Search results for: cover image
2858 Music Note Detection and Dictionary Generation from Music Sheet Using Image Processing Techniques
Authors: Muhammad Ammar, Talha Ali, Abdul Basit, Bakhtawar Rajput, Zobia Sohail
Abstract:
Music note detection is an area of study for the past few years and has its own influence in music file generation from sheet music. We proposed a method to detect music notes on sheet music using basic thresholding and blob detection. Subsequently, we created a notes dictionary using a semi-supervised learning approach. After notes detection, for each test image, the new symbols are added to the dictionary. This makes the notes detection semi-automatic. The experiments are done on images from a dataset and also on the captured images. The developed approach showed almost 100% accuracy on the dataset images, whereas varying results have been seen on captured images.Keywords: music note, sheet music, optical music recognition, blob detection, thresholding, dictionary generation
Procedia PDF Downloads 1822857 Estimating Understory Species Diversity of West Timor Tropical Savanna, Indonesia: The Basis for Planning an Integrated Management of Agricultural and Environmental Weeds and Invasive Species
Authors: M. L. Gaol, I. W. Mudita
Abstract:
Indonesia is well known as a country covered by lush tropical rain forests, but in fact, the northeastern part of the country, within the areas geologically known as Lesser Sunda, the dominant vegetation is tropical savanna. Lesser Sunda is a chain of islands located closer to Australia than to islands in the other parts of the country. Among those of islands in the chain which is closes to Australia, and thereby most strongly affected by the hot and dry Australian climate, is the island of Timor, the western part of which belongs to Indonesia and the eastern part is a sovereign state East Timor. Regardless of being the most dominant vegetation cover, tropical savanna in West Timor, especially its understory, is rarely investigated. This research was therefore carried out to investigate the structure, composition and diversity of the understory of this tropical savanna as the basis for looking at the possibility of introducing other spesieis for various purposes. For this research, 14 terrestrial communities representing major types of the existing savannas in West Timor was selected with aid of the most recently available satellite imagery. At each community, one stand of the size of 50 m x 50 m most likely representing the community was as the site of observation for the type of savanna under investigation. At each of the 14 communities, 20 plots of 1 m x 1 m in size was placed at random to identify understory species and to count the total number of individuals and to estimate the cover of each species. Based on such counts and estimation, the important value of each species was later calculated. The results of this research indicated that the understory of savanna in West Timor consisted of 73 understory species. Of this number of species, 18 species are grasses and 55 are non-grasses. Although lower than non-grass species, grass species indeed dominated the savanna as indicated by their number of individuals (65.33 vs 34.67%), species cover (57.80 vs 42.20%), and important value (123.15 vs 76.85). Of the 14 communities, the lowest density of grass was 13.50/m2 and the highest was 417.50/m2. Of 18 grass species found, all were commonly found as agricultural weeds, whereas of 55 non-grass, 10 species were commonly found as agricultural weeds, environmental weeds, or invasive species. In terms of better managing the savanna in the region, these findings provided the basis for planning a more integrated approach in managing such agricultural and environmental weeds as well as invasive species by considering the structure, composition, and species diversity of the understory species existing in each site. These findings also provided the basis for better understanding the flora of the region as a whole and for developing a flora database of West Timor in future.Keywords: tropical savanna, understory species, integrated management, weedy and invasive species
Procedia PDF Downloads 1362856 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 3462855 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization
Procedia PDF Downloads 2142854 Plagiarism Detection for Flowchart and Figures in Texts
Authors: Ahmadu Maidorawa, Idrissa Djibo, Muhammad Tella
Abstract:
This paper presents a method for detecting flow chart and figure plagiarism based on shape of image processing and multimedia retrieval. The method managed to retrieve flowcharts with ranked similarity according to different matching sets. Plagiarism detection is well known phenomenon in the academic arena. Copying other people is considered as serious offense that needs to be checked. There are many plagiarism detection systems such as turn-it-in that has been developed to provide these checks. Most, if not all, discard the figures and charts before checking for plagiarism. Discarding the figures and charts result in look holes that people can take advantage. That means people can plagiarize figures and charts easily without the current plagiarism systems detecting it. There are very few papers which talks about flowcharts plagiarism detection. Therefore, there is a need to develop a system that will detect plagiarism in figures and charts.Keywords: flowchart, multimedia retrieval, figures similarity, image comparison, figure retrieval
Procedia PDF Downloads 4672853 The Design of Imaginable Urban Road Landscape
Authors: Wang Zhenzhen, Wang Xu, Hong Liangping
Abstract:
With the rapid development of cities, the way that people commute has changed greatly, meanwhile, people turn to require more on physical and psychological aspects in the contemporary world. However, the current urban road landscape ignores these changes, for example, those road landscape elements are boring, confusing, fragmented and lack of integrity and hierarchy. Under such current situation, in order to shape beautiful, identifiable and unique road landscape, this article concentrates on the target of imaginability. This paper analyses the main elements of the urban road landscape, the concept of image and its generation mechanism, and then discusses the necessity and connotation of building imaginable urban road landscape as well as the main problems existing in current urban road landscape in terms of imaginability. Finally, this paper proposes how to design imaginable urban road landscape in details based on a specific case.Keywords: identifiability, imaginability, road landscape, the image of the city
Procedia PDF Downloads 4432852 Representation of the Iranian Community in the Videos of the Instagram Page of the World Health Organization Representative in Iran
Authors: Naeemeh Silvari
Abstract:
The phenomenon of the spread and epidemic of the corona virus caused many aspects of the social life of the people of the world to face various challenges. In this regard, and in order to improve the living conditions of the people, the World Health Organization has tried to publish the necessary instructions for its contacts in the world in the form of its media capacities. Considering the importance of cultural differences in the discussion of health communication and the distinct needs of people in different societies, some production contents were produced and published exclusively. This research has studied six videos published on the official page of the World Health Organization in Iran as a case study. The published content has the least semantic affinity with Iranian culture, and it has been tried to show a uniform image of the Middle East with the predominance of the image of the culture of the developing Arab countries.Keywords: corona, representation, semiotics, instagram, health communication
Procedia PDF Downloads 932851 An Integrated Approach to Assessing Urban Nature as an Indicator to Mitigate Urban Heat Island Effect: A Case Study of Lahore, Pakistan
Authors: Muhammad Nasar-u-Minallah, Dagmar Haase, Salman Qureshi
Abstract:
Rapid urbanization significantly change land use, urban nature, land surface vegetation cover, and heat distribution, leading to the formation of urban heat island (UHI) effect and affecting the healthy growth of cities and the comfort of human living style. Past information and present changes in Land Surface Temperature (LST) and urban landscapes could be useful to geographers, environmentalists, and urban planners in an attempt to shape the urban development process and mitigate the effects of urban heat islands (UHI). This study aims at using Satellite Remote Sensing (SRS) and GIS techniques to develop an approach for assessing the urban nature and UHI effects in Lahore, Pakistan. The study employed the Radiative Transfer Method (RTM) in estimating LST to assess the SUHI effect during the interval of 20 years (2000-2020). The assessment was performed by the available Landsat 7/ETM+ and Landsat 8/OIL_TIRs data for the years 2000, 2010, and 2020 respectively. Pearson’s correlation and normalized mutual information were applied to investigate the relationship between green space characteristics and LST. The result of this work revealed that the influence of urban heat island is not always at the city centers but sometimes in the outskirt where a lot of development activities were going on towards the direction of expansion of Lahore, Pakistan. The present study explores the usage of image processing and spatial analysis in the drive towards achieving urban greening of Lahore and a sustainable urban environment in terms of urban planning, policy, and decision making and promoting the healthy and sustainable urban environment of the city.Keywords: urban nature, urban heat islands, urban green space, land use, Lahore
Procedia PDF Downloads 1172850 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1312849 Kinoform Optimisation Using Gerchberg- Saxton Iterative Algorithm
Authors: M. Al-Shamery, R. Young, P. Birch, C. Chatwin
Abstract:
Computer Generated Holography (CGH) is employed to create digitally defined coherent wavefronts. A CGH can be created by using different techniques such as by using a detour-phase technique or by direct phase modulation to create a kinoform. The detour-phase technique was one of the first techniques that was used to generate holograms digitally. The disadvantage of this technique is that the reconstructed image often has poor quality due to the limited dynamic range it is possible to record using a medium with reasonable spatial resolution.. The kinoform (phase-only hologram) is an alternative technique. In this method, the phase of the original wavefront is recorded but the amplitude is constrained to be constant. The original object does not need to exist physically and so the kinoform can be used to reconstruct an almost arbitrary wavefront. However, the image reconstructed by this technique contains high levels of noise and is not identical to the reference image. To improve the reconstruction quality of the kinoform, iterative techniques such as the Gerchberg-Saxton algorithm (GS) are employed. In this paper the GS algorithm is described for the optimisation of a kinoform used for the reconstruction of a complex wavefront. Iterations of the GS algorithm are applied to determine the phase at a plane (with known amplitude distribution which is often taken as uniform), that satisfies given phase and amplitude constraints in a corresponding Fourier plane. The GS algorithm can be used in this way to enhance the reconstruction quality of the kinoform. Different images are employed as the reference object and their kinoform is synthesised using the GS algorithm. The quality of the reconstructed images is quantified to demonstrate the enhanced reconstruction quality achieved by using this method.Keywords: computer generated holography, digital holography, Gerchberg-Saxton algorithm, kinoform
Procedia PDF Downloads 5342848 Investigating the Effectiveness of a 3D Printed Composite Mold
Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg
Abstract:
In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.Keywords: additive manufacturing, carbon fiber, composite tooling, molds
Procedia PDF Downloads 1142847 Shattering Negative Stigmas, Creating Empathy and Willingness to Advocate for Unpopular Endangered Species: Evidence from Shark Watching in Israel
Authors: Nurit Carmi
Abstract:
There are many endangered species that are not popular but whose conservation is, nonetheless, important. The present study deals with sharks who suffer from demonization and, accordingly, from public indifference to the deteriorating state of their conservation. We used the seasonal appearance of sharks in the Israeli coastal zone to study public perceptions and attitudes towards sharks prior to ("control group") and after ("visitors") shark watching during a visit in an information center. We found that shark’s image was significantly more positive among the "visitors" compared to the control group. We found that visiting in the information center was strongly related to a more positive shark image, attitudes toward shark conservation, and willingness to act to preserve them.Keywords: wildlife tourism, shark conservation, attitudes towards animals, human-animal relationships, Smith's salience index
Procedia PDF Downloads 1702846 Use of Artificial Intelligence and Two Object-Oriented Approaches (k-NN and SVM) for the Detection and Characterization of Wetlands in the Centre-Val de Loire Region, France
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Nowadays, wetlands are the subject of contradictory debates opposing scientific, political and administrative meanings. Indeed, given their multiple services (drinking water, irrigation, hydrological regulation, mineral, plant and animal resources...), wetlands concentrate many socio-economic and biodiversity issues. In some regions, they can cover vast areas (>100 thousand ha) of the landscape, such as the Camargue area in the south of France, inside the Rhone delta. The high biological productivity of wetlands, the strong natural selection pressures and the diversity of aquatic environments have produced many species of plants and animals that are found nowhere else. These environments are tremendous carbon sinks and biodiversity reserves depending on their age, composition and surrounding environmental conditions, wetlands play an important role in global climate projections. Covering more than 3% of the earth's surface, wetlands have experienced since the beginning of the 1990s a tremendous revival of interest, which has resulted in the multiplication of inventories, scientific studies and management experiments. The geographical and physical characteristics of the wetlands of the central region conceal a large number of natural habitats that harbour a great biological diversity. These wetlands, one of the natural habitats, are still influenced by human activities, especially agriculture, which affects its layout and functioning. In this perspective, decision-makers need to delimit spatial objects (natural habitats) in a certain way to be able to take action. Thus, wetlands are no exception to this rule even if it seems to be a difficult exercise to delimit a type of environment as whose main characteristic is often to occupy the transition between aquatic and terrestrial environment. However, it is possible to map wetlands with databases, derived from the interpretation of photos and satellite images, such as the European database Corine Land cover, which allows quantifying and characterizing for each place the characteristic wetland types. Scientific studies have shown limitations when using high spatial resolution images (SPOT, Landsat, ASTER) for the identification and characterization of small wetlands (1 hectare). To address this limitation, it is important to note that these wetlands generally represent spatially complex features. Indeed, the use of very high spatial resolution images (>3m) is necessary to map small and large areas. However, with the recent evolution of artificial intelligence (AI) and deep learning methods for satellite image processing have shown a much better performance compared to traditional processing based only on pixel structures. Our research work is also based on spectral and textural analysis on THR images (Spot and IRC orthoimage) using two object-oriented approaches, the nearest neighbour approach (k-NN) and the Super Vector Machine approach (SVM). The k-NN approach gave good results for the delineation of wetlands (wet marshes and moors, ponds, artificial wetlands water body edges, ponds, mountain wetlands, river edges and brackish marshes) with a kappa index higher than 85%.Keywords: land development, GIS, sand dunes, segmentation, remote sensing
Procedia PDF Downloads 722845 Endocardial Ultrasound Segmentation using Level Set method
Authors: Daoudi Abdelaziz, Mahmoudi Saïd, Chikh Mohamed Amine
Abstract:
This paper presents a fully automatic segmentation method of the left ventricle at End Systolic (ES) and End Diastolic (ED) in the ultrasound images by means of an implicit deformable model (level set) based on Geodesic Active Contour model. A pre-processing Gaussian smoothing stage is applied to the image, which is essential for a good segmentation. Before the segmentation phase, we locate automatically the area of the left ventricle by using a detection approach based on the Hough Transform method. Consequently, the result obtained is used to automate the initialization of the level set model. This initial curve (zero level set) deforms to search the Endocardial border in the image. On the other hand, quantitative evaluation was performed on a data set composed of 15 subjects with a comparison to ground truth (manual segmentation).Keywords: level set method, transform Hough, Gaussian smoothing, left ventricle, ultrasound images.
Procedia PDF Downloads 4652844 Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India
Authors: Suraj Jena, Rabindra Kumar Panda
Abstract:
The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability.Keywords: Groundwater recharge, climate variability, Land use/cover, GCM
Procedia PDF Downloads 2832843 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model
Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka
Abstract:
The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing
Procedia PDF Downloads 3002842 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer
Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod
Abstract:
To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.Keywords: inertial confinement fusion, mach-zehnder interferometer, digital holographic microscopy, image reconstruction, holovision
Procedia PDF Downloads 3042841 Automatic Measurement of Garment Sizes Using Deep Learning
Authors: Maulik Parmar, Sumeet Sandhu
Abstract:
The online fashion industry experiences high product return rates. Many returns are because of size/fit mismatches -the size scale on labels can vary across brands, the size parameters may not capture all fit measurements, or the product may have manufacturing defects. Warehouse quality check of garment sizes can be semi-automated to improve speed and accuracy. This paper presents an approach for automatically measuring garment sizes from a single image of the garment -using Deep Learning to learn garment keypoints. The paper focuses on the waist size measurement of jeans and can be easily extended to other garment types and measurements. Experimental results show that this approach can greatly improve the speed and accuracy of today’s manual measurement process.Keywords: convolutional neural networks, deep learning, distortion, garment measurements, image warping, keypoints
Procedia PDF Downloads 3132840 Using Hyperspectral Camera and Deep Learning to Identify the Ripeness of Sugar Apples
Authors: Kuo-Dung Chiou, Yen-Xue Chen, Chia-Ying Chang
Abstract:
This study uses AI technology to establish an expert system and establish a fruit appearance database for pineapples and custard apples. It collects images based on appearance defects and fruit maturity. It uses deep learning to detect the location of the fruit and can detect the appearance of the fruit in real-time. Flaws and maturity. In addition, a hyperspectral camera was used to scan pineapples and custard apples, and the light reflection at different frequency bands was used to find the key frequency band for pectin softening in post-ripe fruits. Conducted a large number of multispectral image collection and data analysis to establish a database of Pineapple Custard Apple and Big Eyed Custard Apple, which includes a high-definition color image database, a hyperspectral database in the 377~1020 nm frequency band, and five frequency band images (450, 500, 670, 720, 800nm) multispectral database, which collects 4896 images and manually labeled ground truth; 26 hyperspectral pineapple custard apple fruits (520 images each); multispectral custard apple 168 fruits (5 images each). Using the color image database to train deep learning Yolo v4's pre-training network architecture and adding the training weights established by the fruit database, real-time detection performance is achieved, and the recognition rate reaches over 97.96%. We also used multispectral to take a large number of continuous shots and calculated the difference and average ratio of the fruit in the 670 and 720nm frequency bands. They all have the same trend. The value increases until maturity, and the value will decrease after maturity. Subsequently, the sub-bands will be added to analyze further the numerical analysis of sugar content and moisture, and the absolute value of maturity and the data curve of maturity will be found.Keywords: hyperspectral image, fruit firmness, deep learning, automatic detection, automatic measurement, intelligent labor saving
Procedia PDF Downloads 32839 A Single Feature Probability-Object Based Image Analysis for Assessing Urban Landcover Change: A Case Study of Muscat Governorate in Oman
Authors: Salim H. Al Salmani, Kevin Tansey, Mohammed S. Ozigis
Abstract:
The study of the growth of built-up areas and settlement expansion is a major exercise that city managers seek to undertake to establish previous and current developmental trends. This is to ensure that there is an equal match of settlement expansion needs to the appropriate levels of services and infrastructure required. This research aims at demonstrating the potential of satellite image processing technique, harnessing the utility of single feature probability-object based image analysis technique in assessing the urban growth dynamics of the Muscat Governorate in Oman for the period 1990, 2002 and 2013. This need is fueled by the continuous expansion of the Muscat Governorate beyond predicted levels of infrastructural provision. Landsat Images of the years 1990, 2002 and 2013 were downloaded and preprocessed to forestall appropriate radiometric and geometric standards. A novel approach of probability filtering of the target feature segment was implemented to derive the spatial extent of the final Built-Up Area of the Muscat governorate for the three years period. This however proved to be a useful technique as high accuracy assessment results of 55%, 70%, and 71% were recorded for the Urban Landcover of 1990, 2002 and 2013 respectively. Furthermore, the Normalized Differential Built – Up Index for the various images were derived and used to consolidate the results of the SFP-OBIA through a linear regression model and visual comparison. The result obtained showed various hotspots where urbanization have sporadically taken place. Specifically, settlement in the districts (Wilayat) of AL-Amarat, Muscat, and Qurayyat experienced tremendous change between 1990 and 2002, while the districts (Wilayat) of AL-Seeb, Bawshar, and Muttrah experienced more sporadic changes between 2002 and 2013.Keywords: urban growth, single feature probability, object based image analysis, landcover change
Procedia PDF Downloads 2752838 Vibration Imaging Method for Vibrating Objects with Translation
Authors: Kohei Shimasaki, Tomoaki Okamura, Idaku Ishii
Abstract:
We propose a vibration imaging method for high frame rate (HFR)-video-based localization of vibrating objects with large translations. When the ratio of the translation speed of a target to its vibration frequency is large, obtaining its frequency response in image intensities becomes difficult because one or no waves are observable at the same pixel. Our method can precisely localize moving objects with vibration by virtually translating multiple image sequences for pixel-level short-time Fourier transform to observe multiple waves at the same pixel. The effectiveness of the proposed method is demonstrated by analyzing several HFR videos of flying insects in real scenarios.Keywords: HFR video analysis, pixel-level vibration source localization, short-time Fourier transform, virtual translation
Procedia PDF Downloads 1082837 The Death of Ruan Lingyu: Leftist Aesthetics and Cinematic Reality in the 1930s Shanghai
Authors: Chen Jin
Abstract:
This topic seeks to re-examine the New Women Incident in 1935 Shanghai from the perspective of the influence of leftist cinematic aesthetics on public discourse in 1930s Shanghai. Accordingly, an original means of interpreting the death of Ruan Lingyu will be provided. On 8th March 1935, Ruan Lingyu, the queen of Chinese silent film, committed suicide through overdosing on sleeping tablets. Her last words, ‘gossip is fearful thing’, interlinks her destiny with the protagonist she played in the film The New Women (Cai Chusheng, 1935). The coincidence was constantly questioned by the masses following her suicide, constituting the enduring question: ‘who killed Ruan Lingyu?’ Responding to this query, previous scholars primarily analyze the characters played by women -particularly new women as part of the leftist movement or public discourse of 1930s Shanghai- as a means of approaching the truth. Nevertheless, alongside her status as a public celebrity, Ruan Lingyu also plays as a screen image of mechanical reproduction. The overlap between her screen image and personal destiny attracts limited academic focus in terms of the effect and implications of leftist aesthetics of reality in relation to her death, which itself has provided impetus to this research. With the reconfiguration of early Chinese film theory in the 1980s, early discourses on the relationship between cinematic reality and consciousness proposed by Hou Yao and Gu Kenfu in the 1920s are integrated into the category of Chinese film ontology, which constitutes a transcultural contrast with the Euro-American ontology that advocates the representation of reality. The discussion of Hou and Gu overlaps cinematic reality with effect, which emphasizes the empathy of cinema that is directly reflected in the leftist aesthetics of the 1930s. As the main purpose of leftist cinema is to encourage revolution through depicting social reality truly, Ruan Lingyu became renowned for her natural and realistic acting proficiency, playing leading roles in several esteemed leftist films. The realistic reproduction and natural acting skill together constitute the empathy of leftist films, which establishes a dialogue with the virtuous female image within the 1930s public discourse. On this basis, this research considers Chinese cinematic ontology and affect theory as the theoretical foundation for investigating the relationship between the screen image of Ruan Lingyu reproduced by the leftist film The New Women and the female image in the 1930s public discourse. Through contextualizing Ruan Lingyu’s death within the Chinese leftist movement, the essay indicates that the empathy embodied within leftist cinematic reality limits viewers’ cognition of the actress, who project their sentiments for the perfect screen image on to Ruan Lingyu’s image in reality. Essentially, Ruan Lingyu is imprisoned in her own perfect replication. Consequently, this article states that alongside leftist anti-female consciousness, the leftist aesthetics of reality restricts women in a passive position within public discourse, which ultimately plays a role in facilitating the death of Ruan Lingyu.Keywords: cinematic reality, leftist aesthetics, Ruan Lingyu, The New Women
Procedia PDF Downloads 1222836 Added Value of 3D Ultrasound Image Guided Hepatic Interventions by X Matrix Technology
Authors: Ahmed Abdel Sattar Khalil, Hazem Omar
Abstract:
Background: Image-guided hepatic interventions are integral to the management of infective and neoplastic liver lesions. Over the past decades, 2D ultrasound was used for guidance of hepatic interventions; with the recent advances in ultrasound technology, 3D ultrasound was used to guide hepatic interventions. The aim of this study was to illustrate the added value of 3D image guided hepatic interventions by x matrix technology. Patients and Methods: This prospective study was performed on 100 patients who were divided into two groups; group A included 50 patients who were managed by 2D ultrasonography probe guidance, and group B included 50 patients who were managed by 3D X matrix ultrasonography probe guidance. Thermal ablation was done for 70 patients, 40 RFA (20 by the 2D probe and 20 by the 3D x matrix probe), and 30 MWA (15 by the 2D probe and 15 by the 3D x matrix probe). Chemical ablation (PEI) was done on 20 patients (10 by the 2D probe and 10 by the 3D x matrix probe). Drainage of hepatic collections and biopsy from undiagnosed hepatic focal lesions was done on 10 patients (5 by the 2D probe and 5 by the 3D x matrix probe). Results: The efficacy of ultrasonography-guided hepatic interventions by 3D x matrix probe was higher than the 2D probe but not significantly higher, with a p-value of 0.705, 0.5428 for RFA, MWA respectively, 0.5312 for PEI, 0.2918 for drainage of hepatic collections and biopsy. The complications related to the use of the 3D X matrix probe were significantly lower than the 2D probe, with a p-value of 0.003. The timing of the procedure was shorter by the usage of 3D x matrix probe in comparison to the 2D probe with a p-value of 0.08,0.34 for RFA and PEI and significantly shorter for MWA, and drainage of hepatic collection, biopsy with a P-value of 0.02,0.001 respectively. Conclusions: 3D ultrasonography-guided hepatic interventions by  x matrix probe have better efficacy, less complication, and shorter time of procedure than the 2D ultrasonography-guided hepatic interventions.Keywords: 3D, X matrix, 2D, ultrasonography, MWA, RFA, PEI, drainage of hepatic collections, biopsy
Procedia PDF Downloads 952835 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 1602834 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: segmentation, road signs, characters, classification
Procedia PDF Downloads 4442833 Automatic Extraction of Water Bodies Using Whole-R Method
Authors: Nikhat Nawaz, S. Srinivasulu, P. Kesava Rao
Abstract:
Feature extraction plays an important role in many remote sensing applications. Automatic extraction of water bodies is of great significance in many remote sensing applications like change detection, image retrieval etc. This paper presents a procedure for automatic extraction of water information from remote sensing images. The algorithm uses the relative location of R-colour component of the chromaticity diagram. This method is then integrated with the effectiveness of the spatial scale transformation of whole method. The whole method is based on water index fitted from spectral library. Experimental results demonstrate the improved accuracy and effectiveness of the integrated method for automatic extraction of water bodies.Keywords: feature extraction, remote sensing, image retrieval, chromaticity, water index, spectral library, integrated method
Procedia PDF Downloads 3862832 Sociocultural Influences on Men of Color’s Body Image Concerns: A Structural Equation Modeling Study
Authors: Zikun Li, Regine Talleyrand
Abstract:
Negative body image is one of the most common causes of eating disorders, and it is not only happening to women. Regardless of the increasing attention that researchers and practitioners have been paying to the male population and their body image concerns, men of color have yet to be fully represented or studied. Given the consensus that the sociocultural experiences of people of color may play a significant role in their health and well-being, this study focused on assessing the mechanism through which sociocultural factors may influence men of color’s perceptions of body image. In particular, this study focused on untangling how interpersonal and media pressure, as well as ethnic-racial identities and perceptions, would impact body dissatisfaction in terms of muscularity, body fat, and height in men of color and how this mechanism is moderated across different ethnic-racial groups. The structural equation modeling approach was therefore applied to achieve the research goal. With the sample size of 181 self-identified Black, Indigenous, and People of Color male participants aged 20-50 (M=33.33, SD=6.9) through surveying on Amazon’s MTurk platform, the proposed model achieved a modestly acceptable model fit with the pooled sample, X2(836) = 1412.184, CFI = 0.900, RMSEA = 0.062 [0.056, 0.067]. And SRMR = 0.088, And it explained 89.5% of the variance in body dissatisfaction. The results showed that of all the direct effects on body dissatisfaction, interpersonal appearance pressure exhibited the strongest effect (β = 0.410***), followed by media appearance pressure (β = 0.272**) and self-hatred feeling (β = 0.245**). The ethnic-racial related factors (i.e., stereotype endorsement, ethnic-racial salience, and nationalistic assimilation) statistically influenced body dissatisfaction through the mediators of media appearance pressure and/or self-hatred feeling. Furthermore, the moderation analysis between Black/African American men and non-Black/African American men revealed the substantial differences in how ethnic/racial identity impacts one’s perception of body image, and the Black/African American men were found to be influenced by sociocultural factors at a higher level, compared with their counterparts. The impacts of demographic characteristics (i.e., SES, weight, height) on body dissatisfaction were also examined. Instead of considering interpersonal appearance pressure and media pressure as two subscales under one construct, this study considered them as two separate and distinct sociocultural factors. The good model fit to the data indicates this rationality and encourages scholars to reconsider the impacts of two sources of social pressures on body dissatisfaction. In addition, this study also provided empirical evidence of the moderation effect existing within the population of men of color, which reveals the heterogeneity existing across different ethnic-racial groups and implies the necessity to study individual ethnic-racial groups so as to better understand the mechanism of sociocultural influences on men of color’s body dissatisfaction. These findings strengthened the current understanding of the body image concerns exciting among men of color and meanwhile provided empirical evidence for practitioners to provide tailored health prevention and treatment options for this growing population in the United States.Keywords: men of color, body image concerns, sociocultural factors, structural equation modeling
Procedia PDF Downloads 702831 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 1032830 Artificial Intelligence Based Analysis of Magnetic Resonance Signals for the Diagnosis of Tissue Abnormalities
Authors: Kapila Warnakulasuriya, Walimuni Janaka Mendis
Abstract:
In this study, an artificial intelligence-based approach is developed to diagnose abnormal tissues in human or animal bodies by analyzing magnetic resonance signals. As opposed to the conventional method of generating an image from the magnetic resonance signals, which are then evaluated by a radiologist for the diagnosis of abnormalities, in the discussed approach, the magnetic resonance signals are analyzed by an artificial intelligence algorithm without having to generate or analyze an image. The AI-based program compares magnetic resonance signals with millions of possible magnetic resonance waveforms which can be generated from various types of normal tissues. Waveforms generated by abnormal tissues are then identified, and images of the abnormal tissues are generated with the possible location of them in the body for further diagnostic tests.Keywords: magnetic resonance, artificial intelligence, magnetic waveform analysis, abnormal tissues
Procedia PDF Downloads 912829 Spatial Object-Oriented Template Matching Algorithm Using Normalized Cross-Correlation Criterion for Tracking Aerial Image Scene
Authors: Jigg Pelayo, Ricardo Villar
Abstract:
Leaning on the development of aerial laser scanning in the Philippine geospatial industry, researches about remote sensing and machine vision technology became a trend. Object detection via template matching is one of its application which characterized to be fast and in real time. The paper purposely attempts to provide application for robust pattern matching algorithm based on the normalized cross correlation (NCC) criterion function subjected in Object-based image analysis (OBIA) utilizing high-resolution aerial imagery and low density LiDAR data. The height information from laser scanning provides effective partitioning order, thus improving the hierarchal class feature pattern which allows to skip unnecessary calculation. Since detection is executed in the object-oriented platform, mathematical morphology and multi-level filter algorithms were established to effectively avoid the influence of noise, small distortion and fluctuating image saturation that affect the rate of recognition of features. Furthermore, the scheme is evaluated to recognized the performance in different situations and inspect the computational complexities of the algorithms. Its effectiveness is demonstrated in areas of Misamis Oriental province, achieving an overall accuracy of 91% above. Also, the garnered results portray the potential and efficiency of the implemented algorithm under different lighting conditions.Keywords: algorithm, LiDAR, object recognition, OBIA
Procedia PDF Downloads 246