Search results for: optimum tilt angle
2181 Catalytic Combustion of Methane over Co/Mo and Co/Mn Catalysts at Low Temperature
Authors: Ahmed I. Osman, Jehad K. Abu-Dahrieh, Jillian M. Thompson, David W. Rooney
Abstract:
Natural gas (the main constituent is Methane 95%) is considered as an alternative to petroleum for the production of synthetics fuels. Nowadays, methane combustion at low temperature has received much attention however; it is the most difficult hydrocarbon to be combusted. Co/Mo and (4:1 wt/wt) catalysts were prepared from a range of different precursors and used for the low temperature total methane oxidation (TMO). The catalysts were characterized by, XRD, BET and H2-TPR and tested under reaction temperatures of 250-400 °C with a GHSV= 36,000 mL g-1 h-1. It was found that the combustion temperature was dependent on the type of the precursor, and that those containing chloride led to catalysts with lower activity. The optimum catalyst was Co/Mo (4:1wt/wt) where greater than 20% methane conversion was observed at 250 °C. This catalyst showed a high degree of stability for TMO, showing no deactivation during 50 hours of time on stream.Keywords: methane low temperature total oxidation, oxygen carrier, Co/Mo, Co/Mn
Procedia PDF Downloads 5432180 Radar Cross Section Modelling of Lossy Dielectrics
Authors: Ciara Pienaar, J. W. Odendaal, J. Joubert, J. C. Smit
Abstract:
Radar cross section (RCS) of dielectric objects play an important role in many applications, such as low observability technology development, drone detection, and monitoring as well as coastal surveillance. Various materials are used to construct the targets of interest such as metal, wood, composite materials, radar absorbent materials, and other dielectrics. Since simulated datasets are increasingly being used to supplement infield measurements, as it is more cost effective and a larger variety of targets can be simulated, it is important to have a high level of confidence in the predicted results. Confidence can be attained through validation. Various computational electromagnetic (CEM) methods are capable of predicting the RCS of dielectric targets. This study will extend previous studies by validating full-wave and asymptotic RCS simulations of dielectric targets with measured data. The paper will provide measured RCS data of a number of canonical dielectric targets exhibiting different material properties. As stated previously, these measurements are used to validate numerous CEM methods. The dielectric properties are accurately characterized to reduce the uncertainties in the simulations. Finally, an analysis of the sensitivity of oblique and normal incidence scattering predictions to material characteristics is also presented. In this paper, the ability of several CEM methods, including method of moments (MoM), and physical optics (PO), to calculate the RCS of dielectrics were validated with measured data. A few dielectrics, exhibiting different material properties, were selected and several canonical targets, such as flat plates and cylinders, were manufactured. The RCS of these dielectric targets were measured in a compact range at the University of Pretoria, South Africa, over a frequency range of 2 to 18 GHz and a 360° azimuth angle sweep. This study also investigated the effect of slight variations in the material properties on the calculated RCS results, by varying the material properties within a realistic tolerance range and comparing the calculated RCS results. Interesting measured and simulated results have been obtained. Large discrepancies were observed between the different methods as well as the measured data. It was also observed that the accuracy of the RCS data of the dielectrics can be frequency and angle dependent. The simulated RCS for some of these materials also exhibit high sensitivity to variations in the material properties. Comparison graphs between the measured and simulation RCS datasets will be presented and the validation thereof will be discussed. Finally, the effect that small tolerances in the material properties have on the calculated RCS results will be shown. Thus the importance of accurate dielectric material properties for validation purposes will be discussed.Keywords: asymptotic, CEM, dielectric scattering, full-wave, measurements, radar cross section, validation
Procedia PDF Downloads 2362179 Experimental Investigation with Different Inclination Angles on Copper Oscillating Heat Pipes Performance Using Fe2O3 / Kerosene under Magnetic Field
Authors: H. R. Goshayeshi, M. Mansori, M. Ahmady, M. Zhaloyi
Abstract:
This paper presents the result of an experimental investigation regarding the use of Fe2O3 nanoparticles added to Kerosene as a working fluid, under magnetic field for Copper Oscillating Heat pipe with inclination angle of 0°(horizontal), 15°, 30°, 45°, 60°, 75°, and 90° (vertical). The following were examined; measure the temperature distribution and heat transfer rate on Oscillating Heat Pipe (OHP), with magnetic field under different angles. Results showed that the addition of Fe2O3 nanoparticles under magnetic field improved thermal performance of OHP especially in 75°.Keywords: copper oscillating heat pipe, Fe2O3, magnetic field, inclination angles
Procedia PDF Downloads 3632178 In vitro Plant Regeneration of Gonystylus Bancanus (Miq) Kurz. Through Direct Organogenesis
Authors: Grippin Akeng, Suresh Kumar Muniandy, Nor Aini Ab Shukor
Abstract:
Plant regeneration was achieved from shoot tip and nodal segment of Gonystylus bancanus (Miq) Kurz. cultured in Murashige and Skoog’s medium supplemented with various concentrations of 6-benzylaminopurine (BAP). The most optimum concentration of BAP for shoot initiation is 10.0 mgl⁻¹ with approximately 10% of shoot tip and 15% of nodal segment produced single shoot after 28 and 15 days of culture incubation respectively. Rooting was achieved when shoots were transferred into MS medium supplemented with 5.0 mgl⁻¹ Naphthalene acetic acid (NAA). Synthesizing results developed through this research can be a starting point for the upscalling and optimization process in future.Keywords: gonystylus bancanus, organogenesis, shoot initiation, shoot tip
Procedia PDF Downloads 2442177 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition
Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed
Abstract:
Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil
Procedia PDF Downloads 3352176 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System
Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li
Abstract:
The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.Keywords: afterburner, combustion, field synergy, solid oxide fuel cell
Procedia PDF Downloads 1322175 Considerations When Using the Beach Chair Position for Surgery
Authors: Aniko Babits, Ahmad Daoud
Abstract:
Introduction: The beach chair position (BCP) is a good approach to almost all types of shoulder procedures. However, moving an anaesthetized patient from the supine to sitting position may pose a risk of cerebral hypoperfusion and potential cerebral ischaemia as a result of significant reductions in blood pressure and cardiac output. Hypocapnia in ventilated patients and impaired blood flow to the vertebral artery due to hyperextension, rotation, or tilt of the head may have an impact too. Co-morbidities that may increase the risk of cerebral ischaemia in the BCP include diabetes with autonomic neuropathy, cerebrovascular disease, cardiac disease, severe hypertension, generalized vascular disease, history of fainting, and febrile conditions. Beach chair surgery requires a careful anaesthetic and surgical management to optimize patient safety and minimize the risk of adverse outcomes. Methods: We describe the necessary steps for optimal patient positioning and the aims of intraoperative management, including anaesthetic techniques to ensure patient safety in the BCP. Results: Regardless of the anaesthetic technique, adequate patient positioning is paramount in the BCP. The key steps to BCP are aimed at optimizing surgical success and minimizing the risk of severe neurovascular complications. The primary aim of anaesthetic management is to maintain cardiac output and mean arterial pressure (MAP) to protect cerebral perfusion. Blood pressure management includes treating a fall in MAP of more than 25% from baseline or a MAP less than 70 mmHg. This can be achieved by using intravenous fluids or vasopressors. A number of anaesthetic techniques could also improve cerebral oxygenation, including avoidance of intermittent positive pressure ventilation (IPPV) with general anaesthesia (GA), using regional anaesthesia, maintaining normocapnia and normothermia, and the application of compression stockings. Conclusions: In summary, BCP is a reliable and effective position to perform shoulder procedures. Simple steps to patient positioning and careful anaesthetic management could maximize patient safety and avoid unwanted adverse outcomes in patients undergoing surgery in BCP.Keywords: beach chair position, cerebral oxygenation, cerebral perfusion, sitting position
Procedia PDF Downloads 882174 Determining a Suitable Maintenance Measure for Gentelligent Components Using Case-Based Reasoning
Authors: Maximilian Winkens, Peter Nyhuis
Abstract:
Components with sensory properties such as gentelligent components developed at the Collaborative Research Center 653 offer a new angle on the full utilization of the remaining service life in case of a preventive maintenance. The developed methodology of component status driven maintenance analyses the stress data obtained during the component's useful life and on the basis of this knowledge assesses the type of maintenance called for in this case. The procedure is derived from the case-based reasoning method and will be elucidated in detail. The method's functionality is demonstrated with real-life data obtained during test runs of a racing car prototype.Keywords: gentelligent component, preventive maintenance, case-based reasoning, sensory
Procedia PDF Downloads 3612173 The Catholic Aristotle: Metaphysics and the Transubstantiation of the Eucharist
Authors: Elizabeth Latham
Abstract:
Aristotle’s definition of substance from Metaphysics is relevant to the Catholic transubstantiation of the Eucharist, the idea that the actual substance of bread and wine is replaced by the substance of the body and blood of Christ. Assuming the physiological nature of the subjects do not change, the Aristotelian view on the nature of substance seems to be incompatible with this belief, since bread and wine have essential qualities different from those of flesh and blood. However, based on a theological view of the essence of the body and blood of Christ as salvation along with the essence of Eucharist, transubstantiation can fit within Aristotle’s brackets. This is one step further than theologians like Aquinas have gone in their similar discussions. Using his work as a method by which to understand the apparently impossible act of transforming food to flesh provides a logical angle on a question of faith.Keywords: aristotle, catholicism, eucharist, metaphysics transubstantiation
Procedia PDF Downloads 1532172 The Development of Traffic Devices Using Natural Rubber in Thailand
Authors: Weeradej Cheewapattananuwong, Keeree Srivichian, Godchamon Somchai, Wasin Phusanong, Nontawat Yoddamnern
Abstract:
Natural rubber used for traffic devices in Thailand has been developed and researched for several years. When compared with Dry Rubber Content (DRC), the quality of Rib Smoked Sheet (RSS) is better. However, the cost of admixtures, especially CaCO₃ and sulphur, is higher than the cost of RSS itself. In this research, Flexible Guideposts and Rubber Fender Barriers (RFB) are taken into consideration. In case of flexible guideposts, the materials used are both RSS and DRC60%, but for RFB, only RSS is used due to the controlled performance tests. The objective of flexible guideposts and RFB is to decrease a number of accidents, fatal rates, and serious injuries. Functions of both devices are to save road users and vehicles as well as to absorb impact forces from vehicles so as to decrease of serious road accidents. This leads to the mitigation methods to remedy the injury of motorists, form severity to moderate one. The solution is to find the best practice of traffic devices using natural rubber under the engineering concepts. In addition, the performances of materials, such as tensile strength and durability, are calculated for the modulus of elasticity and properties. In the laboratory, the simulation of crashes, finite element of materials, LRFD, and concrete technology methods are taken into account. After calculation, the trials' compositions of materials are mixed and tested in the laboratory. The tensile test, compressive test, and weathering or durability test are followed and based on ASTM. Furthermore, the Cycle-Repetition Test of Flexible Guideposts will be taken into consideration. The final decision is to fabricate all materials and have a real test section in the field. In RFB test, there will be 13 crash tests, 7 Pickup Truck tests, and 6 Motorcycle Tests. The test of vehicular crashes happens for the first time in Thailand, applying the trial and error methods; for example, the road crash test under the standard of NCHRP-TL3 (100 kph) is changed to the MASH 2016. This is owing to the fact that MASH 2016 is better than NCHRP in terms of speed, types, and weight of vehicles and the angle of crash. In the processes of MASH, Test Level 6 (TL-6), which is composed of 2,270 kg Pickup Truck, 100 kph, and 25 degree of crash-angle is selected. The final test for real crash will be done, and the whole system will be evaluated again in Korea. The researchers hope that the number of road accidents will decrease, and Thailand will be no more in the top tenth ranking of road accidents in the world.Keywords: LRFD, load and resistance factor design, ASTM, american society for testing and materials, NCHRP, national cooperation highway research program, MASH, manual for assessing safety hardware
Procedia PDF Downloads 1272171 A Future Technology: Solar Winged Autonomous Underwater Vehicle Design
Authors: Mohammad Moonesun
Abstract:
One of the most important future technologies is related to solar Autonomous Underwater Vehicles (AUVs). In this technical paper, some aspects of solar winged AUV design are mentioned. The case study is for Arya project. The submarine movement cyclograms, weight quotas for internal equipment, hydrodynamic test results are mentioned, and some other technical notes are discussed here. The main body is the SUBOFF type and has two hydroplanes on the both sides of the body with the NACA0015 cross section. On these two hydroplanes, two 50-W photovoltaic panel will be mounted. Four small hydroplanes with the same cross section of the NACA0015 are arranged at the stern of the body at a 90° angle to each other. This test is performed in National Iranian Marine Laboratory with the length of 402 m.Keywords: AUV, solar, model test, hydrodynamic resistance
Procedia PDF Downloads 1292170 A Deep Learning Approach for Optimum Shape Design
Authors: Cahit Perkgöz
Abstract:
Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)Keywords: deep learning, shape design, optimization, artificial intelligence
Procedia PDF Downloads 1492169 Interrelationship between Quadriceps' Activation and Inhibition as a Function of Knee-Joint Angle and Muscle Length: A Torque and Electro and Mechanomyographic Investigation
Authors: Ronald Croce, Timothy Quinn, John Miller
Abstract:
Incomplete activation, or activation failure, of motor units during maximal voluntary contractions is often referred to as muscle inhibition (MI), and is defined as the inability of the central nervous system to maximally drive a muscle during a voluntary contraction. The purpose of the present study was to assess the interrelationship amongst peak torque (PT), muscle inhibition (MI; incomplete activation of motor units), and voluntary muscle activation (VMA) of the quadriceps’ muscle group as a function of knee angle and muscle length during maximal voluntary isometric contractions (MVICs). Nine young adult males (mean + standard deviation: age: 21.58 + 1.30 years; height: 180.07 + 4.99 cm; weight: 89.07 + 7.55 kg) performed MVICs in random order with the knee at 15, 55, and 95° flexion. MI was assessed using the interpolated twitch technique and was estimated by the amount of additional knee extensor PT evoked by the superimposed twitch during MVICs. Voluntary muscle activation was estimated by root mean square amplitude electromyography (EMGrms) and mechanomyography (MMGrms) of agonist (vastus medialis [VM], vastus lateralis [VL], and rectus femoris [RF]) and antagonist (biceps femoris ([BF]) muscles during MVICs. Data were analyzed using separate repeated measures analysis of variance. Results revealed a strong dependency of quadriceps’ PT (p < 0.001), MI (p < 0.001) and MA (p < 0.01) on knee joint position: PT was smallest at the most shortened muscle position (15°) and greatest at mid-position (55°); MI and MA were smallest at the most shortened muscle position (15°) and greatest at the most lengthened position (95°), with the RF showing the greatest change in MA. It is hypothesized that the ability to more fully activate the quadriceps at short compared to longer muscle lengths (96% contracted at 15°; 91% at 55°; 90% at 95°) might partly compensate for the unfavorable force-length mechanics at the more extended position and consequent declines in VMA (decreases in EMGrms and MMGrms muscle amplitude during MVICs) and force production (PT = 111-Nm at 15°, 217-NM at 55°, 199-Nm at 95°). Biceps femoris EMG and MMG data showed no statistical differences (p = 0.11 and 0.12, respectively) at joint angles tested, although there were greater values at the extended position. Increased BF muscle amplitude at this position could be a mechanism by which anterior shear and tibial rotation induced by high quadriceps’ activity are countered. Measuring and understanding the degree to which one sees MI and VMA in the QF muscle has particular clinical relevance because different knee-joint disorders, such ligament injuries or osteoarthritis, increase levels of MI observed and markedly reduced the capability of full VMA.Keywords: electromyography, interpolated twitch technique, mechanomyography, muscle activation, muscle inhibition
Procedia PDF Downloads 3452168 Calculating Shear Strength Parameter from Simple Shear Apparatus
Authors: G. Nitesh
Abstract:
The shear strength of soils is a crucial parameter instability analysis. Therefore, it is important to determine reliable values for the accuracy of stability analysis. Direct shear tests are mostly performed to determine the shear strength of cohesionless soils. The major limitation of the direct shear test is that the failure takes place through the pre-defined failure plane but the failure is not along pre-defined plane and is along the weakest plane in actual shearing mechanism that goes on in the field. This leads to overestimating the strength parameter; hence, a new apparatus called simple shear is developed and used in this study to determine the shear strength parameter that simulates the field conditions.Keywords: direct shear, simple shear, angle of shear resistance, cohesionless soils
Procedia PDF Downloads 4092167 Forced Heat Transfer Convection in a Porous Channel with an Oriented Confined Jet
Authors: Azzedine Abdedou, Khedidja Bouhadef
Abstract:
The present study is an analysis of the forced convection heat transfer in porous channel with an oriented jet at the inlet with uniform velocity and temperature distributions. The upper wall is insulated when the bottom one is kept at constant temperature higher than that of the fluid at the entrance. The dynamic field is analysed by the Brinkman-Forchheimer extended Darcy model and the thermal field is traduced by the energy one equation model. The numerical solution of the governing equations is obtained by using the finite volume method. The results mainly concern the effect of Reynolds number, jet angle and thermal conductivity ratio on the flow structure and local and average Nusselt numbers evolutions.Keywords: forced convection, porous media, oriented confined jet, fluid mechanics
Procedia PDF Downloads 3812166 Optimization of Gold Mining Parameters by Cyanidation
Authors: Della Saddam Housseyn
Abstract:
Gold, the quintessential noble metal, is one of the most popular metals today, given its ever-increasing cost in the international market. The Amesmessa gold deposit is one of the gold-producing deposits. The first step in our job is to analyze the ore (considered rich ore). Mineralogical and chemical analysis has shown that the general constitution of the ore is quartz in addition to other phases such as Al2O3, Fe2O3, CaO, dolomite. The second step consists of all the leaching tests carried out in rolling bottles. These tests were carried out on 14 samples to determine the maximum recovery rate and the optimum consumption of reagent (NaCN and CaO). Tests carried out on a pulp density at 50% solid, 500 ppm cyanide concentration and particle size less than 0.6 mm at alkaline pH gave a recovery rate of 94.37%.Keywords: cyanide, DRX, FX, gold, leaching, rate of recovery, SAA
Procedia PDF Downloads 1782165 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect
Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn
Abstract:
In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand
Procedia PDF Downloads 1152164 The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control
Authors: Sheren H. Salah, Ahmed Y. Ben Sasi
Abstract:
The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems.Keywords: inverted pendulum (IP), proportional-integral derivative (PID), sliding mode control (SMC), systems and control engineering
Procedia PDF Downloads 5852163 Poly Urea-Formaldehyde for Preconcentration and Determination of Cadmium Ion in Environmental Samples
Authors: Homayon Ahmad Panahi, Samira Tajik, Mohamad Hadi Dehghani, Mostafa Khezri, Elham Moniri
Abstract:
In this research, poly urea-formaldehyde was prepared. The poly urea-formaldehyde was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Cd (II) sorption such as pH, contact time were studied. The optimum pH value for sorption of Cd(II) was 5.5. The sorption capacity of poly urea-formaldehyde for Cd (II) were 76.3 mg g−1. A Cd (II) removal of 55% was obtained. The profile of Cd (II) uptake on this sorbent reflects good accessibility of the chelating sites in the poly urea-formaldehyde. The developed method was utilized for determination of Cd (II) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.Keywords: poly urea-formaldehyde, cadmium ion, environmental sample, determination
Procedia PDF Downloads 5452162 Determination and Preconcentration of Chromium Ion in Environmental Samples by Clinoptilolite Zeolite
Authors: Elham Moniri, Homayon Ahmad Panahi, Mitra Hoseini
Abstract:
In this research, clinoptilolite zeolite was prepared. The zeolite was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on Cr(III) sorption such as pH, contact time were studied. The optimum pH value for sorption of Cr(III) was 6 respectively. The sorption capacity of zeolite for Cr(III) were 7.9 mg g−1. A recovery of 89% was obtained for the metal ions with 0.5 M nitric acid as the eluting agent. The effects of interfering ions on Cr(III) sorption was also investigated. The profile of Cr(III) uptake on this sorbent reflects a good accessibility of the chelating sites in the clinoptilolite zeolite. The developed method was utilized for the determination of Cr(III) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.Keywords: clinoptilolite zeolite, chromium, environmental sample, determination
Procedia PDF Downloads 4422161 Practices in Planning, Design and Construction of Head Race Tunnel of a Hydroelectric Project
Authors: M. S. Thakur, Mohit Shukla
Abstract:
A channel/tunnel, which carries the water to the penstock/pressure shaft is called headrace tunnel (HRT). It is necessary to know the general topography, geology of the area, state of stress and other mechanical properties of the strata. For this certain topographical and geological investigations, in-situ and laboratory tests, and observations are required to be done. These investigations play an important role in a tunnel design as these help in deciding the optimum layout, shape and size and support requirements of the tunnel. The paper includes inputs from Nathpa Jhakri Hydeoelectric project which is India’s highest capacity (1500 MW) operating hydroelectric project. The paper would help the design engineers with various new concepts and preparedness against geological surprises.Keywords: tunnelling, geology, HRT, rockmass
Procedia PDF Downloads 2522160 Separation of Water/Organic Mixtures Using Micro- and Nanostructured Membranes of Special Type of Wettability
Authors: F. R. Sultanov Ch. Daulbayev, B. Bakbolat, Z. A. Mansurov, A. A. Zhurintaeva, R. I. Gadilshina, A. B. Dugali
Abstract:
Both hydrophilic-oleophobic and hydrophobic-oleophilic membranes were obtained by coating of the substrate of membranes, presented by stainless steel meshes with various dimensions of their openings, with a composition that forms the special type of their surface wettability via spray-coating method. The surface morphology of resulting membranes was studied using SEM, the type of their wettability was identified by measuring the contact angle between the surface of membrane and a drop of studied liquid (water or organic liquid) and efficiency of continuous separation of water and organic liquid was studied on self-assembled setup.Keywords: membrane, stainless steel mesh, oleophobicity, hydrophobicity, separation, water, organic liquids
Procedia PDF Downloads 1662159 Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement
Authors: Ramli Nazir, Hossein Moayedi
Abstract:
Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope.Keywords: erosion control, soil confinement, soil erosion, slope stability
Procedia PDF Downloads 8402158 Bending Effect on POF Splitter Performance for Different Thickness of Fiber Cores
Authors: L. S. Supian, Mohd Syuhaimi Ab-Rahman, Norhana Arsad
Abstract:
Experimental study has been done to study the performance on polymer optical fiber splitter characterization when different bending radii are applied on splitters with different fiber cores. The splitters with different cores pair are attached successively to splitter platform of ellipse-shape geometrical blocks of several bending radii. A force is exerted upon the blocks thus the splitter in order to encourage the splitting of energy between the two fibers. The aim of this study is to investigate which fiber core pair gives the optimum performance that goes with each bending radius in order to develop an effective splitter.Keywords: splitter, macro-bending, cores, geometrical blocks
Procedia PDF Downloads 6682157 Optimization of Machining Parameters by Using Cryogenic Media
Authors: Shafqat Wahab, Waseem Tahir, Manzoor Ahmad, Sarfraz Khan, M. Azam
Abstract:
Optimization and analysis of tool flank wear width and surface finish of alloy steel rods are studied in the presence of cryogenic media (LN2) by using Tungsten Carbide Insert (CNMG 120404- WF 4215). Robust design concept of Taguchi L9(34) method and ANOVA is applied to determine the contribution of key cutting parameters and their optimum conditions. Through analysis, it revealed that cryogenic impact is more significant in reduction of the tool flank wear width while surface finish is mostly dependent on feed rate.Keywords: turning, cryogenic fluid, liquid nitrogen, flank wear, surface roughness, taguchi
Procedia PDF Downloads 6652156 Monocular Visual Odometry for Three Different View Angles by Intel Realsense T265 with the Measurement of Remote
Authors: Heru Syah Putra, Aji Tri Pamungkas Nurcahyo, Chuang-Jan Chang
Abstract:
MOIL-SDK method refers to the spatial angle that forms a view with a different perspective from the Fisheye image. Visual Odometry forms a trusted application for extending projects by tracking using image sequences. A real-time, precise, and persistent approach that is able to contribute to the work when taking datasets and generate ground truth as a reference for the estimates of each image using the FAST Algorithm method in finding Keypoints that are evaluated during the tracking process with the 5-point Algorithm with RANSAC, as well as produce accurate estimates the camera trajectory for each rotational, translational movement on the X, Y, and Z axes.Keywords: MOIL-SDK, intel realsense T265, Fisheye image, monocular visual odometry
Procedia PDF Downloads 1332155 Sequence Stratigraphy and Petrophysical Analysis of Sawan Gas Field, Central Indus Basin, Pakistan
Authors: Saeed Ur Rehman Chaudhry
Abstract:
The objectives of the study are to reconstruct sequence stratigraphic framework and petrophysical analysis of the reservoir marked by using sequence stratigraphy of Sawan Gas Field. The study area lies in Central Indus Basin, District Khairpur, Sindh province, Pakistan. The study area lies tectonically in an extensional regime. Lower Goru Formation and Sembar Formation act as a reservoir and source respectively. To achieve objectives, data set of seismic lines, consisting of seismic lines PSM96-114, PSM96-115, PSM96-133, PSM98-201, PSM98-202 and well logs of Sawan-01, Sawan-02 and Gajwaro-01 has been used. First of all interpretation of seismic lines has been carried out. Interpretation of seismic lines shows extensional regime in the area and cut entire Cretaceous section. Total of seven reflectors has been marked on each seismic line. Lower Goru Formation is thinning towards west. Seismic lines also show eastward tilt of stratigraphy due to uplift at the western side. Sequence stratigraphic reconstruction has been done by integrating seismic and wireline log data. Total of seven sequence boundaries has been interpreted between the top of Chiltan Limestone to Top of Lower Goru Formation. It has been observed on seismic lines that Sembar Formation initially generated shelf margin profile and then ramp margin on which Lower Goru deposition took place. Shelf edge deltas and slope fans have been observed on seismic lines, and signatures of slope fans are also observed on wireline logs as well. Total of six sequences has been interpreted. Stratigraphic and sequence stratigraphic correlation has been carried out by using Sawan 01, Sawan 02 and Gajwaro 01 and a Low Stand Systems tract (LST) within Lower Goru C sands has been marked as a zone of interest. The petrophysical interpretation includes shale volume, effective porosity, permeability, saturation of water and hydrocarbon. On the basis of good effective porosity and hydrocarbon saturation petrophysical analysis confirms that the LST in Sawan-01 and Sawan-02 has good hydrocarbon potential.Keywords: petrophysical analysis, reservoir potential, Sawan Gas Field, sequence stratigraphy
Procedia PDF Downloads 2612154 Non-Linear Transformation of Bulk Acoustic Waves at Oblique Incidence on Plane Solid Boundary
Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy
Abstract:
The transformation of two types of acoustic waves can occur on a flat interface between two solids at oblique incidence of longitudinal and shear bulk acoustic waves (BAW). This paper presents the results of experimental studies of the properties of reflection and propagation of longitudinal wave and generation of second and third longitudinal and shear harmonics of BAW at oblique incidence of longitudinal BAW on a flat rough boundary between two solids. The experimental sample was a rectangular isosceles pyramid made of D16 aluminum alloy with the plane parallel bases cylinder made of D16 aluminum alloy pressed to the base. The piezoelectric lithium niobate transducer with a resonance frequency of 5 MHz was secured to one face of the pyramid to generate a longitudinal wave. Longitudinal waves emitted by this transducer felt at an angle of 45° to the interface between two solids and reflected at the same angle. On the opposite face of the pyramid, and on the flat side of the cylinder was attached longitudinal transducer with resonance frequency of 10 MHz or the shear transducer with resonance frequency of 15 MHz. These transducers also effectively received signal at a frequency of 5 MHz. In the spectrum of the transmitted and reflected BAW was observed shear and longitudinal waves at a frequency of 5 MHz, as well as longitudinal harmonic at a frequency harmonic of 10 MHz and a shear harmonic at frequency of 15 MHz. The effect of reversing changing of external pressure applied to the rough interface between two solids on the value of the first and higher harmonics of the BAW at oblique incidence on the interface of the longitudinal BAW was experimentally investigated. In the spectrum of the reflected signal from the interface, there was a decrease of amplitudes of the first harmonics of the signal, and non-monotonic dependence of the second and third harmonics of shear wave with an increase of the static pressure applied to the interface. In the spectrum of the transmitted signal growth of the first longitudinal and shear harmonic amplitude and non-monotonic dependence - first increase and then decrease in the amplitude of the second and third longitudinal shear harmonic with increasing external static pressure was observed. These dependencies were hysteresis at reversing changing of external pressure. When pressure applied to the border increased, acoustic contact between the surfaces improves. This increases the energy of the transmitted elastic wave and decreases the energy of the reflected wave. The second longitudinal acoustic harmonics generation was associated with the Hertz nonlinearity on the interface of two pressed rough surfaces, the generation of the third harmonic was caused by shear hysteresis nonlinearity due to dry friction on a rough interface. This study was supported by the Russian Science Foundation (project №14-22-00042).Keywords: generation of acoustic harmonics, hysteresis nonlinearity, Hertz nonlinearity, transformation of acoustic waves
Procedia PDF Downloads 3772153 A First Step towards Automatic Evolutionary for Gas Lifts Allocation Optimization
Authors: Younis Elhaddad, Alfonso Ortega
Abstract:
Oil production by means of gas lift is a standard technique in oil production industry. To optimize the total amount of oil production in terms of the amount of gas injected is a key question in this domain. Different methods have been tested to propose a general methodology. Many of them apply well-known numerical methods. Some of them have taken into account the power of evolutionary approaches. Our goal is to provide the experts of the domain with a powerful automatic searching engine into which they can introduce their knowledge in a format close to the one used in their domain, and get solutions comprehensible in the same terms, as well. These proposals introduced in the genetic engine the most expressive formal models to represent the solutions to the problem. These algorithms have proven to be as effective as other genetic systems but more flexible and comfortable for the researcher although they usually require huge search spaces to justify their use due to the computational resources involved in the formal models. The first step to evaluate the viability of applying our approaches to this realm is to fully understand the domain and to select an instance of the problem (gas lift optimization) in which applying genetic approaches could seem promising. After analyzing the state of the art of this topic, we have decided to choose a previous work from the literature that faces the problem by means of numerical methods. This contribution includes details enough to be reproduced and complete data to be carefully analyzed. We have designed a classical, simple genetic algorithm just to try to get the same results and to understand the problem in depth. We could easily incorporate the well mathematical model, and the well data used by the authors and easily translate their mathematical model, to be numerically optimized, into a proper fitness function. We have analyzed the 100 curves they use in their experiment, similar results were observed, in addition, our system has automatically inferred an optimum total amount of injected gas for the field compatible with the addition of the optimum gas injected in each well by them. We have identified several constraints that could be interesting to incorporate to the optimization process but that could be difficult to numerically express. It could be interesting to automatically propose other mathematical models to fit both, individual well curves and also the behaviour of the complete field. All these facts and conclusions justify continuing exploring the viability of applying the approaches more sophisticated previously proposed by our research group.Keywords: evolutionary automatic programming, gas lift, genetic algorithms, oil production
Procedia PDF Downloads 1602152 Application of Co-Flow Jet Concept to Aircraft Lift Increase
Authors: Sai Likitha Siddanathi
Abstract:
Present project is aimed at increasing the amount of lift produced by typical airfoil. This is achieved by its modification into the co-flow jet structure where a new internal flow is created inside the airfoil from well-designed apertures on its surface. The limit where produced excess lift overcomes the weight of pumping system inserted in airfoil upper portion, and drag force is converted into thrust is discussed in terms of airfoil velocity and angle of attack. Two normal and co-flow jet models are numerically designed and experimental results for both fabricated normal airfoil and CFJ model have been tested in low subsonic wind tunnel. Application has been made to subsonic NACA 652-415 airfoil. Produced lift in CFJ airfoil indicates a maximum value up to a factor of 5 above normal airfoil nearby flow separation ie in relatively weak flow distribution.Keywords: flow Jet, lift coefficient, drag coefficient, airfoil performance
Procedia PDF Downloads 354