Search results for: illustrates model
5985 Intelligent Process Data Mining for Monitoring for Fault-Free Operation of Industrial Processes
Authors: Hyun-Woo Cho
Abstract:
The real-time fault monitoring and diagnosis of large scale production processes is helpful and necessary in order to operate industrial process safely and efficiently producing good final product quality. Unusual and abnormal events of the process may have a serious impact on the process such as malfunctions or breakdowns. This work try to utilize process measurement data obtained in an on-line basis for the safe and some fault-free operation of industrial processes. To this end, this work evaluated the proposed intelligent process data monitoring framework based on a simulation process. The monitoring scheme extracts the fault pattern in the reduced space for the reliable data representation. Moreover, this work shows the results of using linear and nonlinear techniques for the monitoring purpose. It has shown that the nonlinear technique produced more reliable monitoring results and outperforms linear methods. The adoption of the qualitative monitoring model helps to reduce the sensitivity of the fault pattern to noise.Keywords: process data, data mining, process operation, real-time monitoring
Procedia PDF Downloads 6425984 Co-Seismic Gravity Gradient Changes of the 2006–2007 Great Earthquakes in the Central Kuril Islands from GRACE Observations
Authors: Armin Rahimi
Abstract:
In this study, we reveal co-seismic signals of two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of the gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore that preseismic activity can be better illustrated. We show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from − 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from − 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.Keywords: GRACE observation, gravitational gradient changes, Kuril island earthquakes, PSGRN/PSCMP
Procedia PDF Downloads 2765983 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection
Procedia PDF Downloads 4555982 Comparing Community Health Agents, Physicians and Nurses in Brazil's Family Health Strategy
Authors: Rahbel Rahman, Rogério Meireles Pinto, Margareth Santos Zanchetta
Abstract:
Background: Existing shortcomings of current health-service delivery include poor teamwork, competencies that do not address consumer needs, and episodic rather than continuous care. Brazil’s Sistema Único de Saúde (Unified Health System, UHS) is acknowledged worldwide as a model for delivering community-based care through Estratégia Saúde da Família (FHS; Family Health Strategy) interdisciplinary teams, comprised of Community Health Agents (in Portuguese, Agentes Comunitário de Saude, ACS), nurses, and physicians. FHS teams are mandated to collectively offer clinical care, disease prevention services, vector control, health surveillance and social services. Our study compares medical providers (nurses and physicians) and community-based providers (ACS) on their perceptions of work environment, professional skills, cognitive capacities and job context. Global health administrators and policy makers can leverage on similarities and differences across care providers to develop interprofessional training for community-based primary care. Methods: Cross-sectional data were collected from 168 ACS, 62 nurses and 32 physicians in Brazil. We compared providers’ demographic characteristics (age, race, and gender) and job context variables (caseload, work experience, work proximity to community, the length of commute, and familiarity with the community). Providers perceptions were compared to their work environment (work conditions and work resources), professional skills (consumer-input, interdisciplinary collaboration, efficacy of FHS teams, work-methods and decision-making autonomy), and cognitive capacities (knowledge and skills, skill variety, confidence and perseverance). Descriptive and bi-variate analysis, such as Pearson Chi-square and Analysis of Variance (ANOVA) F-tests, were performed to draw comparisons across providers. Results: Majority of participants were ACS (64%); 24% nurses; and 12% physicians. Majority of nurses and ACS identified as mixed races (ACS, n=85; nurses, n=27); most physicians identified as males (n=16; 52%), and white (n=18; 58%). Physicians were less likely to incorporate consumer-input and demonstrated greater decision-making autonomy than nurses and ACS. ACS reported the highest levels of knowledge and skills but the least confidence compared to nurses and physicians. ACS, nurses, and physicians were efficacious that FHS teams improved the quality of health in their catchment areas, though nurses tend to disagree that interdisciplinary collaboration facilitated their work. Conclusion: To our knowledge, there has been no study comparing key demographic and cognitive variables across ACS, nurses and physicians in the context of their work environment and professional training. We suggest that global health systems can leverage upon the diverse perspectives of providers to implement a community-based primary care model grounded in interprofessional training. Our study underscores the need for in-service trainings to instill reflective skills of providers, improve communication skills of medical providers and curative skills of ACS. Greater autonomy needs to be extended to community based providers to offer care integral to addressing consumer and community needs.Keywords: global health systems, interdisciplinary health teams, community health agents, community-based care
Procedia PDF Downloads 2365981 Global News Coverage of the Pandemic: Towards an Ethical Framework for Media Professionalism
Authors: Anantha S. Babbili
Abstract:
This paper analyzes the current media practices dominant in global journalistic practices within the framework of world press theories of Libertarian, Authoritarian, Communist, and Social Responsibility to evaluate their efficacy in addressing their role in the coverage of the coronavirus, also known as COVID-19. The global media flows, determinants of news coverage, and international awareness and the Western view of the world will be critically analyzed within the context of the prevalent news values that underpin free press and media coverage of the world. While evaluating the global discourse paramount to a sustained and dispassionate understanding of world events, this paper proposes an ethical framework that brings clarity devoid of sensationalism, partisanship, right-wing and left-wing interpretations to a breaking and dangerous development of a pandemic. As the world struggles to contain the coronavirus pandemic with death climbing close to 6,000 from late January to mid-March, 2020, the populations of the developed as well as the developing nations are beset with news media renditions of the crisis that are contradictory, confusing and evoking anxiety, fear and hysteria. How are we to understand differing news standards and news values? What lessons do we as journalism and mass media educators, researchers, and academics learn in order to construct a better news model and structure of media practice that addresses science, health, and media literacy among media practitioners, journalists, and news consumers? As traditional media struggles to cover the pandemic to its audience and consumers, social media from which an increasing number of consumers get their news have exerted their influence both in a positive way and in a negative manner. Even as the world struggles to grasp the full significance of the pandemic, the World Health Organization (WHO) has been feverishly battling an additional challenge related to the pandemic in what it termed an 'infodemic'—'an overabundance of information, some accurate and some not, that makes it hard for people to find trustworthy sources and reliable guidance when they need it.' There is, indeed, a need for journalism and news coverage in times of pandemics that reflect social responsibility and ethos of public service journalism. Social media and high-tech information corporations, collectively termed GAMAF—Google, Apple, Microsoft, Amazon, and Facebook – can team up with reliable traditional media—newspapers, magazines, book publishers, radio and television corporates—to ease public emotions and be helpful in times of a pandemic outbreak. GAMAF can, conceivably, weed out sensational and non-credible sources of coronavirus information, exotic cures offered for sale on a quick fix, and demonetize videos that exploit peoples’ vulnerabilities at the lowest ebb. Credible news of utility delivered in a sustained, calm, and reliable manner serves people in a meaningful and helpful way. The world’s consumers of news and information, indeed, deserve a healthy and trustworthy news media – at least in the time of pandemic COVID-19. Towards this end, the paper will propose a practical model for news media and journalistic coverage during times of a pandemic.Keywords: COVID-19, international news flow, social media, social responsibility
Procedia PDF Downloads 1135980 Moderating Influence of Environmental Hostility and External Relational Capital on the Effect of Entrepreneurial Orientation on Performance
Authors: Peter Ugbedeojo Nelson
Abstract:
Despite the tremendous advancements and knowledge acquisition around entrepreneurship orientation (EO) research, there may still be more to learn on how environmental dynamics would permute organizational processes and determine the extent to which success would be achieved. Using the contingency theory, we test a model that proposes a moderating influence of external relational capital and environmental hostility on the EO-performance effect of 423 managers/owners of small and medium scale enterprises. The hypotheses were tested using Hayes simultaneous regression, and the results showed that all EO dimensions (risk-taking, innovation, and performance) had a main effect on performance while the moderating variables interacted well with risk-taking (more than other EO dimensions) to improve performance. However, external relational capital, more than environmental hostility, influences the EO-performance relationship. Our findings highlight the differential ways that EO dimensions interact with environmental contingencies to influence performance. Further studies can examine how competitive aggressiveness and autonomy are moderated by external relational capital and environmental hostility.Keywords: external relational capital, entrepreneurial orientation, risk-taking, innovation, proactiveness
Procedia PDF Downloads 595979 The Contemporary Dynamics of Board Composition and Executive Compensation for R&D Spending
Authors: Farheen Akram
Abstract:
Research and Development (R&D) is the most crucial element of the firm’s survival in a competitive business environment. R&D is a long-term investment; therefore, executives having the power to make the investment decisions may be pessimistic when their compensation is closely linked with short-term firm performance. Thus, the current study investigates the impact of board composition and executives’ compensation (cash or short-term benefits and LTIs) on R&D spending using a sample of 85 S&P/100 firms listed on the Australian Stock Exchange (ASX) in 2017. SmartPLS (v.3.2.7) was used to evaluate the proposed model of current research. The empirical findings of this study indicate that board composition has a significant and positive effect on R&D spending. While, as expected, executive cash compensation has negative and Long-Term-Incentives (LTIs) has a positive impact on R&D spending. Based on current findings, the study suggested that myopic behavior of CEOs and top management towards long-term value creation investment like R&D can be controlled by using long-term compensation rewards.Keywords: cash compensation, LTIs, board composition, R&D spending
Procedia PDF Downloads 1935978 A Study of Evolutional Control Systems
Authors: Ti-Jun Xiao, Zhe Xu
Abstract:
Controllability is one of the fundamental issues in control systems. In this paper, we study the controllability of second order evolutional control systems in Hilbert spaces with memory and boundary controls, which model dynamic behaviors of some viscoelastic materials. Transferring the control problem into a moment problem and showing the Riesz property of a family of functions related to Cauchy problems for some integrodifferential equations, we obtain a general boundary controllability theorem for these second order evolutional control systems. This controllability theorem is applicable to various concrete 1D viscoelastic systems and recovers some previous related results. It is worth noting that Riesz sequences can be used for numerical computations of the control functions and the identification of new Riesz sequence is of independent interest for the basis-function theory. Moreover, using the Riesz sequences, we obtain the existence and uniqueness of (weak) solutions to these second order evolutional control systems in Hilbert spaces. Finally, we derive the exact boundary controllability of a viscoelastic beam equation, as an application of our abstract theorem.Keywords: evolutional control system, controllability, boundary control, existence and uniqueness
Procedia PDF Downloads 2245977 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation
Authors: Fathi Soliman
Abstract:
With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction
Procedia PDF Downloads 1975976 Design and Analysis of a Piezoelectric-Based AC Current Measuring Sensor
Authors: Easa Ali Abbasi, Akbar Allahverdizadeh, Reza Jahangiri, Behnam Dadashzadeh
Abstract:
Electrical current measurement is a suitable method for the performance determination of electrical devices. There are two contact and noncontact methods in this measuring process. Contact method has some disadvantages like having direct connection with wire which may endamage the system. Thus, in this paper, a bimorph piezoelectric cantilever beam which has a permanent magnet on its free end is used to measure electrical current in a noncontact way. In mathematical modeling, based on Galerkin method, the governing equation of the cantilever beam is solved, and the equation presenting the relation between applied force and beam’s output voltage is presented. Magnetic force resulting from current carrying wire is considered as the external excitation force of the system. The results are compared with other references in order to demonstrate the accuracy of the mathematical model. Finally, the effects of geometric parameters on the output voltage and natural frequency are presented.Keywords: cantilever beam, electrical current measurement, forced excitation, piezoelectric
Procedia PDF Downloads 2345975 Ultrahigh Thermal Stability of Dielectric Permittivity in 0.6Bi(Mg₁/₂Ti₁/₂)O₃-0.4Ba₀.₈Ca₀.₂(Ti₀.₈₇₅Nb₀.₁₂₅)O₃
Authors: Kaiyuan Chena, Senentxu Lanceros-Méndeza, Laijun Liub, Qi Zhanga
Abstract:
0.6Bi(Mg1/2Ti1/2)O3-0.4Ba0.8Ca0.2(Nb0.125Ti0.875)O3 (0.6BMT-0.4BCNT) ceramics with a pseudo-cubic structure and re-entrant dipole glass behavior have been investigated via X-ray diffraction and dielectric permittivity-temperature spectra. It shows an excellent dielectric-temperature stability with small variations of dielectric permittivity (± 5%, 420 - 802 K) and dielectric loss tangent (tanδ < 2.5%, 441 - 647 K) in a wide temperature range. Three dielectric anomalies are observed from 290 K to 1050 K. The low-temperature weakly coupled re-entrant relaxor behavior was described using Vogel-Fulcher law and the new glass model. The mid- and high-temperature dielectric anomalies are characterized by isothermal impedance and electrical modulus. The activation energy of both dielectric relaxation and conductivity follows the Arrhenius law in the temperature ranges of 633 - 753 K and 833 - 973 K, respectively. The ultrahigh thermal stability of the dielectric permittivity is attributed to the weakly coupling of polar clusters, the formation of diffuse phase transition (DPT) and the local phase transition of calcium-containing perovskite.Keywords: permittivity, relaxor, electronic ceramics, activation energy
Procedia PDF Downloads 1045974 A Study on the Relation between Auditor Rotation and Audit Quality in Iranian Firms
Authors: Bita Mashayekhi, Marjan Fayyazi, Parisa Sefati
Abstract:
Audit quality is a popular topic in accounting and auditing research because recent decades’ financial crises reduce the reliability of financial reports to public investors and cause significant doubt about the audit profession. Therefore, doing research to identify effective factors in improving audit quality is necessary for bringing back public investors’ trust to financial statements as well as audit reports. In this study, we explore the relationship between audit rotation and audit quality. For this purpose, we employ the Duff (2009) model of audit quality to measure audit quality and use a questionnaire survey of 27 audit service quality attributes. Our results show that there is a negative relationship between auditor’s rotation and audit quality as we consider the auditor’s reputation, capability, assurance, experience, and responsiveness as surrogates for audit quality. There is no evidence for verifying a same relationship when we use the auditor’s independence and expertise for measuring audit quality.Keywords: audit quality, auditor’s rotation, reputation, capability, assurance, experience, responsiveness, independence, expertise
Procedia PDF Downloads 2335973 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 985972 Modification of Underwood's Equation to Calculate Minimum Reflux Ratio for Column with One Side Stream Upper Than Feed
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Distillation is one of the most important and utilized separation methods in the industrial practice. There are different ways to design of distillation column. One of these ways is short cut method. In short cut method, material balance and equilibrium are employed to calculate number of tray in distillation column. There are different methods that are classified in short cut method. One of these methods is Fenske-Underwood-Gilliland method. In this method, minimum reflux ratio should be calculated by underwood equation. Underwood proposed an equation that is useful for simple distillation column with one feed and one top and bottom product. In this study, underwood method is developed to predict minimum reflux ratio for column with one side stream upper than feed. The result of this model compared with McCabe-Thiele method. The result shows that proposed method able to calculate minimum reflux ratio with very small error.Keywords: minimum reflux ratio, side stream, distillation, Underwood’s method
Procedia PDF Downloads 4105971 Use of Focus Group Interviews to Design a Health Impact Measurement Tool: A Volunteering Case Study
Authors: Valentine Seymour
Abstract:
Environmental volunteering organisations use questionnaires to explore the relationship between environmental volunteers and their health. To the author’s best knowledge, no one has explored volunteers’ health perception, which could be considered when designing a health impact measurement tool used to increase effective communication. This paper examines environmental volunteers' perceptions of health, knowledge which can be used to design a health impact measurement tool. This study uses focus group interviews, content analysis, and a general inductive approach to explore the health perceptions of volunteers who engage in environmental volunteering activities from the perspective of UK charity The Conservation Volunteers. Findings showed that volunteer groups presented were relatively similar in how they defined the term health, with their overall conceptual model closely resembling that of the World Health Organization 1948 definition. This suggests that future health impact measurement tools in the environmental volunteering sector could base their design around the World Health Organization’s definition.Keywords: health perception, impact measurement, mental models, tool development
Procedia PDF Downloads 1545970 A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots
Authors: Haodong Huang, Zida Zhao, Shilong Sun, Chiyao Li, Wenfu Xu
Abstract:
The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework.Keywords: deep reinforcement learning, interpretation, motion control, legged robots
Procedia PDF Downloads 245969 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M. Adam, S. Masuri
Abstract:
Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS Fluent 14.Keywords: turbulent flow, double forward, heat transfer, separation flow
Procedia PDF Downloads 4645968 Determination of Optimum Water Consumptive Using Deficit Irrigation Model for Barely: A Case Study in Arak, Iran
Authors: Mohsen Najarchi
Abstract:
This research was carried out in five fields (5-15 hectares) in Arak located in center of Iran, to determine optimum level of water consumed for Barely in four stages growth (vegetative, yield formation, flowering, and ripening). Actual evapotranspiration was calculated using measured water requirement in the fields. Five levels of water requirement equal to 50, 60, 70, 80, and 90 percents formed the treatments. To determine the optimum level of water requirement linear programming was used. The study showed 60 percent water requirement (40 percent deficit irrigation) has been the optimum level of irrigation for winter wheat in four stages of growth. Comparison between all of the treatments indicated above with normal condition (100% water requirement) shows increasing in water use efficiency. Although 40% deficit irrigation treatment lead to decrease of 38% in yield, net benefit was increasing in 11.37%. Furthermore, in comparison with normal condition, 70% of water requirement increased water use efficiency as 30%.Keywords: optimum, deficit irrigation, water use efficiency, evapotranspiration
Procedia PDF Downloads 3995967 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 6035966 Analytics Capabilities and Employee Role Stressors: Implications for Organizational Performance
Authors: Divine Agozie, Muesser Nat, Eric Afful-Dadzie
Abstract:
This examination attempts an analysis of the effect of business intelligence and analytics (BI&A) capabilities on organizational role stressors and the implications of such an effect on performance. Two hundred twenty-eight responses gathered from seventy-six firms across Ghana were analyzed using the Partial Least Squares Structural Equation Modelling (PLS-SEM) approach to validate the hypothesized relationships identified in the research model. Findings suggest both endogenous and exogenous dependencies of the sensing capability on the multiple role requirements of personnel. Further, transforming capability increases role conflict, whereas driving capability of BI&A systems impacts role conflict and role ambiguity. This study poses many practical insights to firms seeking to acquire analytics capabilities to drive performance and data-driven decision-making. It is important for firms to consider balancing role changes and task requirements before implementing and post-implementation stages of BI&A innovations.Keywords: business intelligence and analytics, dynamic capabilities view, organizational stressors, structural equation modelling
Procedia PDF Downloads 1145965 Empirical Study on Grassroots Innovation for Entrepreneurship Development with Microfinance Provision as Moderator
Authors: Sonal H. Singh, Bhaskar Bhowmick
Abstract:
The research hypothesis formulated in this paper examines the importance of microfinance provision for entrepreneurship development by engendering a high level of entrepreneurial orientation among the grassroots entrepreneurs. A theoretically well supported empirical framework is proposed to identify the influence of financial services and non-financial services provided by microfinance institutes in strengthening the impact of grassroots innovation on entrepreneurial orientation under resource constraints. In this paper, Grassroots innovation is perceived in three dimensions: new learning practice, localized solution, and network development. The study analyzes the moderating effect of microfinance provision on the relationship between grassroots innovation and entrepreneurial orientation. The paper employed structural equation modelling on 400 data entries from the grassroots entrepreneurs in India. The research intends to help policymakers, entrepreneurs and microfinance providers to promote the innovative design of microfinance services for the well-being of grassroots entrepreneurs and to foster sustainable entrepreneurship development.Keywords: entrepreneurship development, grassroots innovation, India, structural equation model
Procedia PDF Downloads 2675964 Machine Learning Approach for Yield Prediction in Semiconductor Production
Authors: Heramb Somthankar, Anujoy Chakraborty
Abstract:
This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis
Procedia PDF Downloads 1115963 Methods of Categorizing Architectural Technical Debt
Authors: Blessing Igbadumhe
Abstract:
The continuous long- and short-term delivery of value to customers continues to be the overarching objective of software organizations. Software engineering professionals and organizations face challenges in the maintenance and evolution of software as a result of architectural, technical debt. The issues of architectural, technical debt continue to receive a significant amount of attention because of its important impact on successful system implementation. The cost of doing nothing as far as architectural, technical debt is concerned can be significant both in financial terms and impacts on customers. Different architectural, technical debt issues exist, and this qualitative research design reviewed existing literature on the subject to identify and categorize them. This research intends to contribute to the existing bludgeoning body of knowledge on categorizations and descriptive model of technical debt related issues related to system architecture. The results identify the most common characteristics of architectural and technical debt categories. Raising awareness of the intricacies of architectural and technical debt helps technology stakeholders reduce negative consequences and increase the system success rate.Keywords: architecture, categorizing TD, system design, technical debt
Procedia PDF Downloads 925962 A Periodogram-Based Spectral Method Approach: The Relationship between Tourism and Economic Growth in Turkey
Authors: Mesut BALIBEY, Serpil TÜRKYILMAZ
Abstract:
A popular topic in the econometrics and time series area is the cointegrating relationships among the components of a nonstationary time series. Engle and Granger’s least squares method and Johansen’s conditional maximum likelihood method are the most widely-used methods to determine the relationships among variables. Furthermore, a method proposed to test a unit root based on the periodogram ordinates has certain advantages over conventional tests. Periodograms can be calculated without any model specification and the exact distribution under the assumption of a unit root is obtained. For higher order processes the distribution remains the same asymptotically. In this study, in order to indicate advantages over conventional test of periodograms, we are going to examine a possible relationship between tourism and economic growth during the period 1999:01-2010:12 for Turkey by using periodogram method, Johansen’s conditional maximum likelihood method, Engle and Granger’s ordinary least square method.Keywords: cointegration, economic growth, periodogram ordinate, tourism
Procedia PDF Downloads 2725961 A Study of Learning to Enhance Ability Career Skills Consistent With Disruptive Innovation in Creative Strategies for Advertising Course
Authors: Kornchanok Chidchaisuwan
Abstract:
This project is a study of learning activities through experience to enhance career skills and technical abilities on the creative strategies for advertising course of undergraduate students. This instructional model consisted of study learning approaches: 1) Simulation-based learning: used to create virtual learning activities plans for work like working at advertising companies. 2) Project-based learning: Actual work based on the processed creating and focus on producing creative works to present on new media channels. The results of learning management found that there were effects on the students in various areas, including 1) The learners have experienced in the step by step of advertising work process. 2) The learner has the skills to work from the actual work (Learning by Doing), allowing the ability to create, present, and produce the campaign accomplished achievements and published on online media at a better level.Keywords: technical, advertising, presentation, career skills, experience, simulation based learning
Procedia PDF Downloads 925960 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 345959 A Critical Evaluation of Building Information Modelling in New Zealand: Deepening Our Understanding of the Benefits and Drawbacks
Authors: Garry Miller, Thomas Alexander, Cameron Lee
Abstract:
There is belief that Building Information Modelling (BIM) will improve performance of the New Zealand (NZ) Architecture, Engineering and Construction (AEC) sector, however, widespread use of BIM is yet to be seen. Previous research indicates there are many issues affecting the uptake of BIM in NZ; nevertheless the underlying benefits, drawbacks, and barriers preventing more widespread uptake are not fully understood. This investigation aimed to understand these factors more clearly and make suggestions on how to improve the uptake of BIM in NZ. Semi-structured interviews were conducted with a range of industry professionals to gather a qualitative understanding. Findings indicated the ability to incorporate better information into a BIM model could drive many benefits. However scepticism and lack of positive incentives in NZ are affecting its widespread use. This concluded that there is a need for the government to produce a number of BIM case studies and develop a set of BIM standards to resolve payment issues surrounding BIM use. This study provides useful information for those interested in BIM and members of government interested in improving the performance of the construction industry. This study may also be of interest to small, developed countries such as NZ where the level of BIM maturity is relatively low.Keywords: BIM, New Zealand, AEC sector, building information modelling
Procedia PDF Downloads 5195958 Finite Element Analysis and Multibody Dynamics of 6-DOF Industrial Robot
Authors: Rahul Arora, S. S. Dhami
Abstract:
This paper implements the design structure of industrial robot along with the different transmission components like gear assembly and analysis of complete industrial robot. In this paper, it gives the overview on the most efficient types of modeling and different analysis results that can be obtained for an industrial robot. The investigation is executed in regards to two classifications i.e. the deformation and the stress tests. SolidWorks is utilized to design and review the 3D drawing plan while ANSYS Workbench is utilized to execute the FEA on an industrial robot and the designed component. The CAD evaluation was conducted on a disentangled model of an industrial robot. The study includes design and drafting its transmission system. In CAE study static, modal and dynamic analysis are presented. Every one of the outcomes is divided in regard with the impact of the static and dynamic analysis on the situating exactness of the robot. It gives critical data with respect to parts of the industrial robot that are inclined to harm under higher high force applications. Therefore, the mechanical structure under different operating conditions can help in optimizing the manipulator geometry and in selecting the right material for the same. The FEA analysis is conducted for four different materials on the same industrial robot and gear assembly.Keywords: CAD, CAE, FEA, robot, static, dynamic, modal, gear assembly
Procedia PDF Downloads 3805957 Solutions for Large Diameter Piles Stifness Used in Offshore Wind Turbine Farms
Authors: M. H. Aissa, Amar Bouzid Dj
Abstract:
As known, many countries are now planning to build new wind farms with high capacity up to 5MW. Consequently, the size of the foundation increase. These kinds of structures are subject to fatigue damage from environmental loading mainly due to wind and waves as well as from cyclic loading imposed through the rotational frequency (1P) through mass and aerodynamic imbalances and from the blade passing frequency (3P) of the wind turbine which make them behavior dynamically very sensitive. That is why natural frequency must be determined with accuracy from the existing data of the soil and the foundation stiffness sources of uncertainties, to avoid the resonance of the system. This paper presents analytical expressions of stiffness foundation with large diameter in linear soil behavior in different soil stiffness profile. To check the accuracy of the proposed formulas, a mathematical model approach based on non-dimensional parameters is used to calculate the natural frequency taking into account the soil structure interaction (SSI) compared with the p-y method and measured frequency in the North Sea Wind farms.Keywords: offshore wind turbines, semi analytical FE analysis, p-y curves, piles foundations
Procedia PDF Downloads 4685956 Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector
Authors: Arnold I. Malag
Abstract:
The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment.Keywords: solid waste, coastal waste, waste characterization, waste collector
Procedia PDF Downloads 84