated C-rich garlic stalk significantly influenced the soil condition through various ways; organic matter decomposition and mineralization, moderately adjusted the soil pH, enhanced the soil nutrient availability, increased enzymatic activities, and promoted 20% more cucumber yield in short-time. Using Illumina MiSeq sequencing analysis of bacterial 16S rRNA and fungal 18S rDNA genes, the current study revealed that addition of garlic stalk/residue could also improve the microbial abundance and community composition in extensively exploited soil, and contributed in soil functionality, caused prosper changes in soil characteristics, reinforced to good crop yield. Conclusion: Our study provided evidence that addition of garlic stalk as soil fertility amendment is a feasible, cost-effective and efficient resource utilization way for renovation of degraded soil health, ameliorate soil quality components and improve ecological environment in short duration. Our study may provide a better scientific understanding for efficient crop residue management typically from allelopathic source.

Keywords: garlic stalk, microbial community dynamics, plant growth, soil amendment, soil-plant system

Procedia PDF Downloads 106
409 Evaluation of Opposite Type Heterologous MAT Genes Transfer in the Filamentous Fungi Neofusicoccum mediterraneum and Verticillium dahliae

Authors: Stavros Palavouzis, Alexandra Triantafyllopoulou, Aliki Tzima, Epaminondas Paplomatas

Abstract:

Mating-type genes are present in most filamentous fungi, even though teleomorphs for all species have not been recorded. Our study tries to explore the effect of different growth conditions on the expression of MAT genes in Neofusicoccum mediterraneum. As such, selected isolates were grown in potato dextrose broth or in water agar supplemented with pine needles under a 12 h photoperiod, as well as in constant darkness. Mycelia and spores were collected at different time points, and RNA extraction was performed, with the extracted product being used for cDNA synthesis. New primers for MAT gene expression were designed while qPCR results are underway. The second part of the study involved the isolation and cloning in a selected pGEM-T vector of the Botryosphaeria dothidea MAT1 1 1 and MAT1 2 1 mating genes, including flanking regions. As a next step, the genes were amplified using newly designed primers with engineered restriction sites. Amplicons were excised and subsequently sub-cloned in appropriate binary vectors. The constructs were afterward inserted into Agrobacterium tumefaciens and utilized for Agrobacterium-mediated transformation (ATMT) of Neofusicoccum mediterraneum. At the same time, the transformation of a Verticillium dahliae tomato race 1 strain (70V) was performed as a control. While the procedure was successful in regards to V. dahliae, transformed strains of N. mediterraneum could not be obtained. At present, a new transformation protocol, which utilizes a combination of protoplast and Agro transformation, is being evaluated.

Keywords: anamorph, heterothallism, perithecia, pycnidia, sexual stage

Procedia PDF Downloads 161
408 Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions

Authors: Gholamhossein Hosseini

Abstract:

Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.

Keywords: cotton, combined, analysis, earliness

Procedia PDF Downloads 116
407 The Efficiency of AFLP and ISSR Markers in Genetic Diversity Estimation and Gene Pool Classification of Iranian Landrace Bread Wheat (Triticum Aestivum L.) Germplasm

Authors: Reza Talebi

Abstract:

Wheat (Triticum aestivum) is one of the most important food staples in Iran. Understanding genetic variability among the landrace wheat germplasm is important for breeding. Landraces endemic to Iran are a genetic resource that is distinct from other wheat germplasm. In this study, 60 Iranian landrace wheat accessions were characterized AFLP and ISSR markers. Twelve AFLP primer pairs detected 128 polymorphic bands among the sixty genotypes. The mean polymorphism rate based on AFLP data was 31%; however, a wide polymorphism range among primer pairs was observed (22–40%). Polymorphic information content (PIC value) calculated to assess the informativeness of each marker ranged from 0.28 to 0.4, with a mean of 0.37. According to AFLP molecular data, cluster analysis grouped the genotypes in five distinct clusters. .ISSR markers generated 68 bands (average of 6 bands per primer), which 31 were polymorphic (45%) across the 60 wheat genotypes. Polymorphism information content (PIC) value for ISSR markers was calculated in the range of 0.14 to 0.48 with an average of 0.33. Based on data achieved by ISSR-PCR, cluster analysis grouped the genotypes in three distinct clusters. Both AFLP and ISSR markers able to showed that high level of genetic diversity in Iranian landrace wheat accessions has maintained a relatively constant level of genetic diversity during last years.

Keywords: wheat, genetic diversity, AFLP, ISSR

Procedia PDF Downloads 424
406 Association of Single Nucleotide Polymorphisms in Leptin and Leptin Receptors with Oral Cancer

Authors: Chiung-Man Tsai, Chia-Jui Weng

Abstract:

Leptin (LEP) and leptin receptor (LEPR) both play a crucial role in the mediation of physiological reactions and carcinogenesis and may serve as a candidate biomarker of oral cancer. The present case-control study aimed to examine the effects of single nucleotide polymorphisms (SNPs) of LEP -2548 G/A (rs7799039), LEPR K109R (rs1137100), and LEPR Q223R (rs1137101) with or without interacting to environmental carcinogens on the risk for oral squamous cell carcinoma (OSCC). The SNPs of three genetic allele, from 567 patients with oral cancer and 560 healthy controls in Taiwan were analyzed. All of The three genetic polymorphisms exhibited insignificant (P > .05) effects on the risk to have oral cancer. However, the patients with polymorphic allele of LEP -2548 have a significant low risk for the development of clinical stage (A/G, AOR = 0.670, 95% CI = 0.454–0.988, P < .05; A/G+G/G, AOR = 0.676, 95% CI = 0.467–0.978, P < .05) compared to patients with ancestral homozygous A/A genotype. Additionally, an interesting result was found that the impact of LEP -2548 G/A SNP on oral carcinogenesis in subjects without tobacco consumption (A/G, AOR=2.078, 95% CI: 1.161-3.720, p=0.014; A/G+G/G, AOR=2.002, 95% CI: 1.143-3.505, p=0.015) is higher than subjects with tobacco consumption. These results suggest that the genetic polymorphism of LEP -2548 G/A (rs7799039), LEPR K109R (rs1137100), and LEPR Q223R (rs1137101) were not associated with the susceptibility of oral cancer; SNP in LEP -2548 G/A showed a poor clinicopathological development of oral cancer; Population without tobacco consumption and with polymorphic LEP -2548 G/A gene may significantly increase the risk to have oral cancer.

Keywords: carcinogen, leptin, leptin receptor, oral squamous cell carcinoma, single nucleotide polymorphism

Procedia PDF Downloads 163
405 Determination of Nutritional Value and Steroidal Saponin of Fenugreek Genotypes

Authors: Anita Singh, Richa Naula, Manoj Raghav

Abstract:

Nutrient rich and high-yielding varieties of fenugreek can be developed by using genotypes which are naturally high in nutrients. Gene banks harbour scanty germplasm collection of Trigonella spp. and a very little background information about its genetic diversity. The extent of genetic diversity in a specific breeding population depends upon the genotype included in it. The present investigation aims at the estimation of macronutrient (phosphorus by spectrophotometer and potassium by flame photometer), micronutrients, namely, iron, zinc, manganese, and copper from seeds of fenugreek genotypes using atomic absorption spectrophotometer, protein by Rapid N Cube Analyser and Steroidal Saponins. Twenty-eight genotypes of fenugreek along with two standard checks, namely, Pant Ragini and Pusa Early Bunching were collected from different parts of India, and nutrient contents of each genotype were determined at G. B. P. U. A. & T. Laboratory, Pantnagar. Highest potassium content was observed in PFG-35 (1207 mg/100g). PFG-37 and PFG-20 were richest in phosphorus, iron and manganese content among all the genotypes. The lowest zinc content was found in PFG-26 (1.19 mg/100g), while the maximum zinc content was found in PFG- 28 (4.43 mg/100g). The highest content of copper was found in PFG-26 (1.97 mg/100g). PFG-39 has the highest protein content (29.60 %). Significant differences were observed in the steroidal saponin among the genotypes. Saponin content ranged from 0.38 g/100g to 1.31 g/100g. Steroidal Saponins content was found the maximum in PFG-36 (1.31 g/100g) followed by PFG-17 (1.28 g/100g). Therefore, the genotypes which are rich in nutrient and oil content can be used for plant biofortification, dietary supplements, and herbal products.

Keywords: genotypes, macronutrients, micronutrient, protein, seeds

Procedia PDF Downloads 229
404 Biosynthesis of Healthy Secondary Metabolites in Olive Fruit in Response to Different Agronomic Treatments

Authors: Anna Perrone, Federico Martinelli

Abstract:

Olive fruit is well-known for the high content in secondary metabolites with high interest at nutritional, nutraceutical, antioxidant, and healthy levels. The content of secondary metabolites in olive at harvest may be affected by different water regimes, with significant effects on olive oil composition and quality and, consequently, on its healthy and nutritional features. In this work, a summary of several research studies dealing with the biosynthesis of healthy and nutraceutical metabolites of the secondary metabolism in olive fruit will be reported. The phytochemical findings have been correlated with the expression of key genes involved in polyphenol, terpenoid, and carotenoid biosynthesis and metabolism in response to different development stages and water regimes. Flavonoids were highest in immature fruits, while anthocyanins increased at ripening. In epicarp tissue, this was clearly associated with an up-regulation of the UFGT gene. Olive fruits cultivated under different water regimes were analyzed by metabolomics. This method identified several hundred metabolites in the ripe mesocarp. Among them, 46 were differentially accumulated in the comparison between rain-fed and irrigated conditions. Well-known healthy metabolites were more abundant at a higher level of water regimes. Increased content of polyphenols was observed in the rain-fed fruit; particularly, anthocyanin concentration was higher at ripening. Several secondary metabolites were differentially accumulated between different irrigation conditions. These results showed that these metabolic approaches could be efficiently used to determine the effects of agronomic treatments on olive fruit physiology and, consequently, on nutritional and healthy properties of the obtained extra-virgin olive oil.

Keywords: olea europea, anthocyanins, polyphenols, water regimes

Procedia PDF Downloads 126
403 Detection of Leptospira interrogans in Kidney and Urine of water Buffalo and its Relationship with Histopathological and Serological Findings

Authors: M. R. Haji Hajikolaei, A. A. Nikvand, A. R. Ghadrdan, M. Ghorbanpoor, B. Mohammadian

Abstract:

This study was carried out on water buffalo for detection of Leptospira interrogans in kidney and urine and its relationship with serological findings. Blood, urine and kidney samples were taken immediately after slaughter from 353 water buffalos at Ahvaz abattoir in Khouzestan province, Iran. Sera were initially screened at serum dilution of 1:100 against seven live antigens of Leptospira interrogans: pomona, hardjo, ballum, icterohemorrhagiae, tarasovi, australis and grippotyphosa using the microscopic agglutination test (MAT) and sera with positive results were titrated against reacting antigens in serial twofold dilution from 1:100 to 1:800. The samples of kidney were embedded in paraffin wax and 5µm thick sections were stained routinely with Haematoxylin and Eosin (H&E). Polymerase chain reaction (PCR) examination was done on urine and kidney by using LipL32 gene primers. Antibodies against one or more serovars at dilution >:100 were detected in sera. The most frequent reactor was hardjo (56.2%), followed by pomona (52.3%), australis (9.8%), tarassovi (5.9%), grippotyphosa (4.5%) and icterohaemorrhagiae (3.9%). The L. interrogans were detected in 43 (12.2%) of examined buffaloes, so that 26 (8.2%) of kidney tissues, 14 (4.8%) of urine samples separately and 3 (0.84%) of both kidney and urine samples were positive in PCR. From 153 (43.3%) buffaloes with positive MAT, 24 cases were positive by PCR of kidney and/or urine samples, synchronously. Renal lesions such as interstitial nephritis, acute tubular necrosis (ATN), pyelonephritis, glomerolonephritis, renal fibrosis and hydronephrosis were found in 128 (36.3%) cases. Statistical analysis indicated that there was no significant association between results of MAT, PCR and interstitial nephritis.

Keywords: leptospiral infection, PCR, MAT, histopathology, river buffalo

Procedia PDF Downloads 310
402 YHV-Responsive Gene Expression under the Influence of PmRelish Regulation

Authors: Suwattana Visetnan, Premruethai Supungul, Sureerat Tang, Ikuo Hirono, Anchalee Tassanakajon, Vichien Rimphanitchayakit

Abstract:

In animals, infection by Gram-negative bacteria and certain viruses activates the Imd signaling pathway wherein the a NF-κB transcription factor, Relish, is a key regulatory protein for the synthesis of antimicrobial proteins. Infection by yellow head virus (YHV) activates the Imd pathway. To investigate the expression of genes involved in YHV infection and under the influence of PmRelish regulation, RNA interference and suppression subtractive hybridization (SSH) are employed. The genes in forward library expressed in shrimp after YHV infection and under the activity of PmRelish were obtained by subtracting the cDNAs from YHV-infected and PmRelish-knockdown shrimp with cDNAs from YHV-infected shrimp. Opposite subtraction gave a reverse library whereby an alternative set of genes under YHV infection and no PmRelish expression was obtained. Sequencing of 252 and 99 cDNA clones from the respective forward and reverse libraries were done and annotated through blast search against the GenBank sequences. Genes involved in defense and homeostasis were abundant in both libraries, 31% and 23% in the forward and reverse libraries, respectively. They were predominantly antimicrobial proteins, proteinases and proteinase inhibitors. The expression of antimicrobial protein genes, ALFPm3, crustinPm1, penaeidin3 and penaeidin5 were tested under PmRelish silencing and Gram-negative bacterium V. harveyi infection. Together with the results previously reported, the expression of penaeidin5 and also penaeidin3 but not ALFPm3 and crustinPm1 were under the regulation of PmRelish in the Imd pathway.

Keywords: relish, yellow head virus, penaeus monodon, antimicrobial proteins

Procedia PDF Downloads 193
401 Optimising Light Conditions for Recombinant Protein Production in the Microalgal Chlamydomonas reinhardtii Chloroplast

Authors: Saskya E. Carrera P., Ben Hankamer, Melanie Oey

Abstract:

The green alga C. reinhardtii provides a platform for the cheap, scalable, and safe production of complex proteins. Despite gene expression in photosynthetic organisms being tightly regulated by light, most expression studies have analysed chloroplast recombinant protein production under constant light. Here the influence of illumination time and intensity on GFP and a GFP-PlyGBS (bacterial-lysin) fusion protein expression was investigated. The expression of both proteins was strongly influenced by the light regime (6-24 hr illumination per day), the light intensity (0-450 E m⁻²s⁻¹) and growth condition (photoautotrophic, mixotrophic and heterotrophic). Heterotrophic conditions resulted in relatively low recombinant protein yields per unit volume, despite high protein yields per cell, due to low growth rates. Mixotrophic conditions exhibited the highest yields at 6 hrs illumination at 200µE m⁻²s⁻¹ and under continuous low light illumination (13-16 mg L⁻¹ GFP and 1.2-1.6 mg L⁻¹ GFP-PlyGBS), as these conditions supported good cell growth and cellular protein yields. A ~23-fold increase in protein accumulation per cell and ~9-fold increase L⁻¹ culture was observed compared to standard constant 24 hr illumination for GFP-PlyGBS. The highest yields under photoautotrophic conditions were obtained under 9 hrs illumination (6 mg L⁻¹ GFP and 2.1 mg L⁻¹ GFP-PlyGBS). This represents a ~4-fold increase in cellular protein accumulation for GFP-PlyGBS. On a volumetric basis the highest yield was at 15 hrs illumination (~2-fold increase L⁻¹ over the constant light for GFP-PlyGBS). Optimising illumination conditions to balance growth and protein expression can thus significantly enhance overall recombinant protein production in C. reinhardtii cultures.

Keywords: chlamydomonas reinhardtii, light, mixotrophic, recombinant protein

Procedia PDF Downloads 232
400 An Antidiabetic Dietary Defence Weapon: Oats and Milk Based Probiotic Fermented Product

Authors: Rameshwar Singh Seema

Abstract:

In today’s world where diabetes has become an epidemic, our aim was to potentiate the effect of probiotics by integrating probiotics with cereals to formulate composite foods using Lactobacillus rhamnosus GG (LGG) and Lactobacillus casei NCDC19 against type 2 diabetes. After optimizing the product by Response Surface Methodology, it was studied for their effect on induction and progression of type 2 diabetes in HFD-fed Wistar rats. After 9 weeks study, best results were shown by the group fed with oat and milk based product fermented with LGG and L. casei NCDC19 which resulted in a significant decrease in blood glucose, HBA1c, improved OGTT, oxidative stress, cholesterol and triglycerides level during progression study of type 2 diabetes. During induction study also, there was significant reduction in blood glucose level, oxidative stress, cholesterol level and triglycerides level but slightly less as compared to progression study. Real time PCR gene expression studies were done for 5 genes (GLUT-4, IRS-2, ppar-γ, TNF-α, IL-6) whose expression is directly related to type 2 diabetes. The relative fold change expression was increased in case of GLUT-4, IRS-2, ppar-γ and decreased in case of TNF-α and IL-6 during both induction and progression study of diabetes but more significantly during progression study. Hence it was concluded that oat and milk based probiotic fermented product showed the synergistic effect of probiotics and oats especially in case of progression of type 2 diabetes. The benefits of these probiotic formulations may be further validated by clinical trials.

Keywords: type 2 diabetes, LGG, L.casei NCDC19, food science

Procedia PDF Downloads 393
399 RNA-Seq Based Transcriptomic Analysis of Wheat Cultivars for Unveiling of Genomic Variations and Isolation of Drought Tolerant Genes for Genome Editing

Authors: Ghulam Muhammad Ali

Abstract:

Unveiling of genes involved in drought and root architecture using transcriptomic analyses remained fragmented for further improvement of wheat through genome editing. The purpose of this research endeavor was to unveil the variations in different genes implicated in drought tolerance and root architecture in wheat through RNA-seq data analysis. In this study seedlings of 8 days old, 6 cultivars of wheat namely, Batis, Blue Silver, Local White, UZ888, Chakwal 50 and Synthetic wheat S22 were subjected to transcriptomic analysis for root and shoot genes. Total of 12 RNA samples was sequenced by Illumina. Using updated wheat transcripts from Ensembl and IWGC references with 54,175 gene models, we found that 49,621 out of 54,175 (91.5%) genes are expressed at an RPKM of 0.1 or more (in at least 1 sample). The number of genes expressed was higher in Local White than Batis. Differentially expressed genes (DEG) were higher in Chakwal 50. Expression-based clustering indicated conserved function of DRO1and RPK1 between Arabidopsis and wheat. Dendrogram showed that Local White is sister to Chakwal 50 while Batis is closely related to Blue Silver. This study flaunts transcriptomic sequence variations in different cultivars that showed mutations in genes associated with drought that may directly contribute to drought tolerance. DRO1 and RPK1 genes were fetched/isolated for genome editing. These genes are being edited in wheat through CRISPR-Cas9 for yield enhancement.

Keywords: transcriptomic, wheat, genome editing, drought, CRISPR-Cas9, yield enhancement

Procedia PDF Downloads 123
398 Comparision of Neospora caninum Experimental Infection in Pigeons and Chickens Embryonated Eggs

Authors: S. Bahrami, A. Rezaie, Z. Boroumand, S. Ghavami

Abstract:

Neospora caninum is protozoan parasite which can cause a serious disease in dogs and cattle. It has been shown that birds may be a permissive intermediate host for N. caninum since parasite DNA has been detected in tissues from birds. It is showed that embryonated chicken egg can be used as an animal model for experimental infection. The aim of present study was to compare experimental infection of Neospora in chicken and pigeons embryonated eggs. An infection with N. caninum Nc1 isolate was conducted in chicken and pigeons embryonated eggs to evaluate LD50. After calculation of LD50, 2LD50 of tachyzoites were injected to eggs. Macroscopic changes of each embryo were noticed and to investigate the parasite distribution in tissues immunohistochemistry (IHC) and molecular methods were used. In the present study, histopathological changes were considered and sections to those used for histopathological examination including heart, liver, brain and chorioallantoic (CA) membrane were subjected to IHC, too. For PCR procedure, primer pair Np21/Np6 was used for amplification of the Nc5 gene. Pigeon's embryo showed more macroscopic changes than chicken embryo. A hemorrhage of the CA was the main grass lesion. All the infected tissues had histopathological changes. Microscopic examination of tissues revealed acute neosporosis due to hemorrhage, necrosis and infiltration of mononuclear inflammatory cells. Based on IHC and molecular results, the parasite aggregation in the heart was more predominant than in the other tissues. These results reinforce that there is genetic susceptibility to N. caninum in pigeons embryonated eggs like chickens embryonated eggs and provide new insights to research an inexpensive and available animal model for N. caninum.

Keywords: immunohistochemistry, Neospora caninum, PCR, pigeon embryonated egg

Procedia PDF Downloads 325
397 Molecular Characterization and Phylogenetic Analysis of Capripoxviruses from Outbreak in Iran 2021

Authors: Maryam Torabi, Habibi, Abdolahi, Mohammadi, Hassanzadeh, Darban Maghami, Baghi

Abstract:

Sheeppox Virus (SPPV) and goatpox virus (GTPV) are considerable diseases of sheep, and goats, caused by viruses of the Capripoxvirus (CaPV) genus. They are responsible for economic losses. Animal mortality, morbidity, cost of vaccinations, and restrictions in animal products’ trade are the reasons of economic losses. Control and eradication of CaPV depend on early detection of outbreaks so that molecular detection and genetic analysis could be effective to this aim. This study was undertaken to molecularly characterize SPPV and GTPV strains that have been circulating in Iran. 120 skin papules and nodule biopsies were collected from different regions of Iran and were examined for SPPV, GTPV viruses using TaqMan Real -Time PCR. Some of these amplified genes were sequenced, and phylogenetic trees were constructed. Out of the 120 samples analysed, 98 were positive for CaPV by Real- Time PCR (81.6%), and most of them wereSPPV. then 10 positive samples were sequenced and characterized by amplifying the ORF 103CaPV gene. sequencing and phylogenetic analysis for these positive samples revealed a high percentage of identity with SPPV isolated from different countries in Middle East. In conclusions, molecular characterization revealed nearly complete identity with all recent SPPVs strains in local countries that requires further studies to monitor the virus evolution and transmission pathways to better understand the virus pathobiology that will help for SPPV control.

Keywords: molecular epidemiology, Real-Time PCR, phylogenetic analysis, capripoxviruses

Procedia PDF Downloads 118
396 Study of Age-Dependent Changes of Peripheral Blood Leukocytes Apoptotic Properties

Authors: Anahit Hakobjanyan, Zdenka Navratilova, Gabriela Strakova, Martin Petrek

Abstract:

Aging has a suppressive influence on human immune cells. Apoptosis may play important role in age-dependent immunosuppression and lymphopenia. Prevention of apoptosis may be promoted by BCL2-dependent and BCL2-independent manner. BCL2 is an antiapoptotic factor that has an antioxidative role by locating the glutathione at mitochondria and repressing oxidative stress. STAT3 may suppress apoptosis in BCL2-independent manner and promote cell survival blocking cytochrome-c release and reducing ROS production. The aim of our study was to estimate the influence of aging on BCL2-dependent and BCL2-independent prevention of apoptosis via measurement of BCL2 and STAT3 mRNAs expressions. The study was done on Armenian population (2 groups: 37 healthy young (mean age±SE; min/max age, male/female: 37.6±1.1; 20/54, 15/22), 28 healthy aged (66.7±1.5; 57/85, 12/16)). mRNA expression in peripheral blood leukocytes (PBL) was determined by RT-PCR using PSMB2 as the reference gene. Statistical analysis was done with Graph-Pad Prism 5; P < 0.05 considered as significant. The expression of BCL2 mRNA was lower in aged group (0.199) compared with young ones (0.643)(p < 0.01). Decrease expression was also recorded for female and male subgroups (p < 0.01). The expression level of STAT3 mRNA was increased (young, 0.228; aged, 0.428) (p < 0.05) during aging (in the whole age group and male/female subgroups). Decreased level of BCL2 mRNA may indicate about the suppression of BCL2-dependent prevention of apoptosis during aging in peripheral blood leukocytes. At the same time increased the level of STAT3 may suggest about activation of BCL2-independent prevention of apoptosis during aging.

Keywords: BCL2, STAT3, aging, apoptosis

Procedia PDF Downloads 300
395 Genetics of Atopic Dermatitis: Role of Cytokine Genes Polymorphisms

Authors: Ghaleb Bin Huraib

Abstract:

Atopic dermatitis (AD), also known as atopic eczema, is a chronic inflammatory skin disease characterized by severe itching and recurrent, relapsing eczema-like skin lesions, affecting up to 20% of children and 10% of adults in industrialized countries. AD is a complex multifactorial disease, and its exact etiology and pathogenesis have not been fully elucidated. The aim of this study was to investigate the impact of gene polymorphisms of T helper cell subtype Th1 and Th2 cytokines, interferon-gamma (IFN-γ), interleukin-6 (IL-6) and transforming growth factor (TGF)-β1on AD susceptibility in a Saudi cohort. One hundred four unrelated patients with AD and 195 healthy controls were genotyped for IFN-γ (874A/T), IL-6 (174G/C) and TGF-β1 (509C/T) polymorphisms using ARMS-PCR and PCR-RFLP technique. The frequency of genotypes AA and AT of IFN-γ (874A/T) differed significantly among patients and controls (P 0.001). The genotype AT was increased while genotype AA was decreased in AD patients as compared to controls. AD patients also had a higher frequency of T-containing genotypes (AT+TT) than controls (P = 0.001). The frequencies of alleles T and A were statistically different in patients and controls (P = 0.04). The frequencies of genotype GG and allele G of IL-6 (174G/C) were significantly higher, while genotype GC and allele C were lower in AD patients than in controls. There was no significant difference in the frequencies of alleles and genotypes of TGF-β1 (509C/T) polymorphism between the patient and control groups. These results showed that susceptibility to AD is influenced by the presence or absence of genotypes of IFN-γ (874A/T) and IL-6 (174G/C) polymorphisms. It is concluded T-allele and T-containing genotypes (AT+TT) of IFN-γ (874A/T) and G-allele and GG genotype ofIL-6 (174G/C) polymorphisms are susceptible to AD in Saudis. On the other hand, the TGF-β1 (509C/T) polymorphism may not be associated with AD risk in our population; however, further studies with large sample sizes are required to confirm these results.

Keywords: atopic dermatitis, Polymorphism, Interferon, IL-6

Procedia PDF Downloads 48
394 In silico Analysis of a Causative Mutation in Cadherin-23 Gene Identified in an Omani Family with Hearing Loss

Authors: Mohammed N. Al Kindi, Mazin Al Khabouri, Khalsa Al Lamki, Tommasso Pappuci, Giovani Romeo, Nadia Al Wardy

Abstract:

Hereditary hearing loss is a heterogeneous group of complex disorders with an overall incidence of one in every five hundred newborns presented as syndromic and non-syndromic forms. Cadherin-related 23 (CDH23) is one of the listed deafness causative genes. CDH23 is found to be expressed in the stereocilia of hair cells and the retina photoreceptor cells. Defective CDH23 has been associated mostly with prelingual severe-to-profound sensorineural hearing loss (SNHL) in either syndromic (USH1D) or non-syndromic SNHL (DFNB12). An Omani family diagnosed clinically with severe-profound sensorineural hearing loss was genetically analysed by whole exome sequencing technique. A novel homozygous missense variant, c.A7451C (p.D2484A), in exon 53 of CDH23 was detected. One hundred and thirty control samples were analysed where all were negative for the detected variant. The variant was analysed in silico for pathogenicity verification using several mutation prediction software. The variant proved to be a pathogenic mutation and is reported for the first time in Oman and worldwide. It is concluded that in silico mutation prediction analysis might be used as a useful molecular diagnostics tool benefiting both genetic counseling and mutation verification. The aspartic acid 2484 alanine missense substitution might be the main disease-causing mutation that damages CDH23 function and could be used as a genetic hearing loss marker for this particular Omani family.

Keywords: Cdh23, d2484a, in silico, Oman

Procedia PDF Downloads 192
393 Network Analysis of Genes Involved in the Biosynthesis of Medicinally Important Naphthodianthrone Derivatives of Hypericum perforatum

Authors: Nafiseh Noormohammadi, Ahmad Sobhani Najafabadi

Abstract:

Hypericins (hypericin and pseudohypericin) are natural napthodianthrone derivatives produced by Hypericum perforatum (St. John’s Wort), which have many medicinal properties such as antitumor, antineoplastic, antiviral, and antidepressant activities. Production and accumulation of hypericin in the plant are influenced by both genetic and environmental conditions. Despite the existence of different high-throughput data on the plant, genetic dimensions of hypericin biosynthesis have not yet been completely understood. In this research, 21 high-quality RNA-seq data on different parts of the plant were integrated into metabolic data to reconstruct a coexpression network. Results showed that a cluster of 30 transcripts was correlated with total hypericin. The identified transcripts were divided into three main groups based on their functions, including hypericin biosynthesis genes, transporters, detoxification genes, and transcription factors (TFs). In the biosynthetic group, different isoforms of polyketide synthase (PKSs) and phenolic oxidative coupling proteins (POCPs) were identified. Phylogenetic analysis of protein sequences integrated into gene expression analysis showed that some of the POCPs seem to be very important in the biosynthetic pathway of hypericin. In the TFs group, six TFs were correlated with total hypericin. qPCR analysis of these six TFs confirmed that three of them were highly correlated. The identified genes in this research are a rich resource for further studies on the molecular breeding of H. perforatum in order to obtain varieties with high hypericin production.

Keywords: hypericin, St. John’s Wort, data mining, transcription factors, secondary metabolites

Procedia PDF Downloads 64
392 Comparing Double-Stranded RNA Uptake Mechanisms in Dipteran and Lepidopteran Cell Lines

Authors: Nazanin Amanat, Alison Tayler, Steve Whyard

Abstract:

While chemical insecticides effectively control many insect pests, they also harm many non-target species. Double-stranded RNA (dsRNA) pesticides, in contrast, can be designed to target unique gene sequences and thus act in a species-specific manner. DsRNA insecticides do not, however, work equally well for all insects, and for some species that are considered refractory to dsRNA, a primary factor affecting efficacy is the relative ease by which dsRNA can enter a target cell’s cytoplasm. In this study, we are examining how different structured dsRNAs (linear, hairpin, and paperclip) can enter mosquito and lepidopteran cells, as they represent dsRNA-sensitive and refractory species, respectively. To determine how the dsRNAs enter the cells, we are using chemical inhibitors and RNA interference (RNAi)-mediated knockdown of key proteins associated with different endocytosis processes. Understanding how different dsRNAs enter cells will ultimately help in the design of molecules that overcome refractoriness to RNAi or develop resistance to dsRNA-based insecticides. To date, we have conducted chemical inhibitor experiments on both cell lines and have evidence that linear dsRNAs enter the cells using clathrin-mediated endocytosis, while the paperclip dsRNAs (pcRNAs) can enter both species’ cells in a clathrin-independent manner to induce RNAi. An alternative uptake mechanism for the pcRNAs has been tentatively identified, and the outcomes of our RNAi-mediated knockdown experiments, which should provide corroborative evidence of our initial findings, will be discussed.

Keywords: dsRNA, RNAi, uptake, insecticides, dipteran, lepidopteran

Procedia PDF Downloads 50
391 Exploring the Strategy to Identify Seed-Specific Acyl-Hydrolases from Arabidopsis thaliana by Activity-Based Protein Profiling

Authors: M. Latha, Achintya K. Dolui, P. Vijayaraj

Abstract:

Vegetable oils mainly triacylglycerol (TAG) are an essential nutrient in the human diet as well as one of the major global commodity. There is a pressing need to enhance the yield of oil production to meet the world’s growing demand. Oil content is controlled by the balance between synthesis and breakdown in the cells. Several studies have established to increase the oil content by the overexpression of oil biosynthetic enzymes. Interestingly the significant oil accumulation was observed with impaired TAG hydrolysis. Unfortunately, the structural, as well as the biochemical properties of the lipase enzymes, is widely unknown, and so far, no candidate gene was identified in seeds except sugar-dependent1 (SDP1). Evidence has shown that SDP1directly responsible for initiation of oil breakdown in the seeds during germination. The present study is the identification of seed-specific acyl-hydrolases by activity based proteome profiling (ABPP) using Arabidopsis thaliana as a model system. The ABPP reveals that around 8 to 10 proteins having the serine hydrolase domain and are expressed during germination of Arabidopsis seed. The N-term sequencing, as well as LC-MS/MS analysis, was performed for the differentially expressed protein during germination. The coding region of the identified proteins was cloned, and lipases activity was assessed with purified recombinant protein. The enzyme assay was performed against various lipid substrates, and we have observed the acylhydrolase activity towards lysophosphatidylcholine and monoacylglycerol. Further, the functional characteristic of the identified protein will reveal the physiological significance the enzyme in oil accumulation.

Keywords: lipase, lipids, vegetable oil, triacylglycerol

Procedia PDF Downloads 160
390 Full Length Transcriptome Sequencing and Differential Expression Gene Analysis of Hybrid Larch under PEG Stress

Authors: Zhang Lei, Zhao Qingrong, Wang Chen, Zhang Sufang, Zhang Hanguo

Abstract:

Larch is the main afforestation and timber tree species in Northeast China, and drought is one of the main factors limiting the growth of Larch and other organisms in Northeast China. In order to further explore the mechanism of Larch drought resistance, PEG was used to simulate drought stress. The full-length sequencing of Larch embryogenic callus under PEG simulated drought stress was carried out by combining Illumina-Hiseq and SMRT-seq. A total of 20.3Gb clean reads and 786492 CCS reads were obtained from the second and third generation sequencing. The de-redundant transcript sequences were predicted by lncRNA, 2083 lncRNAs were obtained, and the target genes were predicted, and a total of 2712 target genes were obtained. The de-redundant transcripts were further screened, and 1654 differentially expressed genes (DEGs )were obtained. Among them, different DEGs respond to drought stress in different ways, such as oxidation-reduction process, starch and sucrose metabolism, plant hormone pathway, carbon metabolism, lignin catabolic/biosynthetic process and so on. This study provides basic full-length sequencing data for the study of Larch drought resistance, and excavates a large number of DEGs in response to drought stress, which helps us to further understand the function of Larch drought resistance genes and provides a reference for in-depth analysis of the molecular mechanism of Larch drought resistance.

Keywords: larch, drought stress, full-length transcriptome sequencing, differentially expressed genes

Procedia PDF Downloads 137
389 Agarose Amplification Based Sequencing (AG-seq) Characterization Cell-free RNA in Preimplantation Spent Embryo Medium

Authors: Huajuan Shi

Abstract:

Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.

Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection

Procedia PDF Downloads 65
388 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion

Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen

Abstract:

Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.

Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion

Procedia PDF Downloads 70