Search results for: release kinetics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1840

Search results for: release kinetics

820 Rapid Mitochondrial Reactive Oxygen Species Production Precedes NF-κB Activation and Pro-inflammatory Responses in Macrophages

Authors: Parinaz Tavakoli Zaniani, Dimitrios Balomenos

Abstract:

Mitochondrial reactive oxygen species (mROS) play a crucial role in macrophage pro-inflammatory activation, although a detailed understanding of the mechanism and kinetics by which mROS drive signaling molecules is still lacking. In general, it is thought that NF-κB activation drives mROS and general ROS production. Here, We performed a detailed kinetic analysis of mROS production during macrophage activation. We found early mROS generation after LPS (lipopolysaccharide) stimulation. Remarkably as early as 5 minutes, mROS signaling promoted initial NF-κB, MAPK activation and pro-inflammatory cytokine production, as established through inhibition or quenching of mROS. On the contrary, NF-κB inhibition had no effect on mROS production. Our findings point to a mechanism by which mROS increase TRAF-6 ubiquitination and, thus NF-κB activity. mROS inhibition reduced LPS-induced lethality in an in vivo septic shock model by controlling pro-inflammatory cytokine production. Overall, our research provides novel insights into the role of mROS as a primary messenger in the pathway of macrophage and as a regulator of inflammatory responses. We found that early mROS production promotes initial NF-κB, and MAPK activation by regulating TRAF-6 ubiquitination and that mROS inhibition can reduce LPS-induced inflammatory cytokines and lethality in a septic shock model. These findings might lead to novel immunotherapeutic strategies targeting early mROS production and control of extreme inflammation in the context of sepsis and other inflammatory diseases.

Keywords: mitochondria, reactive oxygen species, nuclear factor κB, lipopolysaccharide, macrophages

Procedia PDF Downloads 76
819 Determining the Efficacy of Phenol, Sodium Hypochlorite and Ethanol for Inactivation of Carbapenem-Resistant Strain of Acinetobacter baumannii

Authors: Deepika Biswas

Abstract:

Acinetobacter baumannii, a hospital-acquired pathogen, causes nosocomial infections including pneumonia, urinary tract infection, and secondary meningitis. Carbapenem is most effective antibiotics against it. Its increased resistance to carbapenems has been a rising global concern. Antibiotics such as carbapenem are unable to use on hospital setups to eradicate A. baumannii, hence different concentrations of disinfectants including phenol; sodium hypochlorite and ethanol are increasingly being used. The objective of the present study is to find an effective concentration of above disinfectants against carbapenem-resistant strain RS307 of A. baumannii. Growth kinetics of RS307 has been determined using UV-Vis spectrophotometer in the presence and absence of disinfectants in triplicate and its standard deviation has also been calculated which make the results more reliable. Differential growth curves were plotted, which showed the effective concentration among all the concentrations of phenol, sodium hypochlorite and ethanol. On disc diffusion assay, antimicrobial effect was observed by comparing all the concentrations of disinfectants to check its synergy with imipenem, most effective carbapenem. All the results collectively revealed that 0.5% phenol, 0.5% sodium hypochlorite, and 70% ethanol could preferably be used as disinfectant for hospital setup against the carbapenem-resistant strain of A. baumannii. SDS PAGE analysis showed differential expression in the protein profile of A. baumannii after treatment. The present study highlighted that few disinfectants even in low concentration had shown better antimicrobial activity hence may be recommended for regular use in the hospitals, which will be cost effective and less harmful.

Keywords: Acenatobacter bomunii, phenol, sodium hypoclirite, ethanol, carbapenem resistance, disinfectant

Procedia PDF Downloads 258
818 Preparation and Flame-Retardant Properties of Epoxy Resins Containing Organophosphorus Compounds

Authors: Tachita Vlad-Bubulac, Ionela-Daniela Carja, Diana Serbezeanu, Corneliu Hamciuc, Vicente Javier Forrat Perez

Abstract:

The present work describes the preparation of new organophosphorus compounds with high content of phosphorus followed by the incorporation of these compounds into epoxy resin systems in order to investigate the phosphorus effect in terms of thermal stability, flame-retardant and mechanical properties of modified epoxy resins. Thus, two new organophosphorus compounds have been synthesized and fully characterized. 6-Oxido-6H-dibenz[c,e][1,2]oxaphosphorinyl-phenylcarbinol has been prepared by the addition reaction of P–H group of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide to carbonyl group of benzaldehyde. By treating the phenylcarbinol derivative with POCl3 a new phosphorus compound was obtained, having a content of 12.227% P. The organophosphorus compounds have been purified by recrystallization while their chemical structures have been confirmed by melting point measurements, FTIR and HNMR spectroscopies. In the next step various flame-retardant epoxy resins with different content of phosphorus have been prepared starting from a commercial epoxy resin and using dicyandiamide (DICY) as a latent curing agent in the presence of an accelerator. Differential scanning calorimetry (DSC) has been applied to investigate the behavior and kinetics of curing process of thermosetting systems. The results showed that the best curing characteristic and glass transition temperature are obtained at a ratio of epoxy resin: DICY: accelerator equal to 94:5:1. The thermal stability of the phosphorus-containing epoxy resins was investigated by thermogravimetric analysis in nitrogen and air, DSC, SEM and LOI test measurements.

Keywords: epoxy resins, flame retardant properties, phosphorus-containing compounds, thermal stability

Procedia PDF Downloads 314
817 Evaluation of Liquid Fermentation Strategies to Obtain a Biofertilizer Based on Rhizobium sp.

Authors: Andres Diaz Garcia, Ana Maria Ceballos Rojas, Duvan Albeiro Millan Montano

Abstract:

This paper describes the initial technological development stages in the area of liquid fermentation required to reach the quantities of biomass of the biofertilizer microorganism Rhizobium sp. strain B02, for the application of the unitary stages downstream at laboratory scale. In the first stage, the adjustment and standardization of the fermentation process in conventional batch mode were carried out. In the second stage, various fed-batch and continuous fermentation strategies were evaluated in 10L-bioreactor in order to optimize the yields in concentration (Colony Forming Units/ml•h) and biomass (g/l•h), to make feasible the application of unit operations downstream of process. The growth kinetics, the evolution of dissolved oxygen and the pH profile generated in each of the strategies were monitored and used to make sequential adjustments. Once the fermentation was finished, the final concentration and viability of the obtained biomass were determined and performance parameters were calculated with the purpose of select the optimal operating conditions that significantly improved the baseline results. Under the conditions adjusted and standardized in batch mode, concentrations of 6.67E9 CFU/ml were reached after 27 hours of fermentation and a subsequent noticeable decrease was observed associated with a basification of the culture medium. By applying fed-batch and continuous strategies, significant increases in yields were achieved, but with similar concentration levels, which involved the design of several production scenarios based on the availability of equipment usage time and volume of required batch.

Keywords: biofertilizer, liquid fermentation, Rhizobium sp., standardization of processes

Procedia PDF Downloads 177
816 Cloning and Expression of Azurin: A Protein Having Antitumor and Cell Penetrating Ability

Authors: Mohsina Akhter

Abstract:

Cancer has become a wide spread disease around the globe and takes many lives every year. Different treatments are being practiced but all have potential side effects with somewhat less specificity towards target sites. Pseudomonas aeruginosa is known to secrete a protein azurin with special anti-cancer function. It has unique cell penetrating peptide comprising of 18 amino acids that have ability to enter cancer cells specifically. Reported function of Azurin is to stabilize p53 inside the tumor cells and induces apoptosis through Bax mediated cytochrome c release from mitochondria. At laboratory scale, we have made recombinant azurin through cloning rpTZ57R/T-azu vector into E.coli strain DH-5α and subcloning rpET28-azu vector into E.coli BL21-CodonPlus (DE3). High expression was ensured with IPTG induction at different concentrations then optimized high expression level at 1mM concentration of IPTG for 5 hours. Purification has been done by using Ni+2 affinity chromatography. We have concluded that azurin can be a remarkable improvement in cancer therapeutics if it produces on a large scale. Azurin does not enter into the normal cells so it will prove a safe and secure treatment for patients and prevent them from hazardous anomalies.

Keywords: azurin, pseudomonas aeruginosa, cancer, therapeutics

Procedia PDF Downloads 314
815 Optimizing the Public Policy Information System under the Environment of E-Government

Authors: Qian Zaijian

Abstract:

E-government is one of the hot issues in the current academic research of public policy and management. As the organic integration of information and communication technology (ICT) and public administration, e-government is one of the most important areas in contemporary information society. Policy information system is a basic subsystem of public policy system, its operation affects the overall effect of the policy process or even exerts a direct impact on the operation of a public policy and its success or failure. The basic principle of its operation is information collection, processing, analysis and release for a specific purpose. The function of E-government for public policy information system lies in the promotion of public access to the policy information resources, information transmission through e-participation, e-consultation in the process of policy analysis and processing of information and electronic services in policy information stored, to promote the optimization of policy information systems. However, due to many factors, the function of e-government to promote policy information system optimization has its practical limits. In the building of E-government in our country, we should take such path as adhering to the principle of freedom of information, eliminating the information divide (gap), expanding e-consultation, breaking down information silos and other major path, so as to promote the optimization of public policy information systems.

Keywords: China, e-consultation, e-democracy, e-government, e-participation, ICTs, public policy information systems

Procedia PDF Downloads 867
814 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 428
813 Chemical Characterization and Prebiotic Effect of Water-Soluble Polysaccharides from Zizyphus lotus Leaves

Authors: Zakaria Boual, Abdellah Kemassi, Toufik Chouana, Philippe Michaud, Mohammed Didi Ould El Hadj

Abstract:

In order to investigate the prebiotic potential of oligosaccharides prepared by chemical hydrolysis of water-soluble polysaccharides (WSP) from Zizyphus lotus leaves, the effect of oligosaccharides on bacterial growth was studied. The chemical composition of WSP was evaluated by colorimetric assays revealed the average values: 7.05±0.73% proteins and 86.21±0.74% carbohydrates, among them 64.81±0.42% are neutral sugar and the rest 16.25±1.62% are uronic acids. The characterization of monosaccharides was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was found to be composed of galactose (23.95%), glucose (21.30%), rhamnose (20.28%), arabinose (9.55%), and glucuronic acid (22.95%). The effects of oligosaccharides on the growth of lactic acid bacteria were compared with those of fructo-oligosaccharide (RP95). The oligosaccharides concentration was 1g/L of man rogosa sharpe broth. Bacterial growth was assessed during 2, 4.5, 6.5, 9, 12, 16 and 24 h by measuring the optical density of the cultures at 600 nm (OD600) and pH values. During fermentation, pH in broth cultures decreased from 6.7 to 5.87±0.15. The enumeration of lactic acid bacteria indicated that oligosaccharides led to a significant increase in bacteria (P≤0.05) compared to the control. The fermentative metabolism appeared to be faster on RP95 than on oligosaccharides from Zizyphus lotus leaves. Both RP95 and oligosaccharides showed clear prebiotic effects, but had differences in fermentation kinetics because of to the different degree of polymerization. This study shows the prebiotic effectiveness of oligosaccharides, and provides proof for the selection of leaves of Zizyphus lotus for use as functional food ingredients.

Keywords: Zizyphus lotus, polysaccharides, characterization, prebiotic effects

Procedia PDF Downloads 412
812 The Effect of Taking Heavy Metal on Gastrointestinal Peptides

Authors: Nurgul Senol, Melda Azman

Abstract:

In this study, the rate of release of gastrointestinal peptides heavy metal compounds applied to a certain extent (gastrin/CCK) on immunohistochemical aimed to determine the effect. This study was supported by TÜBİTAK. Subjects were randomly grouped into three. Group I; iron (Fe), Group II; zinc (Zn), Group III; control; gavage technique was applied to each group once a day throughout 30 days. At the end of the experiment, rats were decapitated and their stomach-intestine tissues removed, Peroxidase anti peroxidase method was applied following the routine histological follow-ups. According to the control group, in the stomach, had more positive cell density of gastrin in Fe groups, it was observed that group followed by Zn. It was found between the groups in the stomach and intestinal gastrin, gastrin-positive cell density decreases towards the intestines from the stomach. Although CCK differences in staining were observed in the control group, the intensity of staining intensity between the two groups in positive cells was determined to be more than the stomach. The group in the intestines, there is no change in terms of positivity CCK. Consequently, there is no significant effect on gastrointestinal peptides in Zn application. It has been identified Fe application has a significant effect on the releasing of CCK/gastrin peptides.

Keywords: alimentary canal, CCK, iron, gastrin, zinc

Procedia PDF Downloads 214
811 Spatial Distribution of Ambient BTEX Concentrations at an International Airport in South Africa

Authors: Raeesa Moolla, Ryan S. Johnson

Abstract:

Air travel, and the use of airports, has experienced proliferative growth in the past few decades, resulting in the concomitant release of air pollutants. Air pollution needs to be monitored because of the known relationship between exposure to air pollutants and increased adverse effects on human health. This study monitored a group of volatile organic compounds (VOCs); specifically BTEX (viz. benzene, toluene, ethyl-benzene and xylenes), as many are detrimental to human health. Through the use of passive sampling methods, the spatial variability of BTEX within an international airport was investigated, in order to determine ‘hotspots’ where occupational exposure to BTEX may be intensified. The passive sampling campaign revealed BTEXtotal concentrations ranged between 12.95–124.04 µg m-3. Furthermore, BTEX concentrations were dispersed heterogeneously within the airport. Due to the slow wind speeds recorded (1.13 m.s-1); the hotspots were located close to their main BTEX sources. The main hotspot was located over the main apron of the airport. Employees working in this area may be chronically exposed to these emissions, which could be potentially detrimental to their health.

Keywords: air pollution, air quality, hotspot monitoring, volatile organic compounds

Procedia PDF Downloads 173
810 Model Evaluation of Nanosecond, High-Intensity Electric Pulses Induced Cellular Apoptosis

Authors: Jiahui Song, Ravindra Joshi

Abstract:

High-intensity, nanosecond, pulsed electric fields have been shown to be useful non-thermal tools capable of producing a variety of specific cellular responses. While reversible and temporary changes are often desired based on electromanipulation, irreversible effects can also be important objectives. These include elimination of tumor cells and bacterial decontamination. A simple model-based rate-equation treatment of the various cellular biochemical processes was used to qualitatively predict the pulse number-dependent caspase activation and cell survival trends. The model incorporated the caspase-8 associated extrinsic pathway, the delay inherent in its activation, cytochrome c release, and the internal feedback mechanism between caspase-3 and Bid. Results were roughly in keeping with the experimental cell-survival data. A pulse-number threshold was predicted followed by a near-exponential fall-off. The intrinsic pathway was shown to be much weaker as compared to the extrinsic mechanism for electric pulse induced cell apoptosis. Also, delays of about an hour are predicted for detectable molecular concentration increases following electrical pulsing.

Keywords: apoptosis, cell survival, model, pathway

Procedia PDF Downloads 239
809 Impact of innovative Solar Heating Systems on Greenhouse ‎Microclimates: A Case Study with Zucchini (Cucurbita pepo)‎

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

Recent innovations in economical heating systems have significantly boosted ‎agricultural production by effectively managing temperature drops in greenhouse ‎microclimates. These advancements enhance product profitability in terms of quality, ‎quantity, and growth duration. This study experimentally investigates the impact of a ‎solar heating system on the microclimate of an agricultural greenhouse, focusing on ‎zucchini (Cucurbita pepo). The System comprises a copper tube placed between double ‎roof glazing and a sensible heat storage system, converting solar energy during the day ‎and storing it for night-time release. A second control greenhouse without heating ‎allows for comparative analysis at various growth stages. During the cold season, the ‎experimental greenhouse showed a temperature increase of 3°C compared to the ‎control greenhouse and 5°C above external ambient air. The relative humidity in the ‎experimental greenhouse ranged from 69% to 70%, whereas the control greenhouse recorded 68% to 86%, and ambient air ‎was between 94% to 99%. The heating systems achieved an efficiency of 73%, and ‎zucchini plants in the experimental greenhouse developed fruit 13 days earlier than ‎those in the control greenhouse.‎

Keywords: solar energy, storage, energy managment, heating system

Procedia PDF Downloads 47
808 Presenting Internals of Networks Using Bare Machine Technology

Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha

Abstract:

Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.

Keywords: bare machine computing, online research, network technology, visualizing network internals

Procedia PDF Downloads 173
807 Vulnerability Analysis for Risk Zones Boundary Definition to Support a Decision Making Process at CBRNE Operations

Authors: Aliaksei Patsekha, Michael Hohenberger, Harald Raupenstrauch

Abstract:

An effective emergency response to accidents with chemical, biological, radiological, nuclear, or explosive materials (CBRNE) that represent highly dynamic situations needs immediate actions within limited time, information and resources. The aim of the study is to provide the foundation for division of unsafe area into risk zones according to the impact of hazardous parameters (heat radiation, thermal dose, overpressure, chemical concentrations). A decision on the boundary values for three risk zones is based on the vulnerability analysis that covered a variety of accident scenarios containing the release of a toxic or flammable substance which either evaporates, ignites and/or explodes. Critical values are selected for the boundary definition of the Red, Orange and Yellow risk zones upon the examination of harmful effects that are likely to cause injuries of varying severity to people and different levels of damage to structures. The obtained results provide the basis for creating a comprehensive real-time risk map for a decision support at CBRNE operations.

Keywords: boundary values, CBRNE threats, decision making process, hazardous effects, vulnerability analysis, risk zones

Procedia PDF Downloads 210
806 A Derivative of L-allo Threonine Alleviates Asthmatic Symptoms in vitro and in vivo

Authors: Kun Chun, Jin-Chun Heo, Sang-Han Lee

Abstract:

Asthma is a chronic airway inflammatory disease characterized by the infiltration of inflammatory cells and tissue remodeling. In this study, we examined the anti-asthmatic activity of a derivative of L-allo threonine by in vitro and in vivo anti-asthmatic assays. Ovalbumin (OVA)-induced C57BL/6 mice were used to analyze lung inflammation and cytokine expressions for exhibiting anti-atopic activity of the derivative. LX519290, a derivative of L-allo threonine, induced an increased IFN-γ and a decreased IL-10 mRNA level. This compound exhibited potent anti-asthmatic activity by decreasing immune cell infiltration in the lung, and IL-4 and IL-13 cytokine levels in the serum of OVA-induced mice. These results indicated that chronic airway injury was decreased by LX519290. We also assessed that LX519290 inhibits infiltration of immune cell, mucus release and cytokine expression in an in vivo model. Our results collectively suggest that the L-allo threonine is effective in alleviating asthmatic symptoms by treating inflammatory factors in the lung.

Keywords: asthma, L -allo threonine, LX519290, mice

Procedia PDF Downloads 382
805 Enhancing Sensitization of Cervical Cancer Cells to γ-Radiation Ellagic Acid

Authors: Vidhula Ahire, Amit Kumar, K. P. Mishra, Gauri Kulkarni

Abstract:

Herbal polyphenols have gained significance because of their increasing promise in prevention and treatment of cancer. Therefore, development of a dietary compound as an effective radiosensitizer and a radioprotector is highly warranted for cervical cancer patients undergoing therapy. This study describes the cytotoxic effects of the flavonoid, ellagic acid (EA) when administered either alone or in combination with gamma radiation on cervical cancer HeLa cells in vitro. Apoptotic index and proliferation were measured by using trypan blue assay. Reproductive cell death was analyzed by clonogenic assay. Propidium iodide staining for flowcytometry was performed to analyze cell cycle modulation. Nuclear and mitochondrial changes were studied with specific dyes. DNA repair kinetics was analyzed by immunofluorescence assay. Evaluation and comparison of EA effects were performed with other clinically used breast cancer drugs. When tumor cells were exposed to 2 and 4 Gy of irradiation in presence of EA (10 μM), it yielded a synergistic cytotoxic effect on cervical cancer cells whereas in NIH3T3 cells it reversed the injury caused by irradiation and abetted in the regaining of normal healthy cells. At 24h ~25foci/cell was observed and 2.6 fold decrease in the mitochondrial membrane potential. Up to 40% cell were arrested in the G1 phase and 20-36% cells exhibited apoptosis. Our results demonstrate the role of increased apoptosis and cell cycle modulation in the mechanism of EA mediated radiosensitization of cervical cancer cells and thus advocating EA as an adjuvant for preclinical trials in cancer chemo- radiotherapy.

Keywords: cervical cancer, ellagic acid, sensitization, radiation therapy

Procedia PDF Downloads 324
804 About Multi-Resolution Techniques for Large Eddy Simulation of Reactive Multi-Phase Flows

Authors: Giacomo Rossi, Bernardo Favini, Eugenio Giacomazzi, Franca Rita Picchia, Nunzio Maria Salvatore Arcidiacono

Abstract:

A numerical technique for mesh refinement in the HeaRT (Heat Release and Transfer) numerical code is presented. In the CFD framework, Large Eddy Simulation (LES) approach is gaining in importance as a tool for simulating turbulent combustion processes, also if this approach has an high computational cost due to the complexity of the turbulent modeling and the high number of grid points necessary to obtain a good numerical solution. In particular, when a numerical simulation of a big domain is performed with a structured grid, the number of grid points can increase so much that the simulation becomes impossible: this problem can be overcame with a mesh refinement technique. Mesh refinement technique developed for HeaRT numerical code (a staggered finite difference code) is based on an high order reconstruction of the variables at the grid interfaces by means of a least square quasi-ENO interpolation: numerical code is written in modern Fortran (2003 standard of newer) and is parallelized using domain decomposition and message passing interface (MPI) standard.

Keywords: LES, multi-resolution, ENO, fortran

Procedia PDF Downloads 366
803 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 305
802 Dose Evaluations with SNAP/RADTRAD for Loss of Coolant Accidents in a BWR6 Nuclear Power Plant

Authors: Kai Chun Yang, Shao-Wen Chen, Jong-Rong Wang, Chunkuan Shih, Jung-Hua Yang, Hsiung-Chih Chen, Wen-Sheng Hsu

Abstract:

In this study, we build RADionuclide Transport, Removal And Dose Estimation/Symbolic Nuclear Analysis Package (SNAP/RADTRAD) model of Kuosheng Nuclear Power Plant which is based on the Final Safety Evaluation Report (FSAR) and other data of Kuosheng Nuclear Power Plant. It is used to estimate the radiation dose of the Exclusion Area Boundary (EAB), the Low Population Zone (LPZ), and the control room following ‘release from the containment’ case in Loss Of Coolant Accident (LOCA). The RADTRAD analysis result shows that the evaluation dose at EAB, LPZ, and the control room are close to the FSAR data, and all of the doses are lower than the regulatory limits. At last, we do a sensitivity analysis and observe that the evaluation doses increase as the intake rate of the control room increases.

Keywords: RADTRAD, radionuclide transport, removal and dose estimation, snap, symbolic nuclear analysis package, boiling water reactor, NPP, kuosheng

Procedia PDF Downloads 343
801 Surfactant-Modified Chitosan Beads: An Efficient and Cost Effective Material for Adsorptive Removal of Lead from Aqueous Solutions

Authors: Preeti Pal, Anjali Pal

Abstract:

Chitosan is an effective sorbent for removal of contaminants from wastewater. However, the ability of pure chitosan is specific because of its cationic charge. It causes repulsion in the removal process of various cationic charged molecules. The present study has been carried out for the successful removal of Pb²⁺ ions from aqueous solution by modified chitosan beads. Surface modification of chitosan (CS) beads was performed by using the anionic surfactant (AS), sodium dodecyl sulfate (SDS). Micelle aggregation property of SDS has been utilized for the formation of bilayer over the CS beads to produce surfactant modified chitosan (SMCS) beads. Prepared adsorbents were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) in order to find out their composition and surface morphology. SMCS beads, when compared to the pure CS beads, showed three times higher adsorption. This higher adsorption is believed to be due to the adsolubilization of Pb²⁺ ions on SDS bilayer. This bilayer provides more adsorption sites for quick and effective removal of Pb²⁺ ions from the aqueous phase. Moreover, the kinetic and adsorption isotherm models were employed to the obtained data for the description of the lead adsorption processes. It was found that the removal kinetics follows pseudo-second order model. Adsorption isotherm data fits well to the Langmuir model. The maximum adsorption capacity obtained is 100 mg/g at the dosage of 0.675 g/L for 50 mg/L of Pb²⁺. The adsorption capacity is subject to increase with increasing the Pb²⁺ ions concentration in the solution. The results indicated that the prepared hydrogel beads are efficient adsorbent for removal of Pb²⁺ ions from the aqueous medium.

Keywords: adsolubilisation, anionic surfactant, bilayer, chitosan, Pb²⁺

Procedia PDF Downloads 240
800 Synthesis of Montmorillonite/CuxCd1-xS Nanocomposites and Their Application to the Photodegradation of Methylene Blue

Authors: H. Boukhatem, L. Djouadi, H. Khalaf, R. M. Navarro, F. V. Ganzalez

Abstract:

Synthetic organic dyes are used in various industries, such as textile industry, leather tanning industry, paper production, hair dye production, etc. Wastewaters containing these dyes may be harmful to the environment and living organisms. Therefore, it is very important to remove or degrade these dyes before discharging them into the environment. In addition to standard technologies for the degradation and/or removal of dyes, several new specific technologies, the so-called advanced oxidation processes (AOPs), have been developed to eliminate dangerous compounds from polluted waters. AOPs are all characterized by the same chemical feature: production of radicals (•OH) through a multistep process, although different reaction systems are used. These radicals show little selectivity of attack and are able to oxidize various organic pollutants due to their high oxidative capacity (reduction potential of HO• Eo = 2.8 V). Heterogeneous photocatalysis, as one of the AOPs, could be effective in the oxidation/degradation of organic dyes. A major advantage of using heterogeneous photocatalysis for this purpose is the total mineralization of organic dyes, which results in CO2, H2O and corresponding mineral acids. In this study, nanomaterials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) were utilized for the degradation of the commercial cationic textile dye Methylene blue (MB), used as a model pollutant. The synthesized nanomaterials were characterized by fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG–DTA). Test results of photocatalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nanomaterials montmorillonite/ CuxCd1-xS increases with the increasing of Cu concentration. The kinetics of the degradation of the MB dye was described with the Langmuir–Hinshelwood (L–H) kinetic model.

Keywords: heterogeneous photocatalysis, methylene blue, montmorillonite, nanomaterial

Procedia PDF Downloads 374
799 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application

Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam

Abstract:

The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.

Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength

Procedia PDF Downloads 450
798 Treatment of Isopropyl Alcohol in Aqueous Solutions by VUV-Based AOPs within a Laminar-Falling-Film-Slurry Type Photoreactor

Authors: Y. S. Shen, B. H. Liao

Abstract:

This study aimed to develop the design equation of a laminar-falling-film-slurry (LFFS) type photoreactor for the treatment of organic wastewaters containing isopropyl alcohol (IPA) by VUV-based advanced oxidation processes (AOPs). The photoreactor design equations were established by combining with the chemical kinetics of the photocatalytic system, light absorption model within the photoreactor, and was used to predict the decomposition of IPA in aqueous solutions in the photoreactors of different geometries at various operating conditions (volumetric flow rate, oxidants, catalysts, solution pH values, UV light intensities, and initial concentration of pollutants) to verify its rationality and feasibility. By the treatment of the LFFS-VUV only process, it was found that the decomposition rates of IPA in aqueous solutions increased with the increase of volumetric flow rate, VUV light intensity, dosages of TiO2 and H2O2. The removal efficiencies of IPA by photooxidation processes were in the order: VUV/H2O2>VUV/TiO2/H2O2>VUV/TiO2>VUV only. In VUV, VUV/H2O2, VUV/TiO2/H2O2 processes, integrating with the reaction kinetic equations of IPA, the mass conservation equation and the linear light source model, the photoreactor design equation can reasonably to predict reaction behaviors of IPA at various operating conditions and to describe the concentration distribution profiles of IPA within photoreactors.The results of this research can be useful basis for the future application of the homogeneous and heterogeneous VUV-based advanced oxidation processes.

Keywords: isopropyl alcohol, photoreactor design, VUV, AOPs

Procedia PDF Downloads 377
797 Fed-Batch Mixotrophic Cultivation of Microalgae Scenedesmus sp., Using Airlift Photobioreactor

Authors: Lakshmidevi Rajendran, Bharathidasan Kanniappan, Gopi Raja, Muthukumar Karuppan

Abstract:

This study investigates the feasibility of fed-batch mixotrophic cultivation of microalgae Scenedesmus sp. in a 3-litre airlift photobioreactor under standard operating conditions. The results of this study suggest the algae species may serve as an excellent feed for aquatic species using organic byproducts. Microalgae Scenedesmus sp., was cultured using a synthetic wastewater by stepwise addition of crude glycerol concentration ranging from 2-10g/l under fed-batch mixotrophic mode for a period of 15 days. The attempts were made with the stepwise addition of crude glycerol as a carbon source in the initial growth phase to evade the inhibitory nature of high glycerol concentration on the growth of Scenedesmus sp. Crude glycerol was chosen since it is readily accessible as byproduct from biodiesel production sectors. Highest biomass concentration was achieved to be 2.43 g/l at the crude glycerol concentration of 6g/l after 10 days which is 3 fold times the increase in the biomass concentration compared with the control medium without the addition of glycerol. Biomass growth data obtained for the microalgae Scenedesmus sp. was fitted well with the modified Logistic equation. Substrate utilization kinetics was also employed to model the biomass productivity with respect to the various crude glycerol concentration. The results indicated that the supplement of crude glycerol to the mixotrophic culture of Scenedesmus sp., enhances the biomass concentration, chlorophyll and lutein productivity. Thus the application of fed-batch mixotrophic cultivation with stepwise addition of crude glycerol to Scenedesmus sp., provides a subtle way to reduce the production cost and improvisation in the large-scale cultivation along with biochemical compound synthesis.

Keywords: airlift photobioreactor, crude glycerol, microalgae Scenedesmus sp., mixotrophic cultivation, lutein production

Procedia PDF Downloads 187
796 Low Frequency Sound Intervention: Therapeutic Impact and Applications

Authors: Heidi Ahonen

Abstract:

Since antiquity, many cultures have seemingly known the power of low frequencies, incorporating them in healing practices through drumming, singing, humming, etc. Many music therapists recognize there is something in music that is transformative enough to make a difference in people’s lives. This paper summarizes the key findings of several low-frequency research with various client populations conducted by the author. Utilizing low-frequency sound (30 or 40 Hz) may have diverse therapeutic impacts: (1) Calming effect – decreased agitation (autism, brain injury, AD, dementia) (2) Muscle relaxation (CP & spasticity & pain/after surgery patients, MS, fibromyalgia) (3) Relaxation/stress release (anxiety, stress, PTSD, trauma, insomnia) (4) Muscular/motor functioning/ decrease of tremor (CP, MS, Parkinson) (5) Increase in alertness, cognitive awareness & short-term memory function (brain injury, severe global developmental delay, AD) (6) Increased focus (AD, PTSD, trauma). The paper will conclude by presenting ideas informing the clinical practice. Future studies need to investigate what frequencies are effective for particular client populations and why, what theories can explain the effect, and finally, something that has been long debated - is it auditive or kinaesthetic stimulation or the combination of both that is effective?

Keywords: low frequency, 40 Hz, sound, neuro disability

Procedia PDF Downloads 112
795 Decomposition of the Customer-Server Interaction in Grocery Shops

Authors: Andreas Ahrens, Ojaras Purvinis, Jelena Zascerinska

Abstract:

A successful shopping experience without overcrowded shops and long waiting times undoubtedly leads to the release of happiness hormones and is generally considered the goal of any optimization. Factors influencing the shopping experience can be divided into internal and external ones. External factors are related, e. g. to the arrival of the customers to the shop, whereas internal are linked with the service process itself when checking out (waiting in the queue to the cash register and the scanning of the goods as well as the payment process itself) or any other non-expected delay when changing the status from a visitor to a buyer by choosing goods or items. This paper divides the customer-server interaction into five phases starting with the customer's arrival at the shop, the selection of goods, the buyer waiting in the queue to the cash register, the payment process, and ending with the customer or buyer's departure. Our simulation results show how five phases are intertwined and influence the overall shopping experience. Parameters for measuring the shopping experience are estimated based on the burstiness level in each of the five phases of the customer-server interaction.

Keywords: customers’ burstiness, cash register, customers’ wait-ing time, gap distribution function

Procedia PDF Downloads 148
794 Enhanced Decolourization and Biodegradation of Textile Azo and Xanthene Dyes by Using Bacterial Isolates

Authors: Gimhani Madhushika Hewayalage, Thilini Ariyadasa, Sanja Gunawardena

Abstract:

In Sri Lanka, the largest contribution for the industrial export earnings is governed by textile and apparel industry. However, this industry generates huge quantities of effluent consists of unfixed dyes which enhance the effluent colour and toxicity thereby leading towards environmental pollution. Therefore, the effluent should properly be treated prior to the release into the environment. The biological technique has now captured much attention as an environmental-friendly and cost-competitive effluent decolourization method due to the drawbacks of physical and chemical treatment techniques. The present study has focused on identifying dye decolourizing potential of several bacterial isolates obtained from the effluent of the local textile industry. Yellow EXF, Red EXF, Blue EXF, Nova Black WNN and Nylosan-Rhodamine-EB dyes have been selected for the study to represent different chromophore groups such as Azo and Xanthene. The rates of decolorization of each dye have been investigated by employing distinct bacterial isolates. Bacterial isolate which exhibited effective dye decolorizing potential was identified as Proteus mirabilis using 16S rRNA gene sequencing analysis. The high decolorizing rates of identified bacterial strain indicate its potential applicability in the treatment of dye-containing wastewaters.

Keywords: azo, bacterial, biological, decolourization, xanthene

Procedia PDF Downloads 252
793 Application of Metakaolin from Northeast of Thailand Used as Binder in Casting Process of Rice Polishing Cylinder

Authors: T. Boonkang, C. Santhaweesuk, N. Pianthong, P. Neeramon, A. Phimhlo, S. Bangphan

Abstract:

The objective of this research was to apply metakaolin from northeast of Thailand as a binder in the casting process of rice polishing cylinder in replacement of the imported calcined magnesite cement and to reduce the production cost of the cylinder. Metakaolin was obtained from three different regions (Udon Thani, Nakhon Phanom, and Ubon Ratchathani). The design of experiment analysis using the MINITAB Release 14 based on the compressive strength and tensile strength testing was conducted. According to the analysis results, it was found that the optimal proportions were calcined magnesite cement: metakaolin from Udon Thani, Nakhon Phanom and Ubon Ratchathani equal to 63:37, 71:29, and 100:0, respectively. When used this formula to cast the cylinder and test the rice milling, it was found that the average broken rice percent was 32.52 and 38.29 for the cylinder contained the metakaolin from Udon Thani and Nakhon Phanom, respectively, which implied that the cylinder which contained the metakaolin from Udon Thani has higher efficiency than the cylinder which contained the metakaolin from Nakhon Phanom at 0.05 level of statistical significance. Whereas, the average wear rate of cylinder from both resources were 7.27 and 6.53 g/h, respectively.

Keywords: binder, casting, metakaolin, rice polishing cylinder

Procedia PDF Downloads 305
792 Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method

Authors: Samera Salimpour Abkenar

Abstract:

In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution.

Keywords: eco-friendly, natural dyes, silk, traditional dyeing

Procedia PDF Downloads 192
791 A Constrained Neural Network Based Variable Neighborhood Search for the Multi-Objective Dynamic Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

In this paper, a new neural network based variable neighborhood search is proposed for the multi-objective dynamic, flexible job shop scheduling problems. The neural network controls the problems' constraints to prevent infeasible solutions, while the Variable Neighborhood Search (VNS) applies moves, based on the critical block concept to improve the solutions. Two approaches are used for managing the constraints, in the first approach, infeasible solutions are modified according to the constraints, after the moves application, while in the second one, infeasible moves are prevented. Several neighborhood structures from the literature with some modifications, also new structures are used in the VNS. The suggested neighborhoods are more systematically defined and easy to implement. Comparison is done based on a multi-objective flexible job shop scheduling problem that is dynamic because of the jobs different release time and machines breakdowns. The results show that the presented method has better performance than the compared VNSs selected from the literature.

Keywords: constrained optimization, neural network, variable neighborhood search, flexible job shop scheduling, dynamic multi-objective optimization

Procedia PDF Downloads 347