Search results for: Zinc- aluminum alloy
804 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension
Authors: Majid Eslami
Abstract:
Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension
Procedia PDF Downloads 210803 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints
Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi
Abstract:
This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy
Procedia PDF Downloads 329802 Concepts of Technologies Based on Smart Materials to Improve Aircraft Aerodynamic Performance
Authors: Krzysztof Skiba, Zbigniew Czyz, Ksenia Siadkowska, Piotr Borowiec
Abstract:
The article presents selected concepts of technologies that use intelligent materials in aircraft in order to improve their performance. Most of the research focuses on solutions that improve the performance of fixed wing aircraft due to related to their previously dominant market share. Recently, the development of the rotorcraft has been intensive, so there are not only helicopters but also gyroplanes and unmanned aerial vehicles using rotors and vertical take-off and landing. There are many different technologies to change a shape of the aircraft or its elements. Piezoelectric, deformable actuator systems can be applied in the system of an active control of vibration dampening in the aircraft tail structure. Wires made of shape memory alloys (SMA) could be used instead of hydraulic cylinders in the rear part of the aircraft flap. The aircraft made of intelligent materials (piezoelectrics and SMA) is one of the NASA projects which provide the possibility of changing a wing shape coefficient by 200%, a wing surface by 50%, and wing deflections by 20 degrees. Active surfaces made of shape memory alloys could be used to control swirls in the flowing stream. An intelligent control system for helicopter blades is a method for the active adaptation of blades to flight conditions and the reduction of vibrations caused by the rotor. Shape memory alloys are capable of recovering their pre-programmed shapes. They are divided into three groups: nickel-titanium-based, copper-based, and ferromagnetic. Due to the strongest shape memory effect and the best vibration damping ability, a Ni-Ti alloy is the most commercially important. The subject of this work was to prepare a conceptual design of a rotor blade with SMA actuators. The scope of work included 3D design of the supporting rotor blade, 3D design of beams enabling to change the geometry by changing the angle of rotation and FEM (Finite Element Method) analysis. The FEM analysis was performed using NX 12 software in the Pre/Post module, which includes extended finite element modeling tools and visualizations of the obtained results. Calculations are presented for two versions of the blade girders. For FEM analysis, three types of materials were used for comparison purposes (ABS, aluminium alloy 7057, steel C45). The analysis of internal stresses and extreme displacements of crossbars edges was carried out. The internal stresses in all materials were close to the yield point in the solution of girder no. 1. For girder no. 2 solution, the value of stresses decreased by about 45%. As a result of the displacement analysis, it was found that the best solution was the ABS girder no. 1. The displacement of about 0.5 mm was obtained, which resulted in turning the crossbars (upper and lower) by an angle equal to 3.59 degrees. This is the largest deviation of all the tests. The smallest deviation was obtained for beam no. 2 made of steel. The displacement value of the second girder solution was approximately 30% lower than the first solution. Acknowledgement: This work has been financed by the Polish National Centre for Research and Development under the LIDER program, Grant Agreement No. LIDER/45/0177/L-9/17/NCBR/2018.Keywords: aircraft, helicopters, shape memory alloy, SMA, smart material, unmanned aerial vehicle, UAV
Procedia PDF Downloads 138801 Miniaturized PVC Sensors for Determination of Fe2+, Mn2+ and Zn2+ in Buffalo-Cows’ Cervical Mucus Samples
Authors: Ahmed S. Fayed, Umima M. Mansour
Abstract:
Three polyvinyl chloride membrane sensors were developed for the electrochemical evaluation of ferrous, manganese and zinc ions. The sensors were used for assaying metal ions in cervical mucus (CM) of Egyptian river buffalo-cows (Bubalus bubalis) as their levels vary dependent on cyclical hormone variation during different phases of estrus cycle. The presented sensors are based on using ionophores, β-cyclodextrin (β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and sulfocalix-4-arene (SCAL) for sensors 1, 2 and 3 for Fe2+, Mn2+ and Zn2+, respectively. Dioctyl phthalate (DOP) was used as the plasticizer in a polymeric matrix of polyvinylchloride (PVC). For increasing the selectivity and sensitivity of the sensors, each sensor was enriched with a suitable complexing agent, which enhanced the sensor’s response. For sensor 1, β-CD was mixed with bathophenanthroline; for sensor 2, porphyrin was incorporated with HP-β-CD; while for sensor 3, oxine was the used complexing agent with SCAL. Linear responses of 10-7-10-2 M with cationic slopes of 53.46, 45.01 and 50.96 over pH range 4-8 were obtained using coated graphite sensors for ferrous, manganese and zinc ionic solutions, respectively. The three sensors were validated, according to the IUPAC guidelines. The obtained results by the presented potentiometric procedures were statistically analyzed and compared with those obtained by atomic absorption spectrophotometric method (AAS). No significant differences for either accuracy or precision were observed between the two techniques. Successful application for the determination of the three studied cations in CM, for the purpose to determine the proper time for artificial insemination (AI) was achieved. The results were compared with those obtained upon analyzing the samples by AAS. Proper detection of estrus and correct time of AI was necessary to maximize the production of buffaloes. In this experiment, 30 multi-parous buffalo-cows were in second to third lactation and weighting 415-530 kg, and were synchronized with OVSynch protocol. Samples were taken in three times around ovulation, on day 8 of OVSynch protocol, on day 9 (20 h before AI) and on day 10 (1 h before AI). Beside analysis of trace elements (Fe2+, Mn2+ and Zn2+) in CM using the three sensors, the samples were analyzed for the three cations and also Cu2+ by AAS in the CM samples and blood samples. The results obtained were correlated with hormonal analysis of serum samples and ultrasonography for the purpose of determining of the optimum time of AI. The results showed significant differences and powerful correlation with Zn2+ composition of CM during heat phase and the ovulation time, indicating that the parameter could be used as a tool to decide optimal time of AI in buffalo-cows.Keywords: PVC Sensors, buffalo-cows, cyclodextrins, atomic absorption spectrophotometry, artificial insemination, OVSynch protocol
Procedia PDF Downloads 219800 Ultrasonic Degradation of Acephate: Effects of Operating Parameters
Authors: Naina Deshmukh
Abstract:
With the wide production, consumption, and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, Ultrasonication, as an emerging and promising technology for the removal of pesticides in the aqueous environment, has attracted the attention of many researchers in recent years. The degradation of acephate in aqueous solutions was investigated under the influence of ultrasound irradiation (20 kHz) in the presence of heterogeneous catalysts titanium dioxide (TiO2) and Zinc oxide (ZnO). The influence of various factors such as amount of catalyst (0.25, 0.5, 0.75, 1.0, 1.25 g/l), initial acephate concentration (100, 200, 300, 400 mg/l), and pH (3, 5, 7, 9, 11) were studied. The optimum catalyst dose was found to be 1 g/l of TiO2 and 1.25 g/l of ZnO for acephate at 100 mg/l, respectively. The maximum percentage degradation of acephate was observed at pH 11 for catalysts TiO2 and ZnO, respectively.Keywords: ultrasonic degradation, acephate, TiO2, ZnO, heterogeneous catalyst
Procedia PDF Downloads 61799 Composition Dependence of Ni 2p Core Level Shift in Fe1-xNix Alloys
Authors: Shakti S. Acharya, V. R. R. Medicherla, Rajeev Rawat, Komal Bapna, Deepnarayan Biswas, Khadija Ali, K. Maiti
Abstract:
The discovery of invar effect in 35% Ni concentration Fe1-xNix alloy has stimulated enormous experimental and theoretical research. Elemental Fe and low Ni concentration Fe1-xNix alloys which possess body centred cubic (bcc) crystal structure at ambient temperature and pressure transform to hexagonally close packed (hcp) phase at around 13 GPa. Magnetic order was found to be absent at 11K for Fe92Ni8 alloy when subjected to a high pressure of 26 GPa. The density functional theoretical calculations predicted substantial hyperfine magnetic fields, but were not observed in Mossbaur spectroscopy. The bulk modulus of fcc Fe1-xNix alloys with Ni concentration more than 35%, is found to be independent of pressure. The magnetic moment of Fe is also found be almost same in these alloys from 4 to 10 GPa pressure. Fe1-xNix alloys exhibit a complex microstructure which is formed by a series of complex phase transformations like martensitic transformation, spinodal decomposition, ordering, mono-tectoid reaction, eutectoid reaction at temperatures below 400°C. Despite the existence of several theoretical models the field is still in its infancy lacking full knowledge about the anomalous properties exhibited by these alloys. Fe1-xNix alloys have been prepared by arc melting the high purity constituent metals in argon ambient. These alloys have annealed at around 3000C in vacuum sealed quartz tube for two days to make the samples homogeneous. These alloys have been structurally characterized by x-ray diffraction and were found to exhibit a transition from bcc to fcc for x > 0.3. Ni 2p core levels of the alloys have been measured using high resolution (0.45 eV) x-ray photoelectron spectroscopy. Ni 2p core level shifts to lower binding energy with respect to that of pure Ni metal giving rise to negative core level shifts (CLSs). Measured CLSs exhibit a linear dependence in fcc region (x > 0.3) and were found to deviate slightly in bcc region (x < 0.3). ESCA potential model fails correlate CLSs with site potentials or charges in metallic alloys. CLSs in these alloys occur mainly due to shift in valence bands with composition due to intra atomic charge redistribution.Keywords: arc melting, core level shift, ESCA potential model, valence band
Procedia PDF Downloads 380798 Dry Friction Fluctuations in Plain Journal Bearings
Authors: James Moran, Anusarn Permsuwan
Abstract:
This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon.Keywords: Coulomb friction, dynamic friction, non-lubricated bearings, frictional oscillations
Procedia PDF Downloads 365797 Computer Simulations of Stress Corrosion Studies of Quartz Particulate Reinforced ZA-27 Metal Matrix Composites
Authors: K. Vinutha
Abstract:
The stress corrosion resistance of ZA-27 / TiO2 metal matrix composites (MMC’s) in high temperature acidic media has been evaluated using an autoclave. The liquid melt metallurgy technique using vortex method was used to fabricate MMC’s. TiO2 particulates of 50-80 µm in size are added to the matrix. ZA-27 containing 2,4,6 weight percentage of TiO2 are prepared. Stress corrosion tests were conducted by weight loss method for different exposure time, normality and temperature of the acidic medium. The corrosion rates of composites were lower to that of matrix ZA-27 alloy under all conditions.Keywords: autoclave, MMC’s, stress corrosion, vortex method
Procedia PDF Downloads 476796 An Investigation on the Energy Absorption of Sandwich Panels With Aluminium Foam Core under Perforation Test
Authors: Minoo Tavakoli, Mojtaba Zebarjad, Golestanipour
Abstract:
Metallic sandwich structures with aluminum foam core are good energy absorbers. In this paper, perforation test were carried out on different samples to study energy absorption. In the experiments, effect of several parameters, i.e. skin thickness and thickness of foam core, on the energy absorption, delamination zone of back faces and deformation strain(φ) are discussed. Results show that increasing plates thickness will results in more absorbed energy and delamination. Moreover, thickening foam core has the same effect.Keywords: sandwich panel, aluminium foam, perforation, energy absorption
Procedia PDF Downloads 423795 Fabrication of ZnO Nanorods Based Biosensor via Hydrothermal Method
Authors: Muhammad Tariq, Jafar Khan Kasi, Samiullah, Ajab Khan Kasi
Abstract:
Biosensors are playing vital role in industrial, clinical, and chemical analysis applications. Among other techniques, ZnO based biosensor is an easy approach due to its exceptional chemical and electrical properties. ZnO nanorods have positively charged isoelectric point which helps immobilize the negative charge glucose oxides (GOx). Here, we report ZnO nanorods based biosensors for the immobilization of GOx. The ZnO nanorods were grown by hydrothermal method on indium tin oxide substrate (ITO). The fabrication of biosensors was carried through batch processing using conventional photolithography. The buffer solutions of GOx were prepared in phosphate with a pH value of around 7.3. The biosensors effectively immobilized the GOx and result was analyzed by calculation of voltage and current on nanostructures.Keywords: hydrothermal growth, sol-gel, zinc dioxide, biosensors
Procedia PDF Downloads 300794 Lamb Waves in Plates Subjected to Uniaxial Stresses
Authors: Munawwar Mohabuth, Andrei Kotousov, Ching-Tai Ng
Abstract:
On the basis of the finite deformation theory, the effect of homogeneous stress on the propagation of Lamb waves in an initially isotropic hyperelastic plate is analysed. The equations governing the propagation of small amplitude waves in the prestressed plate are derived using the theory of small deformations superimposed on large deformations. By enforcing traction free boundary conditions at the upper and lower surfaces of the plate, acoustoelastic dispersion equations for Lamb wave propagation are obtained, which are solved numerically. Results are given for an aluminum plate subjected to a range of applied stresses.Keywords: acoustoelasticity, dispersion, finite deformation, lamb waves
Procedia PDF Downloads 467793 Fatigue Crack Initiation of Al-Alloys: Effect of Heat Treatment Condition
Authors: M. Benachour, N. Benachour, M. Benguediab
Abstract:
In this investigation an empirical study was made on fatigue crack initiation on 7075 T6 and 7075 T71 al-alloys under constant amplitude loading. At initiation stage, local strain approach at the notch was applied. Single Edge Notch Tensile specimen with semi circular notch is used. Based on experimental results, effect of mean stress, is highlights on fatigue initiation life. Results show that fatigue life initiation is affected by notch geometry and mean stress.Keywords: fatigue crack initiation, al-alloy, mean stress, heat treatment state
Procedia PDF Downloads 233792 Superhydrophobic Materials: A Promising Way to Enhance Resilience of Electric System
Authors: M. Balordi, G. Santucci de Magistris, F. Pini, P. Marcacci
Abstract:
The increasing of extreme meteorological events represents the most important causes of damages and blackouts of the whole electric system. In particular, the icing on ground-wires and overheads lines, due to snowstorms or harsh winter conditions, very often gives rise to the collapse of cables and towers both in cold and warm climates. On the other hand, the high concentration of contaminants in the air, due to natural and/or antropic causes, is reflected in high levels of pollutants layered on glass and ceramic insulators, causing frequent and unpredictable flashover events. Overheads line and insulator failures lead to blackouts, dangerous and expensive maintenances and serious inefficiencies in the distribution service. Inducing superhydrophobic (SHP) properties to conductors, ground-wires and insulators, is one of the ways to face all these problems. Indeed, in some cases, the SHP surface can delay the ice nucleation time and decrease the ice nucleation temperature, preventing ice formation. Besides, thanks to the low surface energy, the adhesion force between ice and a superhydrophobic material are low and the ice can be easily detached from the surface. Moreover, it is well known that superhydrophobic surfaces can have self-cleaning properties: these hinder the deposition of pollution and decrease the probability of flashover phenomena. Here this study presents three different studies to impart superhydrophobicity to aluminum, zinc and glass specimens, which represent the main constituent materials of conductors, ground-wires and insulators, respectively. The route to impart the superhydrophobicity to the metallic surfaces can be summarized in a three-step process: 1) sandblasting treatment, 2) chemical-hydrothermal treatment and 3) coating deposition. The first step is required to create a micro-roughness. In the chemical-hydrothermal treatment a nano-scale metallic oxide (Al or Zn) is grown and, together with the sandblasting treatment, bring about a hierarchical micro-nano structure. By coating an alchilated or fluorinated siloxane coating, the surface energy decreases and gives rise to superhydrophobic surfaces. In order to functionalize the glass, different superhydrophobic powders, obtained by a sol-gel synthesis, were prepared. Further, the specimens were covered with a commercial primer and the powders were deposed on them. All the resulting metallic and glass surfaces showed a noticeable superhydrophobic behavior with a very high water contact angles (>150°) and a very low roll-off angles (<5°). The three optimized processes are fast, cheap and safe, and can be easily replicated on industrial scales. The anti-icing and self-cleaning properties of the surfaces were assessed with several indoor lab-tests that evidenced remarkable anti-icing properties and self-cleaning behavior with respect to the bare materials. Finally, to evaluate the anti-snow properties of the samples, some SHP specimens were exposed under real snow-fall events in the RSE outdoor test-facility located in Vinadio, western Alps: the coated samples delay the formation of the snow-sleeves and facilitate the detachment of the snow. The good results for both indoor and outdoor tests make these materials promising for further development in large scale applications.Keywords: superhydrophobic coatings, anti-icing, self-cleaning, anti-snow, overheads lines
Procedia PDF Downloads 183791 Ultrasonic Degradation of Acephate in Aqueous Solution: Effects of Operating Parameters
Authors: Naina S. Deshmukh, Manik P. Deosarkar
Abstract:
With the wide production, consumption, and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, ultrasonication, as an emerging and promising technology for the removal of pesticides in the aqueous environment, has attracted the attention of many researchers in recent years. The degradation of acephate in aqueous solutions was investigated under the influence of ultrasound irradiation (20 kHz) in the presence of heterogeneous catalysts titanium dioxide (TiO2) and Zinc oxide (ZnO). The influence of various factors such as amount of catalyst (0.25, 0.5, 0.75, 1.0, 1.25 g/l), initial acephate concentration (100, 200, 300, 400 mg/l), and pH (3, 5, 7, 9, 11) were studied. The optimum catalyst dose was found to be 1 g/l of TiO2 and 1.25 g/l of ZnO for acephate at 100 mg/l, respectively. The maximum percentage degradation of acephate was observed at pH 11 for catalyst TiO2 and ZnO, respectively.Keywords: ultrasonic degradation, acephate, TiO2, ZnO, heterogeneous catalyst
Procedia PDF Downloads 101790 Fatigue-Induced Debonding Propagation in FM300 Adhesive
Authors: Reza Hedayati, Meysam Jahanbakhshi
Abstract:
Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value.Keywords: adhesive joint, debonding, fracture, LEFM, APDL
Procedia PDF Downloads 362789 Physiochemical Analysis of Ground Water in Zaria, Kaduna state, Nigeria
Authors: E. D. Paul, F. G. Okibe, C. E. Gimba, S. Yakubu
Abstract:
Some physicochemical characteristics and heavy metal concentrations of water samples collected from ten boreholes in Samaru, Zaria, Kaduna state, Nigeria were analysed in order to assess the drinking water quality. Physicochemical parameters were determined using classical methods while the heavy metals were determined using Atomic Absorption Spectrometry. Results of the analysis obtained were as follows: Temperature 29 – 310C, pH 5.74 – 6.19, Electrical conductivity 3.21 – 7.54 µs, DO 0.51 – 1.00 mg/L, BOD 0.0001 – 0.006 mg/L, COD 160 – 260 mg/L, TDS 2.08 – 4.55 mg/L, Total Hardness 97.44 – 401.36 mg/L CaCO3, and Chloride 0.97 – 59.12 mg/L. Concentrations of heavy metals were in the range; Zinc 0.000 – 0.7568 mg/L, Lead 0.000 – 0.070 mg/L and Cadmium 0.000 – 0.009 mg/L. The implications of these findings are discussed.Keywords: ground water, water quality, heavy metals, Atomic Absorption Spectrometry (AAS)
Procedia PDF Downloads 532788 Aging Effect on Mechanical Behavior of Duplex Stainless Steel
Authors: Jeonho Moon, Tae Kwon Ha
Abstract:
In the present study, the effect of Si, Al, Ti, Zr, and Nb addition on the microstructure and hot workability of cast M42 tool steels, basically consisting of 1.0 C, 0.2 Mn, 3.8 Cr, 1.5 W, 8.5 Co, 9.2 Mo, and 1.0 V in weight percent has been investigated. Tool steels containing Si of 0.25 and 0.5 wt.%, Al of 0.06 and 0.12 wt.%, Ti of 0.3 wt.%, Zr of 0.3 wt.%, and Nb of 0.3wt.% were cast into ingots of 140 mm x 140 mm x 330 mm by vacuum induction melting. After solution treatment at 1150 °C for 1.5 hr followed by furnace cooling, hot rolling at 1180 °C was conducted on the ingots. Addition of titanium, zirconium and niobium was found to retard the decomposition of the eutectic carbides and result in the deterioration of hot workability of the tool steels, while addition of aluminum and silicon showed relatively well decomposed carbide structure and resulted in sound hot rolled plates.Keywords: duplex stainless steel, alloying elements, eutectic carbides, microstructure, hot workability
Procedia PDF Downloads 417787 Tribological Characterization of ZrN Coatings on Titanium Modified Austenitic Stainless Steel
Authors: Mohammad Farooq Wani
Abstract:
Tribological characterization of ZrN coatings deposited on titanium modified austenitic stainless steel (alloy D-9) substrates has been investigated. The coatings were deposited in the deposition temperature range 300–873 K, using the pulsed magnetron sputtering technique. Scratch adhesion tests were carried out using Rc indenter under various conditions of load. Detailed tribological studies were conducted to understand the friction and wear behaviour of these coatings. For all tribological studies steel and ceramic balls were used as counter face material. 3D-Surface profiles of all wear tracks was carried out using 3D universal profiler.Keywords: ZrN, Surafce coating, thin film, tribology, friction and wear
Procedia PDF Downloads 429786 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization
Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa
Abstract:
The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc
Procedia PDF Downloads 426785 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns
Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido
Abstract:
The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.Keywords: leaching, organic amendments, phytostabilization, polluted soils
Procedia PDF Downloads 110784 Briquetting of Metal Chips by Controlled Impact: Experimental Study
Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov
Abstract:
For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.Keywords: briquetting, chips briquetting, impact briquetting, controlled impact
Procedia PDF Downloads 401783 Enumerative Search for Crane Schedule in Anodizing Operations
Authors: Kanate Pantusavase, Jaramporn Hassamontr
Abstract:
This research aims to develop an algorithm to generate a schedule of multiple cranes that will maximize load throughputs in anodizing operation. The algorithm proposed utilizes an enumerative strategy to search for constant time between successive loads and crane covering range over baths. The computer program developed is able to generate a near-optimal crane schedule within reasonable times, i.e. within 10 minutes. Its results are compared with existing solutions from an aluminum extrusion industry. The program can be used to generate crane schedules for mixed products, thus allowing mixed-model line balancing to improve overall cycle times.Keywords: crane scheduling, anodizing operations, cycle time minimization
Procedia PDF Downloads 464782 Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)
Authors: Haythem Barrak, Gaetan Laroche, Adel M’nif, Ahmed Hichem Hamzaoui
Abstract:
The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success.Keywords: functionalization, nanoparticle, ZnO, APTES, caractérisation
Procedia PDF Downloads 361781 Supercritical Methanol for Biodiesel Production from Jatropha Oil in the Presence of Heterogeneous Catalysts
Authors: Velid Demir, Mesut Akgün
Abstract:
The lanthanum and zinc oxide were synthesized and then loaded with 6 wt% over γ-Al₂O₃ using the wet impregnation method. The samples were calcined at 900 °C to ensure a coherent structure with high catalytic performance. Characterization of the catalysts was verified by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR). The effect of catalysts on biodiesel content from jatropha oil was studied under supercritical conditions. The results showed that ZnO/γ-Al₂O₃ was the superior catalyst for jatropha oil with 98.05% biodiesel under reaction conditions of 7 min reaction time, 1:40 oil to methanol molar ratio, 6 wt% of catalyst loading, 90 bar of reaction pressure, and 300 °C of reaction temperature, compared to 95.50% with La₂O₃/γ-Al₂O₃ at the same parameters. For this study, ZnO/γ-Al₂O₃ was the most suitable catalyst due to performance and cost considerations.Keywords: biodiesel, heterogeneous catalyst, jatropha oil, supercritical methanol, transesterification
Procedia PDF Downloads 88780 Optimization of Machining Parameters by Using Cryogenic Media
Authors: Shafqat Wahab, Waseem Tahir, Manzoor Ahmad, Sarfraz Khan, M. Azam
Abstract:
Optimization and analysis of tool flank wear width and surface finish of alloy steel rods are studied in the presence of cryogenic media (LN2) by using Tungsten Carbide Insert (CNMG 120404- WF 4215). Robust design concept of Taguchi L9(34) method and ANOVA is applied to determine the contribution of key cutting parameters and their optimum conditions. Through analysis, it revealed that cryogenic impact is more significant in reduction of the tool flank wear width while surface finish is mostly dependent on feed rate.Keywords: turning, cryogenic fluid, liquid nitrogen, flank wear, surface roughness, taguchi
Procedia PDF Downloads 666779 Prediction of Fatigue Crack Propagation in Bonded Joints Using Fracture Mechanics
Authors: Reza Hedayati, Meysam Jahanbakhshi
Abstract:
Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with λ=0 the ends of the debonding front propagates forward more than its middle, while in cases with λ=0.5 or λ=1 it is vice versa. Moreover, regardless of value of λ, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases λ=0.5 and λ=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value.Keywords: fatigue, debonding, Paris law, APDL, adhesive
Procedia PDF Downloads 363778 X-Ray Analysis and Grain Size of CuInx Ga1-X Se2 Solar Cells
Authors: A. I. Al-Bassam, A. M. El-Nggar
Abstract:
Polycrystalline Cu In I-x GaxSe2 thin films have been fabricated. Some physical properties such as lattice parameters, crystal structure and microstructure of Cu In I-x GaxSe2 were determined using X-ray diffractometry and scanning electron microscopy. X-ray diffraction analysis showed that the films with x ≥ 0.5 have a chalcopyrite structure and the films with x ≤ 0.5 have a zinc blende structure. The lattice parameters were found to vary linearly with composition over a wide range from x = 0 to x =1.0. The variation of lattice parameters with composition was found to obey Vegard's law. The variation of the c/a with composition was also linear. The quality of a wide range of Cu In I-xGaxSe2 thin film absorbers from CuInSe to CuGaSe was evaluated by Photoluminescence (PL) measurements.Keywords: grain size, polycrystalline, solar cells, lattice parameters
Procedia PDF Downloads 504777 Carbon Nanotubes Synthesized Using Sugar Cane as a Percursor
Authors: Vanessa Romanovicz, Beatriz A. Berns, Stephen D. Carpenter, Deyse Carpenter
Abstract:
This article deals with the carbon nanotubes (CNT) synthesized from a novel precursor, sugar cane and Anodic Aluminum Oxide (AAO). The objective was to produce CNTs to be used as catalyst supports for Proton Exchange Membranes. The influence of temperature, inert gas flow rate and concentration of the precursor is presented. The CNTs prepared were characterized using TEM, XRD, Raman Spectroscopy, and the surface area determined by BET. The results show that it is possible to form CNT from sugar cane by pyrolysis and the CNTs are the type multi-walled carbon nanotubes. The MWCNTs are short and closed at the two ends with very small surface area of SBET = 3.691m,/g.Keywords: carbon nanotubes, sugar cane, fuel cell, catalyst support
Procedia PDF Downloads 446776 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma
Authors: Chang Liang, Weizhi Gong, Yan Zhang
Abstract:
Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination
Procedia PDF Downloads 143775 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis
Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix
Abstract:
This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.Keywords: CFRP, composite failure, FEA, non-circular chainring
Procedia PDF Downloads 295