Search results for: A. Pera
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: A. Pera

3 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc

Procedia PDF Downloads 397
2 Anomalies of Visual Perceptual Skills Amongst School Children in Foundation Phase in Olievenhoutbosch, Gauteng Province, South Africa

Authors: Maria Bonolo Mathevula

Abstract:

Background: Children are important members of communities playing major role in the future of any given country (Pera, Fails, Gelsomini, &Garzotto, 2018). Visual Perceptual Skills (VPSs) in children are important health aspect of early childhood development through the Foundation Phases in school. Subsequently, children should undergo visual screening before commencement of schooling for early diagnosis ofVPSs anomalies because the primary role of VPSs is to capacitate children with academic performance in general. Aim : The aim of this study was to determine the anomalies of visual VPSs amongst school children in Foundation Phase. The study’s objectives were to determine the prevalence of VPSs anomalies amongst school children in Foundation Phase; Determine the relationship between children’s academic and VPSs anomalies; and to investigate the relationship between VPSs anomalies and refractive error. Methodology: This study was a mixed method whereby triangulated qualitative (interviews) and quantitative (questionnaire and clinical data) was used. This was, therefore, descriptive by nature. The study’s target population was school children in Foundation Phase. The study followed purposive sampling method. School children in Foundation Phase were purposively sampled to form part of this study provided their parents have given a signed the consent. Data was collected by the use of standardized interviews; questionnaire; clinical data card, and TVPS standard data card. Results: Although the study is still ongoing, the preliminary study outcome based on data collected from one of the Foundation Phases have suggested the following:While VPSs anomalies is not prevalent, it, however, have indirect relationship with children’s academic performance in Foundation phase; Notably, VPSs anomalies and refractive error are directly related since majority of children with refractive error, specifically compound hyperopic astigmatism, failed most subtests of TVPS standard tests. Conclusion: Based on the study’s preliminary findings, it was clear that optometrists still have a lot to do in as far as researching on VPSs is concerned. Furthermore, the researcher recommends that optometrist, as the primary healthcare professionals, should also conduct the school-readiness pre-assessment on children before commencement of their grades in Foundation phase.

Keywords: foundation phase, visual perceptual skills, school children, refractive error

Procedia PDF Downloads 73
1 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations

Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai

Abstract:

Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.

Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile

Procedia PDF Downloads 116