Search results for: general data protection regulation
20176 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology
Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan
Abstract:
The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology
Procedia PDF Downloads 34820175 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data
Authors: Kai Warsoenke, Maik Mackiewicz
Abstract:
To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.Keywords: automotive production, machine learning, process optimization, smart tolerancing
Procedia PDF Downloads 11620174 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling, and proposes the challenges and improvement directions for DRL-based resource scheduling algorithms.Keywords: resource scheduling, deep reinforcement learning, distributed system, artificial intelligence
Procedia PDF Downloads 11120173 Small Traditional Retailers in Emerging Markets
Authors: Y. Boulaksil, J. C. Fransoo, E.E. Blanco, S. Koubida
Abstract:
In this paper, we study the small traditional retailers that are located in the neighborhoods of big cities in emerging markets. Although modern retailing has grown in the last two decades in these markets, the number of small retailers is still increasing and serving a substantial part of the daily demand for many basic products, such as bread, milk, and cooking oil. We conduct an empirical study to understand the business environment of these small traditional retailers in emerging markets by collecting data from 333 small retailers, spread over 8 large cities in Morocco. We analyze the data and describe their business environment with a focus on the informal credits they offer to their customers. We find that smaller small retailers that are funded from personal savings and managed by the owner himself offer relatively the most credits. Our study also provides interesting insights about these small retailers that will help FMCG manufacturers that are (planning to be) active in Morocco and other emerging markets. We also discuss a number opportunities to improve the efficiency of the supply chains that serve them.Keywords: small retailers, big cities, emerging markets, empirical study, supply chain management, Morocco
Procedia PDF Downloads 58020172 Secret Sharing in Visual Cryptography Using NVSS and Data Hiding Techniques
Authors: Misha Alexander, S. B. Waykar
Abstract:
Visual Cryptography is a special unbreakable encryption technique that transforms the secret image into random noisy pixels. These shares are transmitted over the network and because of its noisy texture it attracts the hackers. To address this issue a Natural Visual Secret Sharing Scheme (NVSS) was introduced that uses natural shares either in digital or printed form to generate the noisy secret share. This scheme greatly reduces the transmission risk but causes distortion in the retrieved secret image through variation in settings and properties of digital devices used to capture the natural image during encryption / decryption phase. This paper proposes a new NVSS scheme that extracts the secret key from randomly selected unaltered multiple natural images. To further improve the security of the shares data hiding techniques such as Steganography and Alpha channel watermarking are proposed.Keywords: decryption, encryption, natural visual secret sharing, natural images, noisy share, pixel swapping
Procedia PDF Downloads 40420171 Project Design Deliverables Sequence (PDD)
Authors: Nahed Al-Hajeri
Abstract:
There are several reasons which lead to a delay in project completion, out of all, one main reason is the delay in deliverable processing, i.e. submission and review of documents. Most of the project cycles start with a list of deliverables but without a sequence of submission of the same, means without a direction to move, leading to overlapping of activities and more interdependencies. Hence Project Design Deliverables (PDD) is developed as a solution to Organize Transmittals (Documents/Drawings) received from contractors/consultants during different phases of an EPC (Engineering, Procurement, and Construction) projects, which gives proper direction to the stakeholders from the beginning, to reduce inter-discipline dependency, avoid overlapping of activities, provide a list of deliverables, sequence of activities, etc. PDD attempts to provide a list and sequencing of the engineering documents/drawings required during different phases of a Project which will benefit both client and Contractor in performing planned activities through timely submission and review of deliverables. This helps in ensuring improved quality and completion of Project in time. The successful implementation begins with a detailed understanding the specific challenges and requirements of the project. PDD will help to learn about vendor document submissions including general workflow, sequence and monitor the submission and review of the deliverables from the early stages of Project. This will provide an overview for the Submission of deliverables by the concerned during the projects in proper sequence. The goal of PDD is also to hold responsible and accountability of all stakeholders during complete project cycle. We believe that successful implementation of PDD with a detailed list of documents and their sequence will help organizations to achieve the project target.Keywords: EPC (Engineering, Procurement, and Construction), project design deliverables (PDD), econometrics sciences, management sciences
Procedia PDF Downloads 40020170 Unification of Indonesia Time Zones Encourages People to Be on Time for Facing ASEAN Economic Community
Authors: Hasrullah Hasrullah
Abstract:
Since December 2015, the ASEAN Economic Community (AEC) is officially declared in the 27th Summit Conference of ASEAN and Indonesia is one of country are listed in the ASEAN members. Per January 1st, 2016 the ASEAN Economic Community (AEC) came into effect. However, its implementation in Indonesia is still weighing the pros and cons because Indonesia is considered too late to prepare for the ASEAN Economic Community (AEC). In other words, rubber time of Indonesian people has been occurring in the AEC. This paper reviews how Indonesia language influences people’s attitude to be rubber time culture and how time zones of Indonesia influence people’s attitude through media on television to be rubber time culture. The author addresses this research question empirically by collecting data from various sources of data those are relevant and compare among the unification of Indonesia time zones. The result demonstrates that unification of Indonesia time zones to be Standard Indonesia Time is a solution to encourage people to be ready on time for facing ASEAN Economic Community (AEC).Keywords: unification time zones, Indonesia Language, Rubber Time, AEC
Procedia PDF Downloads 36120169 The Impact of Group Hope Therapy on the Life Satisfaction, Happiness, and Hopefulness of Older Adults
Authors: Gholamzadeh Sakineh, Jedi Maryam, Fereshteh Dehghanrad
Abstract:
Background: Mental and psychological issues are common among older adults. Positive psychology theorists and researchers recommend focusing on constructs such as happiness, life satisfaction and hope rather than dwelling on negative experiences and perceptions. Objective: The research aim was to evaluate the impact of hope therapy interventions on the life satisfaction, happiness, and hopefulness of older adults in Iran. Methodology: This study used a quasi-experimental design. A convenience sample of 32 older adults was recruited from a retirement center in Shiraz, Iran. Participants were randomly assigned to either a control group (n = 16) or an experimental group (n = 16). The experimental group received eight sessions of hope therapy, each lasting 1.5 hours. The data for this study were collected using Snyder's Adult Hope Scale (AHS), Oxford Happiness Questionnaire, and Life Satisfaction Index-Z. The questionnaires were administered before, immediately after the intervention, and two months later. Descriptive and analytical statistical tests were used to analyze the data using SPSS version 19. Descriptive statistics were used to describe the sample characteristics and the distribution of the data. Analytical statistics were used to test the research hypotheses. Findings: The results showed that the hope therapy intervention significantly increased the life satisfaction and hopefulness of older adults (p < 0.05). In addition, the influence of time was also significant (p < 0.05). However, the intervention did not affect happiness in statistically significant ways. Conclusions: The findings of this study support the theoretical importance of hope therapy in improving the life satisfaction and hopefulness of older adults. Hope therapy interventions can be considered as an effective way to improve the emotional well-being and quality of life of older adults.Keywords: older adults, life satisfaction, happiness, hopefulness, hope therapy
Procedia PDF Downloads 8220168 Split Health System for Diabetes Care in Urban Area: Experience from an Action Research Project in an Urban Poor Neighborhood in Bengaluru
Authors: T. S. Beerenahally, S. Amruthavalli, C. M. Munegowda, Leelavathi, Nagarathna
Abstract:
Introduction: In majority of urban India, the health system is split between different authorities being responsible for the health care of urban population. We believe that, apart from poor awareness and financial barriers to care, there are other health system barriers which affect quality and access to care for people with diabetes. In this paper, we attempted to identify health system complexity that determines access to public health system for diabetes care in KG Halli, a poor urban neighborhood in Bengaluru. The KG Halli has been a locus of a health systems research from 2009 to 2015. Methodology: The source of data is from the observational field-notes written by research team as part of urban health action research project (UHARP). Field notes included data from the community and the public primary care center. The data was generated by the community health assistants and the other research team members during regular home visits and interaction with individuals who self-reported to be diabetic over four years as part of UHARP. Results: It emerged during data analysis that the patients were not keen on utilizing primary public health center for many reasons. Patient has felt that the service provided at the center was not integrated. There was lack of availability of medicines, with a regular stock out of medicines in a year and laboratory service for investigation was limited. Many of them said that the time given by the providers was not sufficient and there was also a feeling of providers not listening to them attentively. The power dynamics played a huge role in communication. Only the consultation was available for free of cost at the public primary care center. The patient had to spend for the investigations and the major portion for medicine. Conclusion: Diabetes is a chronic disease that poses an important emerging public health concern. Most of the financial burden is borne by the family as the public facilities have failed to provide free care in India. Our study indicated various factors including individual beliefs, stigma and financial constraints affecting compliance to diabetes care.Keywords: diabetes care, disintegrated health system, quality of care, urban health
Procedia PDF Downloads 16020167 Data Gathering and Analysis for Arabic Historical Documents
Authors: Ali Dulla
Abstract:
This paper introduces a new dataset (and the methodology used to generate it) based on a wide range of historical Arabic documents containing clean data simple and homogeneous-page layouts. The experiments are implemented on printed and handwritten documents obtained respectively from some important libraries such as Qatar Digital Library, the British Library and the Library of Congress. We have gathered and commented on 150 archival document images from different locations and time periods. It is based on different documents from the 17th-19th century. The dataset comprises differing page layouts and degradations that challenge text line segmentation methods. Ground truth is produced using the Aletheia tool by PRImA and stored in an XML representation, in the PAGE (Page Analysis and Ground truth Elements) format. The dataset presented will be easily available to researchers world-wide for research into the obstacles facing various historical Arabic documents such as geometric correction of historical Arabic documents.Keywords: dataset production, ground truth production, historical documents, arbitrary warping, geometric correction
Procedia PDF Downloads 16820166 Blockchain: Institutional and Technological Disruptions in the Public Sector
Authors: Maria Florencia Ferrer, Saulo Fabiano Amancio-Vieira
Abstract:
The use of the blockchain in the public sector is present today and no longer the future of disruptive institutional and technological models. There are still some cultural barriers and resistance to the proper use of its potential. This research aims to present the strengths and weaknesses of using a public-permitted and distributed network in the context of the public sector. Therefore, bibliographical/documentary research was conducted to raise the main aspects of the studied platform, focused on the use of the main demands of the public sector. The platform analyzed was LACChain, which is a global alliance composed of different actors in the blockchain environment, led by the Innovation Laboratory of the Inter-American Development Bank Group (IDB Lab) for the development of the blockchain ecosystem in Latin America and the Caribbean. LACChain provides blockchain infrastructure, which is a distributed ratio technology (DLT). The platform focuses on two main pillars: community and infrastructure. It is organized as a consortium for the management and administration of an infrastructure classified as public, following the ISO typologies (ISO / TC 307). It is, therefore, a network open to any participant who agrees with the established rules, which are limited to being identified and complying with the regulations. As benefits can be listed: public network (open to all), decentralized, low transaction cost, greater publicity of transactions, reduction of corruption in contracts / public acts, in addition to improving transparency for the population in general. It is also noteworthy that the platform is not based on cryptocurrency and is not anonymous; that is, it is possible to be regulated. It is concluded that the use of record platforms, such as LACChain, can contribute to greater security on the part of the public agent in the migration process of their informational applications.Keywords: blockchain, LACChain, public sector, technological disruptions
Procedia PDF Downloads 17220165 Diabetes Mellitus and Blood Glucose Variability Increases the 30-day Readmission Rate after Kidney Transplantation
Authors: Harini Chakkera
Abstract:
Background: Inpatient hyperglycemia is an established independent risk factor among several patient cohorts with hospital readmission. This has not been studied after kidney transplantation. Nearly one-third of patients who have undergone a kidney transplant reportedly experience 30-day readmission. Methods: Data on first-time solitary kidney transplantations were retrieved between September 2015 to December 2018. Information was linked to the electronic health record to determine a diagnosis of diabetes mellitus and extract glucometeric and insulin therapy data. Univariate logistic regression analysis and the XGBoost algorithm were used to predict 30-day readmission. We report the average performance of the models on the testing set on five bootstrapped partitions of the data to ensure statistical significance. Results: The cohort included 1036 patients who received kidney transplantation, and 224 (22%) experienced 30-day readmission. The machine learning algorithm was able to predict 30-day readmission with an average AUC of 77.3% (95% CI 75.30-79.3%). We observed statistically significant differences in the presence of pretransplant diabetes, inpatient-hyperglycemia, inpatient-hypoglycemia, and minimum and maximum glucose values among those with higher 30-day readmission rates. The XGBoost model identified the index admission length of stay, presence of hyper- and hypoglycemia and recipient and donor BMI values as the most predictive risk factors of 30-day readmission. Additionally, significant variations in the therapeutic management of blood glucose by providers were observed. Conclusions: Suboptimal glucose metrics during hospitalization after kidney transplantation is associated with an increased risk for 30-day hospital readmission. Optimizing the hospital blood glucose management, a modifiable factor, after kidney transplantation may reduce the risk of 30-day readmission.Keywords: kidney, transplant, diabetes, insulin
Procedia PDF Downloads 9020164 The Effects of Bisphosphonates on Osteonecrosis of Jaw Bone: A Stem Cell Perspective
Authors: Huseyin Apdik, Aysegul Dogan, Selami Demirci, Ezgi Avsar Apdik, Fikrettin Sahin
Abstract:
Mesenchymal stem cells (MSCs) are crucial cell types for bone maintenance and growth along with resident bone progenitor cells providing bone tissue integrity during osteogenesis and skeletal growth. Any deficiency in this regulation would result in vital bone diseases. Of those, osteoporosis, characterized by a reduction in bone mass and mineral density, is a critical skeletal disease for especially elderly people. The commonly used drugs for the osteoporosis treatment are bisphosphonates (BPs). The most prominent role of BPs is to prevent bone resorption arisen from high osteoclast activity. However, administrations of bisphosphonates may also cause bisphosphonate-induced osteonecrosis of the jaw (BIONJ). Up to the present, the researchers have proposed several circumstances for BIONJ. However, effects of long-term and/or high dose usage of BPs on stem cell’s proliferation, survival, differentiation or maintenance capacity have not been evaluated yet. The present study will be held to; figure out BPs’ effects on MSCs in vitro in the aspect of cell proliferation and toxicity, migration, angiogenic activity, lineage specific gene and protein expression levels, mesenchymal stem cell properties and potential signaling pathways affected by BP treatment. Firstly, mesenchymal stem cell characteristics of Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs) were proved using flow cytometry analysis. Cell viability analysis was completed to determine the cytotoxic effects of BPs (Zoledronate (Zol), Alendronate (Ale) and Risedronate (Ris)) on DPSCs and PDLSCs by the 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay. Non-toxic concentrations of BPs were determined at 24 h under growth condition, and at 21 days under osteogenic differentiation condition for both cells. The scratch assay was performed to evaluate their migration capacity under the usage of determined of BPs concentrations at 24 h. The results revealed that while the scratch closure is 70% in the control group for DPSCs, it was 57%, 66% and 66% in Zol, Ale and Ris groups, respectively. For PDLSs, while wound closure is 71% in control group, it was 65%, 66% and 66% in Zol, Ale and Ris groups, respectively. As future experiments, tube formation assay and aortic ring assay will be done to determinate angiogenesis abilities of DPSCs and PDLSCs treated with BPs. Expression levels of osteogenic differentiation marker genes involved in bone development will be determined using real time-polymerase change reaction (RT-PCR) assay and expression profiles of important proteins involved in osteogenesis will be evaluated using western blotting assay for osteogenically differentiated MSCs treated with or without BPs. In addition to these, von Kossa staining will be performed to measure calcium mineralization status of MSCs.Keywords: bisphosphonates, bisphosphonate-induced osteonecrosis of the jaw, mesenchymal stem cells, osteogenesis
Procedia PDF Downloads 26320163 Enhancing Academic Achievement of University Student through Stress Management Training: A Study from Southern Punjab, Pakistan
Authors: Rizwana Amin, Afshan Afroze Bhatti
Abstract:
The study was a quasi-experimental pre-post test design including two groups. Data was collected from 127 students through non-probability random sampling from Bahaudin Zakariya University Multan. The groups were given pre-test using perceived stress scale and information about academic achievement was taken by self-report. After screening, 27 participants didn’t meet the criterion. Remaining 100 participants were divided into two groups (experimental and control). Further, 4 students of experimental group denied taking intervention. Then 46 understudies were separated into three subgroups (16, 15 and 15 in each) for training. The experimental groups were given the stress management training, each of experimental group attended one 3-hour training sessions separately while the control group was only given pre-post assessment. The data were analyzed using ANCOVA method (analysis of covariance) t–test. Results of the study indicate that stress training will lead to increased emotional intelligence and academic achievement of students.Keywords: stress, stress management, academic achievement, students
Procedia PDF Downloads 34020162 The Security Trade-Offs in Resource Constrained Nodes for IoT Application
Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve
Abstract:
The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.Keywords: energy consumption, IEEE 802.15.4, IoT security, security cost evaluation
Procedia PDF Downloads 16820161 Faculty Attendance Management System (FAMS)
Authors: G. C. Almiranez, J. Mercado, L. U. Aumentado, J. M. Mahaguay, J. P. Cruz, M. L. Saballe
Abstract:
This research project focused on the development of an application that aids the university administrators to establish an efficient and effective system in managing faculty attendance and discourage unnecessary absences. The Faculty Attendance Management System (FAMS) is a web based and mobile application which is proven to be efficient and effective in handling and recording data, generating updated reports and analytics needed in managing faculty attendance. The FAMS can facilitate not only a convenient and faster way of gathering and recording of data but it can also provide data analytics, immediate feedback system mechanism and analysis. The software database architecture uses MySQL for web based and SQLite for mobile applications. The system includes different modules that capture daily attendance of faculty members, generate faculty attendance reports and analytics, absences notification system for faculty members, chairperson and dean regarding absences, and immediate communication system concerning the absences incurred. Quantitative and qualitative evaluation showed that the system satisfactory meet the stakeholder’s requirements. The functionality, usability, reliability, performance, and security all turned out to be above average. System testing, integration testing and user acceptance testing had been conducted. Results showed that the system performed very satisfactory and functions as designed. Performance of the system is also affected by Internet infrastructure or connectivity of the university. The faculty analytics generated from the system may not only be used by Deans and Chairperson in their evaluation of faculty performance but as well as the individual faculty to increase awareness on their attendance in class. Hence, the system facilitates effective communication between system stakeholders through FAMS feedback mechanism and up to date posting of information.Keywords: faculty attendance management system, MySQL, SQLite, FAMS, analytics
Procedia PDF Downloads 43620160 Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level
Authors: Pedro M. Abreu, Bruno R. Mendes
Abstract:
The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.Keywords: clinical pharmacy, co-payments, healthcare, medicines
Procedia PDF Downloads 25120159 Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia
Authors: Hailekiros Tadesse Tekle, Yemane Tsehaye, Fetien Abay
Abstract:
Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation.Keywords: barley, clustering, genetic advance, heritability, usefulness, variability, yield
Procedia PDF Downloads 8620158 Enhancing Problem Communication and Management Using Civil Information Modeling for Infrastructure Projects
Authors: Yu-Cheng Lin, Yu-Chih Su
Abstract:
Generally, there are many numerous existing problems during the construction phase special in civil engineering. The problems communication and management (PCM) of civil engineering are important and necessary to enhance the performance of construction management. The civil information modelling (CIM) approach is used to retain information with digital format and assist easy updating and transferring of information in the 3D environment for all related civil and infrastructure projects. When the application of CIM technology is adopted in infrastructure projects, all the related project participants can discuss problems and obtain feedback and responds among project participants integrated with the assistance of CIM models 3D illustration. Usually, electronic mail (e-mail) is one of the most popular communication tools among all related participants for rapid transit system (MRT), also known as a subway or metro, construction project in Taiwan. Furthermore, all interfaces should be traced and managed effectively during the process. However, there are many problems with the use of e-mail for communication of all interfaces. To solve the above problems, this study proposes a CIM-based Problem Communication and Management (CPCM) system to improve performance of problem communication and management. The CPCM system is applied to a case study of an MRT project in Taiwan to identify its CPCM effectiveness. Case study results show that the proposed CPCM system and Markup-enabled CIM Viewer are effective CIM-based communication tools in CIM-supported PCM work of civil engineering. Finally, this study identifies conclusion, suggestion, benefits, and limitations for further applications.Keywords: building information modeling, civil information modeling, infrastructure, general contractor
Procedia PDF Downloads 15220157 A Study on Holosen-Pleistosen Sedimentology of Morphotectonic Structure and Seismicity of Gökova Bay
Authors: Ebru Aktepe Erkoç, Atilla Uluğ
Abstract:
In this research which has been prepared to show the relationship between Gökova Bay’s morphotectonic structure and seismicity, it is clear that there are many active faults in the region. The existence of a thick sedimentary accumulation since Late Quaternary times is obvious as a result of the geophysical workings in the region and the interpretation of seismic data which has been planning to be taken from the Bay. In the regions which have been tectonically active according to the interpretation of the taken data, the existence of the successive earthquakes in the last few years is remarkable. By analyzing large earthquakes affecting the areas remaining inside the sediments in West Anatolian Collapse System, this paper aims to reveal the fault systems constituting earthquakes with the information obtained from this study and to determine seismicity of the present residential areas right next to them. It is also aimed to anticipate the measures to be taken against possible earthquake hazards, to identify these areas posing a risk in terms of residential and urban planning and to determine at least partly the characteristics of the basin.Keywords: Gökova Bay, sedimentation, seismic, West Anatolian
Procedia PDF Downloads 26220156 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage
Authors: Andrew Laming, John Hattie, Mark Wilson
Abstract:
Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean
Procedia PDF Downloads 6820155 Cyberbullying among College Students: Prevalence and Effects on Psychological Well-Being
Authors: Jeyaseelan Maria Michael
Abstract:
This study investigated the prevalence of cyberbullying among college female students and its effects on their psychological well-being. The respondents were from the age group of 17 and 18, doing the first-year college in Tamilnadu, India. In this study, 110 participants were selected through simple random sampling. The standardized questionnaire of David Alvare-Garcia’s Cybervictimization Questionnaire for Adolescents (CYVIC) and Ryff’s Psychological Well-Being (PWB) were administered for data collection. CYVIC has four subdomains namely, impersonation, visual-sexual cybervictimization, written-verbal cybervictimization, online exclusion. Ryff’s PWB has six domains namely, autonomy, environmental mastery, personal growth, positive relations with others, purpose in life, and self- acceptance. The collected data were analyzed by SPSS v.23. The results indicate that cyberbullying prevails among college female students (M=1.24, SD= .21). Among the participants, 17 are scored one standard deviation above the mean (1.45). Among the subdomains of the CYVIC, the respondents have the highest score (M=1.40, SD= .38) in written-verbal cybervictimization. Cyber victimization has a significant correlation at the 0.01 level with psychological well-being.Keywords: college students, cyberbullying, cyber victimization, psychological well-being
Procedia PDF Downloads 12720154 Effects of Video Games and Online Chat on Mathematics Performance in High School: An Approach of Multivariate Data Analysis
Authors: Lina Wu, Wenyi Lu, Ye Li
Abstract:
Regarding heavy video game players for boys and super online chat lovers for girls as a symbolic phrase in the current adolescent culture, this project of data analysis verifies the displacement effect on deteriorating mathematics performance. To evaluate correlation or regression coefficients between a factor of playing video games or chatting online and mathematics performance compared with other factors, we use multivariate analysis technique and take gender difference into account. We find the most important reason for the negative sign of the displacement effect on mathematics performance due to students’ poor academic background. Statistical analysis methods in this project could be applied to study internet users’ academic performance from the high school education to the college education.Keywords: correlation coefficients, displacement effect, multivariate analysis technique, regression coefficients
Procedia PDF Downloads 36420153 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System
Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan
Abstract:
Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle
Procedia PDF Downloads 29420152 Canadian High School Students' Attitudes and Perspectives Towards People With Disabilities, Autism, and ADHD
Authors: Khodi Morgan, Kasey Crowe, Amanda Morgan
Abstract:
Canadian High School Students' Attitudes & Perspectives Towards People With Disabilities, Autism, and ADHD. Objective: To survey Canadian high school students' regarding their attitudes and perspectives towards people with disabilities and explore how age, gender, and personal experience with disability may impact these views. Methods A survey was developed using the standardized Attitude Toward Persons With Disability Scale as its base, with the addition of questions specifically about Autism and Attention Deficit Hyperactivity Disorder (ADHD). The survey also gathered information about the participants’ age and gender and whether or not they, or a close family member, had any disabilities. Participants were recruited at a public Canadian high school by fellow student researchers. Results A total of 219 (N=219) students ranging from 13 - 19 years old participated in the study (m= 15.9 years of age). Gender was equally split, with 44% male, 42% female and 14% undeclared. Experience with disability was common amongst participants, with 25% self-identifying as having a personal disability and 48% claiming to have a close family member with a disability. Exploratory trends indicated that females, and people with self-identified disabilities, and people with close family members with disabilities trended towards having more positive attitudes toward persons with disabilities. This poster will report upon these trends and explore in more depth how personal factors such as age, gender and personal disability status impact high school students attitudes toward persons with disability in general and in regards to Autism and ADHD specifically.Keywords: disability, autism, ADHD, community research, acceptance, adolescence, high school
Procedia PDF Downloads 7420151 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 21020150 Fixed Point Iteration of a Damped and Unforced Duffing's Equation
Authors: Paschal A. Ochang, Emmanuel C. Oji
Abstract:
The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced.Keywords: damping, Duffing's equation, fixed point analysis, second order differential, stability analysis
Procedia PDF Downloads 29220149 The Need for a More Defined Role for Psychologists in Adult Consultation Liaison Services in Hospital Settings
Authors: Ana Violante, Jodie Maccarrone, Maria Fimiani
Abstract:
In the United States, over 30 million people are hospitalized annually for conditions that require acute, 24-hour, supervised care. The experience of hospitalization can be traumatic, exposing the patient to loss of control, autonomy, and productivity. Furthermore, 40% of patients admitted to hospitals for general medical illness have a comorbid psychiatric diagnosis. Research suggests individuals admitted with psychiatric comorbidities experience poorer health outcomes, higher utilization rates and increased overall cost of care. Empirical work suggests hospital settings that include a consultation liaison (CL) service report reduced length of stay, lower costs per patient, improved medical staff and patient satisfaction and reduced readmission after 180 days. Despite the overall positive impact CL services can have on patient care, it is estimated that only 1% - 2.8% of hospital admits receive these services, and most research has been conducted by the field of psychiatry. Health psychologists could play an important role in increasing access to this valuable service, though the extent to which health psychologists participate in CL settings is not well known. Objective: Outline the preliminary findings from an empirical study to understand how many APPIC internship training programs offer adult consultation liaison rotations within inpatient hospital settings nationally, as well as describe the specific nature of these training experiences. Research Method/Design: Data was exported into Excel from the 2022-2023 APPIC Directory categorized as “health psychology” sites. It initially returned a total of 537 health training programs out 1518 total programs (35% of all APPIC programs). A full review included a quantitative and qualitative comprehensive review of the APPIC program summary, the site website, and program brochures. The quantitative review extracted the number of training positions; amount of stipend; location or state of program, patient, population, and rotation. The qualitative review examined the nature of the training experience. Results: 29 (5%) of all APPIC health psychology internship training programs (2%) respectively of all APPIC training internship programs offering internship CL training were identified. Of the 29 internship training programs, 16 were exclusively within a pediatric setting (55%), 11 were exclusively within an adult setting (38%), and two were a mix of pediatric and adult settings (7%). CL training sites were located to 19 states, offering a total of 153 positions nationally, with Florida containing the largest number of programs (4). Only six programs offered 12-month training opportunities while the rest offered CL as a major (6 month) to minor (3-4 month) rotation. The program’s stipend for CL training positions ranged from $25,000 to $62,400, with an average of $32,056. Conclusions: These preliminary findings suggest CL training and services are currently limited. Training opportunities that do exist are mostly limited to minor, short rotations and governed by psychiatry. Health psychologists are well-positioned to better define the role of psychology in consultation liaison services and enhance and formalize existing training protocols. Future research should explore in more detail empirical outcomes of CL services that employ psychology and delineate the contributions of psychology from psychiatry and other disciplines within an inpatient hospital setting.Keywords: consultation liaison, health psychology, hospital setting, training
Procedia PDF Downloads 7520148 Building an Opinion Dynamics Model from Experimental Data
Authors: Dino Carpentras, Paul J. Maher, Caoimhe O'Reilly, Michael Quayle
Abstract:
Opinion dynamics is a sub-field of agent-based modeling that focuses on people’s opinions and their evolutions over time. Despite the rapid increase in the number of publications in this field, it is still not clear how to apply these models to real-world scenarios. Indeed, there is no agreement on how people update their opinion while interacting. Furthermore, it is not clear if different topics will show the same dynamics (e.g., more polarized topics may behave differently). These problems are mostly due to the lack of experimental validation of the models. Some previous studies started bridging this gap in the literature by directly measuring people’s opinions before and after the interaction. However, these experiments force people to express their opinion as a number instead of using natural language (and then, eventually, encoding it as numbers). This is not the way people normally interact, and it may strongly alter the measured dynamics. Another limitation of these studies is that they usually average all the topics together, without checking if different topics may show different dynamics. In our work, we collected data from 200 participants on 5 unpolarized topics. Participants expressed their opinions in natural language (“agree” or “disagree”). We also measured the certainty of their answer, expressed as a number between 1 and 10. However, this value was not shown to other participants to keep the interaction based on natural language. We then showed the opinion (and not the certainty) of another participant and, after a distraction task, we repeated the measurement. To make the data compatible with opinion dynamics models, we multiplied opinion and certainty to obtain a new parameter (here called “continuous opinion”) ranging from -10 to +10 (using agree=1 and disagree=-1). We firstly checked the 5 topics individually, finding that all of them behaved in a similar way despite having different initial opinions distributions. This suggested that the same model could be applied for different unpolarized topics. We also observed that people tend to maintain similar levels of certainty, even when they changed their opinion. This is a strong violation of what is suggested from common models, where people starting at, for example, +8, will first move towards 0 instead of directly jumping to -8. We also observed social influence, meaning that people exposed with “agree” were more likely to move to higher levels of continuous opinion, while people exposed with “disagree” were more likely to move to lower levels. However, we also observed that the effect of influence was smaller than the effect of random fluctuations. Also, this configuration is different from standard models, where noise, when present, is usually much smaller than the effect of social influence. Starting from this, we built an opinion dynamics model that explains more than 80% of data variance. This model was also able to show the natural conversion of polarization from unpolarized states. This experimental approach offers a new way to build models grounded on experimental data. Furthermore, the model offers new insight into the fundamental terms of opinion dynamics models.Keywords: experimental validation, micro-dynamics rule, opinion dynamics, update rule
Procedia PDF Downloads 10920147 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 104