Search results for: smart agriculture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2768

Search results for: smart agriculture

1748 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 250
1747 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform

Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen

Abstract:

The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.

Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system

Procedia PDF Downloads 62
1746 Agro-Measures Influence Soil Physical Parameters in Alternative Farming

Authors: Laura Masilionyte, Danute Jablonskyte-Rasce, Kestutis Venslauskas, Zita Kriauciuniene

Abstract:

Alternative farming systems are used to cultivate high-quality food products and sustain the viability and fertility of the soil. Plant nutrition in all ecosystems depends not only on fertilization intensity or soil richness in organic matter but also on soil physical parameters –bulk density, structure, pores with the optimum moisture and air ratio available to plants. The field experiments of alternative (sustainable and organic) farming systems were conducted at Joniskelis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry in 2006–2016. The soil of the experimental site was Endocalcari-Endohypogleyic Cambisol (CMg-n-w-can). In alternative farming systems, farmyard manure, straw and catch crops for green manure were used for fertilization both in the soil with low and moderate humus contents. It had a more significant effect in the 0–20 cm depth layer on soil moisture than on other physical soil properties. In the agricultural systems, where catch crops were grown, soil physical characteristics did not differ significantly before their biomass incorporation, except for the moisture content, which was lower in rainy periods and higher in drier periods than in the soil of farming systems without catch crops. Soil bulk density and porosity in the topsoil layer were more dependent on soil humus content than on agricultural measures used: in the soil with moderate humus content, compared with the soil with low humus content, bulk density was by 1.4% lower, and porosity by 1.8% higher. The research findings allow to make improvements in alternative farming systems by choosing appropriate combinations of organic fertilizers and catch crops that have a sustainable effect on soil and maintain the sustainability of soil productivity parameters. Rational fertilization systems, securing the stability of soil productivity parameters and crop rotation productivity will promote the development of organic agriculture.

Keywords: agro-measures, soil physical parameters, organic farming, sustainable farming

Procedia PDF Downloads 111
1745 Dynamics of Agricultural Information and Effect on Income of Melon Farmers in Enugu Ezike Agricultural Zone of Enugu State, Nigeria

Authors: Iwuchukwu J. C., Ekeh G. Madukwe, M. C., Asadu A. N.

Abstract:

Melon has significant importance of easy to plant, early maturing, low nutrient requirement and high yielding. Yet many melon farmers in the study area are either diversifying or abandoning this enterprise probably because of lack of agricultural knowledge/information and consequent reduction in output and income. The study was therefore carried out to asses effects of agricultural information on income of melon farmers in Enugu-Ezike Agricultural zone of Enugu state, Nigeria. Three blocks, nine circles and ninety melon farmers who were purposively selected constituted the sample for the study..Data were collected with interview schedule. Percentage and chart were used to present some of the data while some were analysed with mean score and correlation. The findings reveal that. average annual income of these respondents from melon was about seven thousand and five hundred Naira (approximately forty five Dollars). while their total average monthly income (income from melon and other sources) was about one thousand and two hundred Naira (approximately seven Dollars). About 42.% and 62% of the respondents in their respective order did not receive information on agricultural matters and melon production. Among the minority that received information on melon production, most of them sourced it from neighbours/friends/relatives. Majority of the respondents needed information on how to plant melon through interpersonal contact (face to face) using Igbo language as medium of communication and extension agent as teacher or resource person. The study also reveal a significant and positive relationship between number of times respondents received information on agriculture and their total monthly income. There was also a strong, positive and significant relationship between number of times respondents received information on melon and their annual income on melon production. The study therefore recommends that governmental and non-governmental organizations/ institutions should strengthen these farmers access to information on agriculture and melon specifically so as to boost their output and income.

Keywords: farmers, income, information, melon

Procedia PDF Downloads 225
1744 Rural Territorial Sustainable Development: Interinstitutional Dialogue and Transition to Sustainable Livelihoods

Authors: Aico Nogueira

Abstract:

This paper examines the interinstitutional dialogues within the Brazilian federal structures, which comprises federal, state and local levels, around the themes of new approaches and interventions aimed to promote sustainable rural development, particularly rural development as part of a territorial approach. The work seeks to understand to what extent the various levels of the state interact with these strategies, particularly with the locally constituted powers, focusing on the importance of the transition of traditional agriculture methods to more sustainable agroecological systems and its effects on food security and sustainable rural development. The research analyses as case studies the Sustainable Rural Territories Development Program (PRONAT) of the Ministry of Agrarian Development at the federal level, as well as the State of São Paulo and the Vale do Ribeira Territory, an area characterized by environmental and social vulnerability, restrictive environmental laws and attempts to promote sustainable development. In order to examine how the interrelationships between different levels of governance and civil society, in addition to the neo-institutionalist polity centered literature, the research uses an adaptation of the concept of arena in Ostrom and Hannigan, produced at different scales of decision-making processes, as well as the multilevel governance literature. Document analysis, interviews, focus groups and direct observation techniques are also used. The main findings of this study are that how different levels of governance understand and organize themselves for this work and have a direct impact on the actions taken. Consequently, programs formulated for this purpose are not associated with the creation of institutions capable of breaking with a traditional sectoral view that has historically prevailed in policymaking. And the transition from traditional agriculture to agroecological production systems is hampered by a sectorial foundation, based on large-scale production and the strengthening of the traditional country's land concentration model.

Keywords: agroecology, food security, inter-institutional dialogue, rural poverty, sustainable rural development, territorial development

Procedia PDF Downloads 182
1743 Assessing Smallholder Rice and Vegetable Farmers’ Constraints and Needs to Adopt Small-Scale Irrigation in South Tongu District, Ghana

Authors: Tamekloe Michael Kossivi, Kenichi Matsui

Abstract:

Irrigation access is one of the essential rural development investment options that can significantly improve smallholder farmers’ agriculture productivity. Investment in irrigation infrastructural development to supply adequate water could improve food security, growth in income for farmers, poverty alleviation, and improve business and livelihood. This paper assesses smallholder farmers’ constraints and the needs to adopt small-scale irrigation for crops production in the South Tongu District of Ghana. The data collection involved database search, questionnaire survey, interview, and field work. The structured questionnaire survey was administered from September to November 2020 among 120 respondents in six purposively sampled irrigation communities in the District. The questions focused on small-scale irrigation development constraints and needs. As a result, we found that the respondents relied mainly on rainfall for agriculture production. They did not have adequate irrigation access. Even though the District is blessed with open arable lands and rich water sources for rice and vegetable production on a massive scale, water sources like the Lower Volta River, Tordzi River, and Avu Lagoon were not close enough to the respondents. The respondents faced inadequate credit support (100%), unreliable rainfall (76%), insufficient water supply (54%), and unreliable water delivery challenges on their farms (53%). Physical constraints for the respondents to adopt irrigation included flood (77%), drought (93%), inadequate irrigation technology (59%), and insufficient technical know-how (65%). Farmers were interested in investing in irrigation infrastructural development to enhance productivity on their farms only if they own the farmlands. External support from donors on irrigation systems did not allow smallholder farmers to control irrigation facilities.

Keywords: constraints, food security, needs, smallholder farmers, small-scale irrigation

Procedia PDF Downloads 100
1742 Agrarian Transitions and Rural Social Relations in Jharkhand, India

Authors: Avinash

Abstract:

Rural Jharkhand has attracted lesser attention in the field of agrarian studies in India, despite more than eighty percent of its rural population being directly dependent on agriculture as their primary source of livelihood. The limited studies on agrarian issues in Jharkhand have focused predominantly on the subsistence nature of agriculture and low crop productivity. There has also not been much research on agrarian social relations between ‘tribe’ and ‘non-tribe’ communities in the region. This paper is an attempt to understand changing agrarian social relations between tribal and non-tribal communities relating them to different kinds of agrarian transitions taking place in two districts of Jharkhand - Palamu and Khunti. In the Palamu region, agrarian relations are dominated by the presence and significant population size of Hindu high caste land owners, whereas in the Khunti region, agrarian relations are characterized by the population size and dominance of tribes and lower caste land owner cum cultivators. The agrarian relations between ‘upper castes’ and ‘tribes’ in these regions are primarily related to agricultural daily wage labour. However, the agrarian social relations between Dalits and tribal people take the form of ‘communal system of labour exchange’ and ‘household-based labour’. In addition, the ethnographic study of the region depicts steady agrarian transitions (especially shift from indigenous to ‘High Yielding Variety’ (HYV) paddy seeds and growing vegetable cultivation) where ‘Non-Governmental Organizations’ (NGOs) and agricultural input manufacturers and suppliers are playing a critical role in agrarian transitions as intermediaries. While agricultural productivity still remains low, both the regions are witnessing slow but gradual agrarian transitions. Rural-urban linkages in the form of seasonal labour migration are creating capital and technical inflows that are transforming agricultural activities. This study describes and interprets the above changes through the lens of ‘regional rurality’.

Keywords: agrarian transitions, rural Jharkhand, regional rurality, tribe and non-tribe

Procedia PDF Downloads 161
1741 Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials

Authors: Katielly Vianna Polkowski, Rodrigo Denizarte de Oliveira Polkowski, Cristiano Grings Herbert

Abstract:

The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains.

Keywords: graphene, shape memory, smart materials, polymers, nanomaterials

Procedia PDF Downloads 67
1740 The Impacts of Technology on Operations Costs: The Mediating Role of Operation Flexibility

Authors: Fazli Idris, Jihad Mohammad

Abstract:

The study aims to determine the impact of technology and service operations flexibility, which is divided into external flexibility and internal robustness, on operations costs. A mediation model is proposed that links technology to operations costs via operation flexibility. Drawing on a sample of 475 of operations managers of various service sectors in Malaysia and South Africa, Structural Equation Modeling (SEM) was employed to test the relationship using Smart-PLS procedures. It was found that a significant relationship was established between technologies to operations costs via both operations flexibility dimensions. Theoretical and managerial implications are offered to explain the results.

Keywords: Operations flexibility, technology, costs, mediation

Procedia PDF Downloads 591
1739 Environmental and Socioeconomic Determinants of Climate Change Resilience in Rural Nigeria: Empirical Evidence towards Resilience Building

Authors: Ignatius Madu

Abstract:

The study aims at assessing the environmental and socioeconomic determinants of climate change resilience in rural Nigeria. This is necessary because researches and development efforts on building climate change resilience of rural areas in developing countries are usually made without the knowledge of the impacts of the inherent rural characteristics that determine resilient capacities of the households. This has, in many cases, led to costly mistakes, delayed responses, inaccurate outcomes, and other difficulties. Consequently, this assessment becomes crucial not only to policymakers and people living in risk-prone environments in rural areas but also to fill the research gap. To achieve the aim, secondary data were obtained from the Annual Abstract of Statistics 2017, LSMS-Integrated Surveys on Agriculture and General Household Survey Panel 2015/2016, and National Agriculture Sample Survey (NASS), 2010/2011.Resilience was calculated by weighting and adding the adaptive, absorptive and anticipatory measures of households variables aggregated at state levels and then regressed against rural environmental and socioeconomic characteristics influencing it. From the regression, the coefficients of the variables were used to compute the impacts of the variables using the Stochastic Regression of Impacts on Population, Affluence and Technology (STIRPAT) Model. The results showed that the northern States are generally low in resilient indices and are impacted less by the development indicators. The major determining factors are percentage of non-poor, environmental protection, road transport development, landholding, agricultural input, population density, dependency ratio (inverse), household asserts, education and maternal care. The paper concludes that any effort to a successful resilient building in rural areas of the country should first address these key factors that enhance rural development and wellbeing since it is better to take action before shocks take place.

Keywords: climate change resilience; spatial impacts; STIRPAT model; Nigeria

Procedia PDF Downloads 129
1738 Evaluation of Feasibility of Ecological Sanitation in Central Nepal

Authors: K. C. Sharda

Abstract:

Introduction: In the world, almost half of the population are lacking proper access to improved sanitation services. In Nepal, large number of people are living without access to any sanitation facility. Ecological sanitation toilet which is defined as water conserving and nutrient recycling system for use of human urine and excreta in agriculture would count a lot to utilize locally available resources, to regenerate soil fertility, to save national currency and to achieve the goal of elimination open defecation in country like Nepal. The objectives of the research were to test the efficacy of human urine for improving crop performance and to evaluate the feasibility of ecological sanitation in rural area of Central Nepal. Materials and Methods: The field investigation was carried out at Palung Village Development Committee (VDC) of Makawanpur District, Nepal from March – August, 2016. Five eco-san toilets in two villages (Angare and Bhot Khoriya) were constructed and questionnaire survey was carried out. During the questionnaire survey, respondents were asked about socio-economic parameters, farming practices, awareness of ecological sanitation and fertilizer value of human urine and excreta in agriculture. In prior to a field experiment, soil was sampled for analysis of basic characteristics. In the field experiment, cauliflower was cultivated for a month in the two sites to compare the fertilizer value of urine with chemical fertilizer and no fertilizer with three replications. The harvested plant samples were analyzed to understand the nutrient content in plant with different treatments. Results and Discussion: Eighty three percent respondents were engaged in agriculture growing mainly vegetables, which may raise the feasibility of ecological sanitation. In the study area, water deficiencies in dry season, high demand of chemical fertilizer, lack of sanitation awareness were found to be solved. The soil at Angare has sandier texture and lower nitrogen content compared to that in Bhot Khoriya. While the field experiment in Angare showed that the aboveground biomass of cauliflower in the urine fertilized plot were similar with that in the chemically fertilized plot and higher than those in the non-fertilized plots, no significant difference among the treatments were found in Bhot Khoriya. The more distinctive response of crop growth to the three treatments in the former might be attributed to the poorer soil productivity, which in turn could be caused by the poorer inherent soil fertility and the poorer past management by the farmer in Angare. Thus, use of urine as fertilizer could help poor farmers with low quality soil. The significantly different content of nitrogen and potassium in the plant samples among three treatments in Bhot Khoriya would require further investigation. When urine is utilized as a fertilizer, the productivity could be increased and the money to buy chemical fertilizer would be utilized in other livelihood activities. Ecological sanitation is feasible in the area with similar socio-economic parameter.

Keywords: cauliflower, chemical fertilizer, ecological sanitation, Nepal, urine

Procedia PDF Downloads 338
1737 Use of Artificial Neural Networks to Estimate Evapotranspiration for Efficient Irrigation Management

Authors: Adriana Postal, Silvio C. Sampaio, Marcio A. Villas Boas, Josué P. Castro

Abstract:

This study deals with the estimation of reference evapotranspiration (ET₀) in an agricultural context, focusing on efficient irrigation management to meet the growing interest in the sustainable management of water resources. Given the importance of water in agriculture and its scarcity in many regions, efficient use of this resource is essential to ensure food security and environmental sustainability. The methodology used involved the application of artificial intelligence techniques, specifically Multilayer Perceptron (MLP) Artificial Neural Networks (ANNs), to predict ET₀ in the state of Paraná, Brazil. The models were trained and validated with meteorological data from the Brazilian National Institute of Meteorology (INMET), together with data obtained from a producer's weather station in the western region of Paraná. Two optimizers (SGD and Adam) and different meteorological variables, such as temperature, humidity, solar radiation, and wind speed, were explored as inputs to the models. Nineteen configurations with different input variables were tested; amidst them, configuration 9, with 8 input variables, was identified as the most efficient of all. Configuration 10, with 4 input variables, was considered the most effective, considering the smallest number of variables. The main conclusions of this study show that MLP ANNs are capable of accurately estimating ET₀, providing a valuable tool for irrigation management in agriculture. Both configurations (9 and 10) showed promising performance in predicting ET₀. The validation of the models with cultivator data underlined the practical relevance of these tools and confirmed their generalization ability for different field conditions. The results of the statistical metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²), showed excellent agreement between the model predictions and the observed data, with MAE as low as 0.01 mm/day and 0.03 mm/day, respectively. In addition, the models achieved an R² between 0.99 and 1, indicating a satisfactory fit to the real data. This agreement was also confirmed by the Kolmogorov-Smirnov test, which evaluates the agreement of the predictions with the statistical behavior of the real data and yields values between 0.02 and 0.04 for the producer data. In addition, the results of this study suggest that the developed technique can be applied to other locations by using specific data from these sites to further improve ET₀ predictions and thus contribute to sustainable irrigation management in different agricultural regions. The study has some limitations, such as the use of a single ANN architecture and two optimizers, the validation with data from only one producer, and the possible underestimation of the influence of seasonality and local climate variability. An irrigation management application using the most efficient models from this study is already under development. Future research can explore different ANN architectures and optimization techniques, validate models with data from multiple producers and regions, and investigate the model's response to different seasonal and climatic conditions.

Keywords: agricultural technology, neural networks in agriculture, water efficiency, water use optimization

Procedia PDF Downloads 27
1736 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms

Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita

Abstract:

Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.

Keywords: air quality, internet of things, artificial intelligence, smart home

Procedia PDF Downloads 71
1735 Integrated Livestock and Cropping System and Sustainable Rural Development in India: A Case Study

Authors: Nizamuddin Khan

Abstract:

Integrated livestock and cropping system is very old agricultural practice since antiquity. It is an eco-friendly and sustainable farming system in which both the resources are optimally and rationally utilized through the recycling and re-utilization of their by-products. Indian farmers follow in- farm integrated farming system unlike in developed countries where both farm and off-farm system prevailed. The data on different components of the integrated farming system is very limited and that too is not widely available in published form. The primary source is the only option for understanding the mechanism, process, evaluation and performance of integrated livestock cropping system. Researcher generated data through the field survey of sampled respondents from sampled villages from Bulandshahr district of Uttar Pradesh. The present paper aims to understand the component group of system, degree, and level of integration, level of generation of employment, income, improvement in farm ecology, the economic viability of farmers and check in rural-urban migration. The study revealed that area witnessed intra farm integration in which both livestock and cultivation of crops take place on the same farm. Buffalo, goat, and poultry are common components of integration. Wheat, paddy, sugarcane and horticulture are among the crops. The farmers are getting 25% benefit more than those who do not follow the integrated system. Livestock husbandry provides employment and income through the year, especially during agriculture offseason. 80% of farmers viewed that approximately 35% of the total expenditure incurred is met from the livestock sector. Landless, marginal and small farmers are highly benefited from agricultural integration. About 70% of farmers acknowledged that using wastes of animals and crops the soil ecology is significantly maintained. Further, the integrated farming system is helpful in reducing rural to urban migration. An incentive with credit facilities, assured marketing, technological aid and government support is urgently needed for sustainable development of agriculture and farmers.

Keywords: integrated, recycle, employment, soil ecology, sustainability

Procedia PDF Downloads 150
1734 Robust Decision Support Framework for Addressing Uncertainties in Water Resources Management in the Mekong

Authors: Chusit Apirumanekul, Chayanis Krittasudthacheewa, Ratchapat Ratanavaraha, Yanyong Inmuong

Abstract:

Rapid economic development in the Lower Mekong region is leading to changes in water quantity and quality. Changes in land- and forest-use, infrastructure development, increasing urbanization, migration patterns and climate risks are increasing demands for water, within various sectors, placing pressure on scarce water resources. Appropriate policies, strategies, and planning are urgently needed for improved water resource management. Over the last decade, Thailand has experienced more frequent and intense drought situations, affecting the level of water storage in reservoirs along with insufficient water allocation for agriculture during the dry season. The Huay Saibat River Basin, one of the well-known water-scarce areas in the northeastern region of Thailand, is experiencing ongoing water scarcity that affects both farming livelihoods and household consumption. Drought management in Thailand mainly focuses on emergency responses, rather than advance preparation and mitigation for long-term solutions. Despite many efforts from local authorities to mitigate the drought situation, there is yet no long-term comprehensive water management strategy, that integrates climate risks alongside other uncertainties. This paper assesses the application in the Huay Saibat River Basin, of the Robust Decision Support framework, to explore the feasibility of multiple drought management policies; including a shift in cropping season, in crop changes, in infrastructural operations and in the use of groundwater, under a wide range of uncertainties, including climate and land-use change. A series of consultative meetings were organized with relevant agencies and experts at the local level, to understand and explore plausible water resources strategies and identify thresholds to evaluate the performance of those strategies. Three different climate conditions were identified (dry, normal and wet). Other non-climatic factors influencing water allocation were further identified, including changes from sugarcane to rubber, delaying rice planting, increasing natural retention storage and using groundwater to supply demands for household consumption and small-scale gardening. Water allocation and water use in various sectors, such as in agriculture, domestic, industry and the environment, were estimated by utilising the Water Evaluation And Planning (WEAP) system, under various scenarios developed from the combination of climatic and non-climatic factors mentioned earlier. Water coverage (i.e. percentage of water demand being successfully supplied) was defined as a threshold for water resource strategy assessment. Thresholds for different sectors (agriculture, domestic, industry, and environment) were specified during multi-stakeholder engagements. Plausible water strategies (e.g. increasing natural retention storage, change of crop type and use of groundwater as an alternative source) were evaluated based on specified thresholds in 4 sectors (agriculture, domestic, industry, and environment) under 3 climate conditions. 'Business as usual' was evaluated for comparison. The strategies considered robust, emerge when performance is assessed as successful, under a wide range of uncertainties across the river basin. Without adopting any strategy, the water scarcity situation is likely to escalate in the future. Among the strategies identified, the use of groundwater as an alternative source was considered a potential option in combating water scarcity for the basin. Further studies are needed to explore the feasibility for groundwater use as a potential sustainable source.

Keywords: climate change, robust decision support, scenarios, water resources management

Procedia PDF Downloads 153
1733 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy

Procedia PDF Downloads 315
1732 Automated Localization of Palpebral Conjunctiva and Hemoglobin Determination Using Smart Phone Camera

Authors: Faraz Tahir, M. Usman Akram, Albab Ahmad Khan, Mujahid Abbass, Ahmad Tariq, Nuzhat Qaiser

Abstract:

The objective of this study was to evaluate the Degree of anemia by taking the picture of the palpebral conjunctiva using Smartphone Camera. We have first localized the region of interest from the image and then extracted certain features from that Region of interest and trained SVM classifier on those features and then, as a result, our system classifies the image in real-time on their level of hemoglobin. The proposed system has given an accuracy of 70%. We have trained our classifier on a locally gathered dataset of 30 patients.

Keywords: anemia, palpebral conjunctiva, SVM, smartphone

Procedia PDF Downloads 483
1731 Democracy in Gaming: An Artificial Neural Network Based Approach towards Rule Evolution

Authors: Nelvin Joseph, K. Krishna Milan Rao, Praveen Dwarakanath

Abstract:

The explosive growth of Smart phones around the world has led to the shift of the primary engagement tool for entertainment from traditional consoles and music players to an all integrated device. Augmented Reality is the next big shift in bringing in a new dimension to the play. The paper explores the construct and working of the community engine in Delta T – an Augmented Reality game that allows users to evolve rules in the game basis collective bargaining mirroring democracy even in a gaming world.

Keywords: augmented reality, artificial neural networks, mobile application, human computer interaction, community engine

Procedia PDF Downloads 305
1730 Usability Testing on Information Design through Single-Lens Wearable Device

Authors: Jae-Hyun Choi, Sung-Soo Bae, Sangyoung Yoon, Hong-Ku Yun, Jiyoung Kwahk

Abstract:

This study was conducted to investigate the effect of ocular dominance on recognition performance using a single-lens smart display designed for cycling. A total of 36 bicycle riders who have been cycling consistently were recruited and participated in the experiment. The participants were asked to perform tasks riding a bicycle on a stationary stand for safety reasons. Independent variables of interest include ocular dominance, bike usage, age group, and information layout. Recognition time (i.e., the time required to identify specific information measured with an eye-tracker), error rate (i.e. false answer or failure to identify the information in 5 seconds), and user preference scores were measured and statistical tests were conducted to identify significant results. Recognition time and error ratio showed significant difference by ocular dominance factor, while the preference score did not. Recognition time was faster when the single-lens see-through display on the dominant eye (average 1.12sec) than on the non-dominant eye (average 1.38sec). Error ratio of the information recognition task was significantly lower when the see-through display was worn on the dominant eye (average 4.86%) than on the non-dominant eye (average 14.04%). The interaction effect of ocular dominance and age group was significant with respect to recognition time and error ratio. The recognition time of the users in their 40s was significantly longer than the other age groups when the display was placed on the non-dominant eye, while no difference was observed on the dominant eye. Error ratio also showed the same pattern. Although no difference was observed for the main effect of ocular dominance and bike usage, the interaction effect between the two variables was significant with respect to preference score. Preference score of daily bike users was higher when the display was placed on the dominant eye, whereas participants who use bikes for leisure purposes showed the opposite preference patterns. It was found more effective and efficient to wear a see-through display on the dominant eye than on the non-dominant eye, although user preference was not affected by ocular dominance. It is recommended to wear a see-through display on the dominant eye since it is safer by helping the user recognize the presented information faster and more accurately, even if the user may not notice the difference.

Keywords: eye tracking, information recognition, ocular dominance, smart headware, wearable device

Procedia PDF Downloads 258
1729 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes

Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far

Abstract:

Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.

Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors

Procedia PDF Downloads 298
1728 Molecular Interactions between Vicia Faba L. Cultivars and Plant Growth Promoting Rhizobacteria (PGPR), Utilized as Yield Enhancing 'Plant Probiotics'

Authors: Eleni Stefanidou, Nikolaos Katsenios, Ioanna Karamichali, Aspasia Efthimiadou, Panagiotis Madesis

Abstract:

The excessive use of pesticides and fertilizers has significant environmental and human health-related negative effects. In the frame of the development of sustainable agriculture practices, especially in the context of extreme environmental changes (climate change), it is important to develop alternative practices to increase productivity and biotic and abiotic stress tolerance. Beneficial bacteria, such as symbiotic bacteria in legumes (rhizobia) and symbiotic or free-living Plant Growth Promoting Rhizobacteria (PGPR), which could act as "plant probiotics", can promote plant growth and significantly increase the resistance of crops under adverse environmental conditions. In this study, we explored the symbiotic relationships between Faba bean (Vicia faba L.) cultivars with different PGPR bacteria, aiming to identify the possible influence on yield and biotic-abiotic phytoprotection benefits. Transcriptomic analysis of root and whole plant samples was executed for two Vicia faba L. cultivars (Polikarpi and Solon) treated with selected PGPR bacteria (6 treatments: B. subtilis + Rhizobium-mixture, A. chroococcum + Rhizobium-mixture, B. subtilis, A. chroococcum and Rhizobium-mixture). Preliminary results indicate a significant yield (Seed weight and Total number of pods) increase in both varieties, ranging around 25%, in comparison to the control, especially for the Solon cultivar. The increase was observed for all treatments, with the B. subtilis + Rhizobium-mixture treatment being the highest performing. The correlation of the physiological and morphological data with the transcriptome analysis revealed molecular mechanisms and molecular targets underlying the observed yield increase, opening perspectives for the use of nitrogen-fixing bacteria as a natural, more ecological enhancer of legume crop productivity.

Keywords: plant probiotics, PGPR, legumes, sustainable agriculture

Procedia PDF Downloads 58
1727 An Extended Domain-Specific Modeling Language for Marine Observatory Relying on Enterprise Architecture

Authors: Charbel Aoun, Loic Lagadec

Abstract:

A Sensor Network (SN) is considered as an operation of two phases: (1) the observation/measuring, which means the accumulation of the gathered data at each sensor node; (2) transferring the collected data to some processing center (e.g., Fusion Servers) within the SN. Therefore, an underwater sensor network can be defined as a sensor network deployed underwater that monitors underwater activity. The deployed sensors, such as Hydrophones, are responsible for registering underwater activity and transferring it to more advanced components. The process of data exchange between the aforementioned components perfectly defines the Marine Observatory (MO) concept which provides information on ocean state, phenomena and processes. The first step towards the implementation of this concept is defining the environmental constraints and the required tools and components (Marine Cables, Smart Sensors, Data Fusion Server, etc). The logical and physical components that are used in these observatories perform some critical functions such as the localization of underwater moving objects. These functions can be orchestrated with other services (e.g. military or civilian reaction). In this paper, we present an extension to our MO meta-model that is used to generate a design tool (ArchiMO). We propose new constraints to be taken into consideration at design time. We illustrate our proposal with an example from the MO domain. Additionally, we generate the corresponding simulation code using our self-developed domain-specific model compiler. On the one hand, this illustrates our approach in relying on Enterprise Architecture (EA) framework that respects: multiple views, perspectives of stakeholders, and domain specificity. On the other hand, it helps reducing both complexity and time spent in design activity, while preventing from design modeling errors during porting this activity in the MO domain. As conclusion, this work aims to demonstrate that we can improve the design activity of complex system based on the use of MDE technologies and a domain-specific modeling language with the associated tooling. The major improvement is to provide an early validation step via models and simulation approach to consolidate the system design.

Keywords: smart sensors, data fusion, distributed fusion architecture, sensor networks, domain specific modeling language, enterprise architecture, underwater moving object, localization, marine observatory, NS-3, IMS

Procedia PDF Downloads 155
1726 The Role of Industrial Design in Fashion

Authors: Rojean Ghafariasar, Leili Nosrati

Abstract:

The article introduces the categories and characteristics of cross-design, respectively, between industry and industry designers, artists, brands and brands, science, technology, and fashion. It focuses on the combination of technology and fashion cross-design methods, corresponding case studies on the combination of new technology fabrics, fashion design, smart devices, and also 3D printing technology, emphasizing the integration and application value of technology and fashion. The document also introduces design elements into fashion design through scientific and technological intelligence, promoting fashion innovation as well as research and development of new materials and functions, and incubates an ecosystem for the fashion industry through science and technology.

Keywords: fashion, design, industrial design, crossover design

Procedia PDF Downloads 66
1725 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures

Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk

Abstract:

From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.

Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach

Procedia PDF Downloads 183
1724 Walkability with the Use of Mobile Apps

Authors: Dimitra Riza

Abstract:

This paper examines different ways of exploring a city by using smart phones' applications while walking, and the way this new attitude will change our perception of the urban environment. By referring to various examples of such applications we will consider options and possibilities that open up with new technologies, their advantages and disadvantages, as well as ways of experiencing and interpreting the urban environment. The widespread use of smart phones gave access to information, maps, knowledge, etc. at all times and places. The city tourism marketing takes advantage of this event and promotes the city's attractions through technology. Mobile mediated walking tours, provide new possibilities and modify the way we used to explore cities, for instance by giving directions proper to find easily destinations, by displaying our exact location on the map, by creating our own tours through picking points of interest and interconnecting them to create a route. These apps act as interactive ones, as they filter the user's interests, movements, etc. Discovering a city on foot and visiting interesting sites and landmarks, became very easy, and has been revolutionized through the help of navigational and other applications. In contrast to the re-invention of the city as suggested by the Baudelaire's Flâneur in the 19th century, or to the construction of situations by the Situationists in 60s, the new technological means do not allow people to "get lost", as these follow and record our moves. In the case of strolling or drifting around the city, the option of "getting lost" is desired, as the goal is not the "wayfinding" or the destination, but it is the experience of walking itself. Getting lost is not always about dislocation, but it is about getting a feeling, free of the urban environment while experiencing it. So, on the one hand, walking is considered to be a physical and embodied experience, as the observer becomes an actor and participates with all his senses in the city activities. On the other hand, the use of a screen turns out to become a disembodied experience of the urban environment, as we perceive it in a fragmented and distanced way. Relations with the city are similar to Alberti’s isolated viewer, detached from any urban stage. The smartphone, even if we are present, acts as a mediator: we interact directly with it and indirectly with the environment. Contrary to the Flaneur and to the Situationists, who discovered the city with their own bodies, today the body itself is being detached from that experience. While contemporary cities turn out to become more walkable, the new technological applications tend to open out all possibilities in order to explore them by suggesting multiple routes. Exploration becomes easier, but Perception changes.

Keywords: body, experience, mobile apps, walking

Procedia PDF Downloads 394
1723 Smart Trust Management for Vehicular Networks

Authors: Amel Ltifi, Ahmed Zouinkhi, Med Salim Bouhlel

Abstract:

Spontaneous networks such as VANET are in general deployed in an open and thus easily accessible environment. Therefore, they are vulnerable to attacks. Trust management is one of a set of security solutions dedicated to this type of networks. Moreover, the strong mobility of the nodes (in the case of VANET) makes the establishment of a trust management system complex. In this paper, we present a concept of ‘Active Vehicle’ which means an autonomous vehicle that is able to make decision about trustworthiness of alert messages transmitted about road accidents. The behavior of an “Active Vehicle” is modeled using Petri Nets.

Keywords: active vehicle, cooperation, petri nets, trust management, VANET

Procedia PDF Downloads 382
1722 Bio Based Agro Textiles

Authors: K. Sakthivel

Abstract:

With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.

Keywords: biodegradation, environment, mulching film, PLA, technical textiles

Procedia PDF Downloads 372
1721 Using Probe Person Data for Travel Mode Detection

Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma

Abstract:

Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.

Keywords: accelerometer, AdaBoost, GPS, mode prediction, support vector machine

Procedia PDF Downloads 333
1720 The Effectiveness of Online Learning in the Wisconsin Technical College System

Authors: Julie Furst-Bowe

Abstract:

Over the past decade, there has been significant growth in online courses and programs at all levels of education in the United States. This study explores the growth of online and blended (or hybrid) programs offered by the sixteen technical colleges in the Wisconsin Technical College System (WTCS). The WTCS provides education and training programs to more than 300,000 students each year in career clusters including agriculture, business, energy, information technology, healthcare, human services, manufacturing, and transportation. These programs range from short-term training programs that may lead to a certificate to two-year programs that lead to an associate degree. Students vary in age from high school students who are exploring career interests to employees who are seeking to gain additional skills or enter a new career. Because there is currently a shortage of skilled workers in nearly all sectors in the state of Wisconsin, it is critical that the WTCS is providing fully educated and trained graduates to fill workforce needs in a timely manner. For this study, information on online and blended programs for the past five years was collected from the WTCS, including types of programs, course and program enrollments, course completion rates, program completion rates, time to completion and graduate employment rates. The results of this study indicate that the number of online and blended courses and programs is continuing to increase each year. Online and blended programs are most commonly found in the business, human services, and information technology areas, and they are less commonly found in agriculture, healthcare, manufacturing, and transportation programs. Overall, course and program completion rates were higher for blended programs when compared to fully online programs. Students preferred the blended programs over the fully online programs. Overall, graduates were placed into related jobs at a rate of approximately 90 percent, although there was some variation in graduate placement rates by programs and by colleges. Differences in graduate employment rate appeared to be based on geography and sector as employers did not distinguish between graduates who had completed their programs via traditional, blended or fully online instruction. Recommendations include further exploration as to the reasons that blended courses and programs appear to be more effective than fully online courses and programs. It is also recommended that those program areas that are not using blended or online delivery methods, including agriculture, health, manufacturing and transportation, explore the use of these methods to make their courses and programs more accessible to students, particularly working adults. In some instances, colleges were partnering with specific companies to ensure that groups of employees were completing online coursework leading to a certificate or a degree. Those partnerships are to be encouraged in order for the state to continue to improve the skills of its workforce. Finally, it is recommended that specific colleges specialize in the delivery of specific programs using online technology since it is not bound by geographic considerations. This approach would take advantage of the strengths of the individual colleges and avoid unnecessary duplication.

Keywords: career and technical education, online learning, skills shortage, technical colleges

Procedia PDF Downloads 111
1719 Applying Intelligent Material in Food Packaging

Authors: Kasra Ghaemi, Syeda Tasnim, Shohel Mahmud

Abstract:

One of the main issues affecting the quality and shelf life of food products is temperature fluctuation during transportation and storage. Packaging plays an important role in protecting food from environmental conditions, especially thermal variations. In this study, the performance of using microencapsulated Phase Change Material (PCM) as a promising thermal buffer layer in smart food packaging is investigated. The considered insulation layer is evaluated for different thicknesses and the absorbed heat from the environment. The results are presented in terms of the melting time of PCM or provided thermal protection period.

Keywords: food packaging, phase change material, thermal buffer, protection time

Procedia PDF Downloads 67