Search results for: text preprocessing
472 An Experimental Study on the Variability of Nonnative and Native Inference of Word Meanings in Timed and Untimed Conditions
Authors: Swathi M. Vanniarajan
Abstract:
Reading research suggests that online contextual vocabulary comprehension while reading is an interactive and integrative process. One’s success in it depends on a variety of factors including the amount and the nature of available linguistic and nonlinguistic cues, his/her analytical and integrative skills, schema memory (content familiarity), and processing speed characterized along the continuum of controlled to automatic processing. The experiment reported here, conducted with 30 native speakers as one group and 30 nonnative speakers as another group (all graduate students), hypothesized that while working on (24) tasks which required them to comprehend an unfamiliar word in real time without backtracking, due to the differences in the nature of their respective reading processes, the nonnative subjects would be less able to construct the meanings of the unknown words by integrating the multiple but sufficient contextual cues provided in the text but the native subjects would be able to. The results indicated that there were significant inter-group as well as intra-group differences in terms of the quality of definitions given. However, when given additional time, while the nonnative speakers could significantly improve the quality of their definitions, the native speakers in general would not, suggesting that all things being equal, time is a significant factor for success in nonnative vocabulary and reading comprehension processes and that accuracy precedes automaticity in the development of nonnative reading processes also.Keywords: reading, second language processing, vocabulary comprehension
Procedia PDF Downloads 166471 Music Therapy Intervention as a Means of Stimulating Communicative Abilities of Seniors with Neurocognitive Disorders – Theory versus Practice
Authors: Pavel Svoboda, Oldřich Müller
Abstract:
The paper contains a screening of the opinions of helping professional workers working in a home for seniors with individuals with neurocognitive disorders and compares them with the opinions of a younger generation of students who are just preparing for this work. The authors carried out a comparative questionnaire survey with both target groups, focusing on the analysis and comparison of possible differences in their knowledge in the field of care for elderly people with neurocognitive disorders. Specifically, they focused on knowledge and experience with approaches, methods and tools applicable within the framework of music therapy interventions, as they are understood in practice in comparison with the theoretical knowledge of secondary school students focused on social work. The questionnaire was mainly aimed at assessing the knowledge of the possibilities of effective memory stimulation of the elderly and their communication skills using the means of music. The conducted investigation was based on the research of studies dealing with so-called non-pharmacological approaches to the given clientele; for professional caregivers, it followed music therapy lessons, which the authors regularly implemented from the beginning of 2022. Its results will, among other things, serve as the basis for an upcoming study with a scoping design review.Keywords: neurocognitive disorders, seniors, music therapy intervention, melody, rhythm, text, memory stimulation, communication skills
Procedia PDF Downloads 70470 Post-occupancy Evaluation of Greenway Based on Multi-source data : A Case Study of Jincheng Greenway in Chengdu
Authors: Qin Zhu
Abstract:
Under the development concept of Park City, Tianfu Greenway system, as the basic and pre-configuration element of Chengdu Global Park construction, connects urban open space with linear and circular structures and undertakes and exerts the ecological, cultural and recreational functions of the park system. Chengdu greenway construction is in full swing. In the process of greenway planning and construction, the landscape effect of greenway on urban quality improvement is more valued, and the long-term impact of crowd experience on the sustainable development of greenway is often ignored. Therefore, it is very important to test the effectiveness of greenway construction from the perspective of users. Taking Jincheng Greenway in Chengdu as an example, this paper attempts to introduce multi-source data to construct a post-occupancy evaluation model of greenway and adopts behavior mapping method, questionnaire survey method, web text analysis and IPA analysis method to comprehensively evaluate the user 's behavior characteristics and satisfaction. According to the evaluation results, we can grasp the actual behavior rules and comprehensive needs of users so that the experience of building greenways can be fed back in time and provide guidance for the optimization and improvement of built greenways and the planning and construction of future greenways.Keywords: multi-source data, greenway, IPA analysis, post -occupancy evaluation (POE)
Procedia PDF Downloads 61469 Flood Hazard and Risk Mapping to Assess Ice-Jam Flood Mitigation Measures
Authors: Karl-Erich Lindenschmidt, Apurba Das, Joel Trudell, Keanne Russell
Abstract:
In this presentation, we explore options for mitigating ice-jam flooding along the Athabasca River in western Canada. Not only flood hazard, expressed in this case as the probability of flood depths and extents being exceeded, but also flood risk, in which annual expected damages are calculated. Flood risk is calculated, which allows a cost-benefit analysis to be made so that decisions on the best mitigation options are not based solely on flood hazard but also on the costs related to flood damages and the benefits of mitigation. The river ice model is used to simulate extreme ice-jam flood events with which scenarios are run to determine flood exposure and damages in flood-prone areas along the river. We will concentrate on three mitigation options – the placement of a dike, artificial breakage of the ice cover along the river, the installation of an ice-control structure, and the construction of a reservoir. However, any mitigation option is not totally failsafe. For example, dikes can still be overtopped and breached, and ice jams may still occur in areas of the river where ice covers have been artificially broken up. Hence, for all options, it is recommended that zoning of building developments away from greater flood hazard areas be upheld. Flood mitigation can have a negative effect of giving inhabitants a false sense of security that flooding may not happen again, leading to zoning policies being relaxed. (Text adapted from Lindenschmidt [2022] "Ice Destabilization Study - Phase 2", submitted to the Regional Municipality of Wood Buffalo, Alberta, Canada)Keywords: ice jam, flood hazard, flood risk river ice modelling, flood risk
Procedia PDF Downloads 189468 Semantic Differences between Bug Labeling of Different Repositories via Machine Learning
Authors: Pooja Khanal, Huaming Zhang
Abstract:
Labeling of issues/bugs, also known as bug classification, plays a vital role in software engineering. Some known labels/classes of bugs are 'User Interface', 'Security', and 'API'. Most of the time, when a reporter reports a bug, they try to assign some predefined label to it. Those issues are reported for a project, and each project is a repository in GitHub/GitLab, which contains multiple issues. There are many software project repositories -ranging from individual projects to commercial projects. The labels assigned for different repositories may be dependent on various factors like human instinct, generalization of labels, label assignment policy followed by the reporter, etc. While the reporter of the issue may instinctively give that issue a label, another person reporting the same issue may label it differently. This way, it is not known mathematically if a label in one repository is similar or different to the label in another repository. Hence, the primary goal of this research is to find the semantic differences between bug labeling of different repositories via machine learning. Independent optimal classifiers for individual repositories are built first using the text features from the reported issues. The optimal classifiers may include a combination of multiple classifiers stacked together. Then, those classifiers are used to cross-test other repositories which leads the result to be deduced mathematically. The produce of this ongoing research includes a formalized open-source GitHub issues database that is used to deduce the similarity of the labels pertaining to the different repositories.Keywords: bug classification, bug labels, GitHub issues, semantic differences
Procedia PDF Downloads 204467 Intelligent Chatbot Generating Dynamic Responses Through Natural Language Processing
Authors: Aarnav Singh, Jatin Moolchandani
Abstract:
The proposed research work aims to build a query-based AI chatbot that can answer any question related to any topic. A chatbot is software that converses with users via text messages. In the proposed system, we aim to build a chatbot that generates a response based on the user’s query. For this, we use natural language processing to analyze the query and some set of texts to form a concise answer. The texts are obtained through web-scrapping and filtering all the credible sources from a web search. The objective of this project is to provide a chatbot that is able to provide simple and accurate answers without the user having to read through a large number of articles and websites. Creating an AI chatbot that can answer a variety of user questions on a variety of topics is the goal of the proposed research project. This chatbot uses natural language processing to comprehend user inquiries and provides succinct responses by examining a collection of writings that were scraped from the internet. The texts are carefully selected from reliable websites that are found via internet searches. This project aims to provide users with a chatbot that provides clear and precise responses, removing the need to go through several articles and web pages in great detail. In addition to exploring the reasons for their broad acceptance and their usefulness across many industries, this article offers an overview of the interest in chatbots throughout the world.Keywords: Chatbot, Artificial Intelligence, natural language processing, web scrapping
Procedia PDF Downloads 66466 Real-Time Neuroimaging for Rehabilitation of Stroke Patients
Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge
Abstract:
Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation
Procedia PDF Downloads 388465 Visual Template Detection and Compositional Automatic Regular Expression Generation for Business Invoice Extraction
Authors: Anthony Proschka, Deepak Mishra, Merlyn Ramanan, Zurab Baratashvili
Abstract:
Small and medium-sized businesses receive over 160 billion invoices every year. Since these documents exhibit many subtle differences in layout and text, extracting structured fields such as sender name, amount, and VAT rate from them automatically is an open research question. In this paper, existing work in template-based document extraction is extended, and a system is devised that is able to reliably extract all required fields for up to 70% of all documents in the data set, more than any other previously reported method. The approaches are described for 1) detecting through visual features which template a given document belongs to, 2) automatically generating extraction rules for a given new template by composing regular expressions from multiple components, and 3) computing confidence scores that indicate the accuracy of the automatic extractions. The system can generate templates with as little as one training sample and only requires the ground truth field values instead of detailed annotations such as bounding boxes that are hard to obtain. The system is deployed and used inside a commercial accounting software.Keywords: data mining, information retrieval, business, feature extraction, layout, business data processing, document handling, end-user trained information extraction, document archiving, scanned business documents, automated document processing, F1-measure, commercial accounting software
Procedia PDF Downloads 131464 Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment
Authors: Jana Petru, Marie Kudrnova
Abstract:
The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy.Keywords: corrosion, experimental device, molten salt, steel
Procedia PDF Downloads 119463 Implementing Text Using Political and Current Issues to Create Choreography: “The Pledge 2.0”
Authors: Muhammad Fairul Azreen bin Mohd Zahid, Melissa Querk, Aimi Nabila bt Anizaim
Abstract:
For this particular research, the focus is based on the practice as research which will produce a choreography as the outcome. The ideas organically develop as an “epiphany” from the meeting, brainstorming, or situation that revolves around surroundings. In this study, the researchers are approaching the national pillar of Malaysia known as ‘Rukun Negara’ to develop a choreographic idea. The concept theory of Speech Act by J.L Austin is used to compose the choreography alongside with national pillar ‘Rukun Negara’ as a guideline for a contemporary work titled, The Pledge 2.0, besides fostering the spirit of unity. These approaches will offer flexibility in creating a choreography piece. The pledge has crossed the boundaries by using texts and heavy issues in choreography developments. It will emphasize the concept of delivering the speech via verbal and nonverbal body language. Besides using the Theory of Speech Acts, the development process of creating this piece will lay the bare normative structure implicit in performance practice. Converging current issues into the final choreographic piece for this research is vital as this research will explore a few choreography methods from different perspectives. Hence, the audience will be able to see the world of dance that always revolves in line with the diachronic process in many ways. The method used in this research is qualitative, which will be used in finding the movement that fits the given facts.Keywords: performing arts, speech act, performative, nationalism, choreography, politic in dance
Procedia PDF Downloads 85462 Information and Cooperativity in Fiction: The Pragmatics of David Baboulene’s “Knowledge Gaps”
Authors: Cara DiGirolamo
Abstract:
In his 2017 Ph.D. thesis, script doctor David Baboulene presented a theory of fiction in which differences in the knowledge states between participants in a literary experience, including reader, author, and characters, create many story elements, among them suspense, expectations, subtext, theme, metaphor, and allegory. This theory can be adjusted and modeled by incorporating a formal pragmatic approach that understands narrative as a speech act with a conversational function. This approach requires both the Speaker and the Listener to be understood as participants in the discourse. It also uses theories of cooperativity and the QUD to identify the existence of implicit questions. This approach predicts that what an effective literary narrative must do: provide a conversational context early in the story so the reader can engage with the text as a conversational participant. In addition, this model incorporates schema theory. Schema theory is a cognitive model for learning and processing information about the world and transforming it into functional knowledge. Using this approach can extend the QUD model. Instead of describing conversation as a form of information gathering restricted to question-answer sets, the QUD can include knowledge modeling and understanding as a possible outcome of a conversation. With this model, Baboulene’s “Knowledge Gaps” can provide real insight into storytelling as a conversational move, and extend the QUD to be able to simply and effectively apply to a more diverse set of conversational interactions and also to narrative texts.Keywords: literature, speech acts, QUD, literary theory
Procedia PDF Downloads 19461 A Transformer-Based Question Answering Framework for Software Contract Risk Assessment
Authors: Qisheng Hu, Jianglei Han, Yue Yang, My Hoa Ha
Abstract:
When a company is considering purchasing software for commercial use, contract risk assessment is critical to identify risks to mitigate the potential adverse business impact, e.g., security, financial and regulatory risks. Contract risk assessment requires reviewers with specialized knowledge and time to evaluate the legal documents manually. Specifically, validating contracts for a software vendor requires the following steps: manual screening, interpreting legal documents, and extracting risk-prone segments. To automate the process, we proposed a framework to assist legal contract document risk identification, leveraging pre-trained deep learning models and natural language processing techniques. Given a set of pre-defined risk evaluation problems, our framework utilizes the pre-trained transformer-based models for question-answering to identify risk-prone sections in a contract. Furthermore, the question-answering model encodes the concatenated question-contract text and predicts the start and end position for clause extraction. Due to the limited labelled dataset for training, we leveraged transfer learning by fine-tuning the models with the CUAD dataset to enhance the model. On a dataset comprising 287 contract documents and 2000 labelled samples, our best model achieved an F1 score of 0.687.Keywords: contract risk assessment, NLP, transfer learning, question answering
Procedia PDF Downloads 130460 Assessing EU-China Security Interests from Contradiction to Convergence
Authors: Julia Gurol
Abstract:
Why do we observe a shift towards convergence in EU-China security interests? While contradicting attitudes towards key principles of inter-state and region-to-state relations, including state sovereignty, territorial integrity, and intervention policies have ever since hindered EU-China inter-regional cooperation beyond the economic realm, collaboration in peace and security issues is now becoming a key pillar of European-Chinese relations. In addition, the Belt and Road Initiative as most ambitious Chinese foreign policy project explicitly touches upon several European foreign policy and security preferences. Based on these counterintuitive findings, this paper traces the process of convergence of Sino-European security interests. Drawing on qualitative text analysis of official Chinese and European policy papers and documents from the establishment of diplomatic relations in 1975 until today, it assesses the striking change over time. On this basis, the paper uses theories of neo-functionalism, inter-regionalism, and securitization and borrows from constructivist views in International Relations’ theory, to expound possible motives for the change in Chinese and respectively European preferences in the security realm. The results reveal interesting insights into the decisive factors and motives behind both countries’ foreign policies. The paper concludes with a discussion of further potential and difficulties of EU-China security cooperation.Keywords: belt and road initiative, China, European Union, foreign policy, neo-functionalism, security
Procedia PDF Downloads 286459 Introducing a Video-Based E-Learning Module to Improve Disaster Preparedness at a Tertiary Hospital in Oman
Authors: Ahmed Al Khamisi
Abstract:
The Disaster Preparedness Standard (DPS) is one of the elements that is evaluated by the Accreditation Canada International (ACI). ACI emphasizes to train and educate all staff, including service providers and senior leaders, on emergency and disaster preparedness upon the orientation and annually thereafter. Lack of awareness and deficit of knowledge among the healthcare providers about DPS have been noticed in a tertiary hospital where ACI standards were implemented. Therefore, this paper aims to introduce a video-based e-learning (VB-EL) module that explains the hospital’s disaster plan in a simple language which will be easily accessible to all healthcare providers through the hospital’s website. The healthcare disaster preparedness coordinator in the targeted hospital will be responsible to ensure that VB-EL is ready by 25 April 2019. This module will be developed based on the Kirkpatrick evaluation method. In fact, VB-EL combines different data forms such as images, motion, sounds, text in a complementary fashion which will suit diverse learning styles and individual learning pace of healthcare providers. Moreover, the module can be adjusted easily than other tools to control the information that healthcare providers receive. It will enable healthcare providers to stop, rewind, fast-forward, and replay content as many times as needed. Some anticipated limitations in the development of this module include challenges of preparing VB-EL content and resistance from healthcare providers.Keywords: Accreditation Canada International, Disaster Preparedness Standard, Kirkpatrick evaluation method, video-based e-learning
Procedia PDF Downloads 148458 Efficacy of Cognitive Rehabilitation Therapy on Poststroke Depression among Survivors of Stroke; A Systematic Review
Authors: Zahra Hassani
Abstract:
Background and Purpose: Poststroke depression (PSD) is one of the complications of a stroke that reduces the patient's chance of recovery, becomes irritable, and changes personality. Cognitive rehabilitation is one of the non-pharmacological methods that improve deficits such as attention, memory, and symptoms of depression. Therefore, the purpose of the present study is to evaluate the Efficacy of Cognitive Rehabilitation Therapy on Poststroke Depression among Survivors of stroke. Method: In this study, a systematic review of the databases Google Scholar, PubMed, Science Direct, Elsevier between the years 2015 and 2019 with the keywords cognitive rehabilitation therapy, post-stroke, depression Search is done. In this process, studies that examined the Efficacy of Cognitive Rehabilitation Therapy on Poststroke Depression among Survivors of stroke were included in the study. Results: Inclusion criteria were full-text availability, interventional study, and non-review articles. There was a significant difference between the articles in terms of the indices studied, sample number, method of implementation, and so on. A review of studies have shown that cognitive rehabilitation therapy has a significant role in reducing the symptoms of post-stroke depression. The use of these interventions is also effective in improving problem-solving skills, improving memory, and improving attention and concentration. Conclusion: This study emphasizes on the development of efficient and flexible adaptive skills through cognitive processes and its effect on reducing depression in patients after stroke.Keywords: cognitive therapy, depression, stroke, rehabilitation
Procedia PDF Downloads 124457 Electrical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: electrical disaggregation, DTW, general appliance modeling, event detection
Procedia PDF Downloads 78456 The Translation Of Original Metaphor In Literature
Authors: Esther Matthews
Abstract:
This paper looks at ways of translating new metaphors: those conceived and created by authors, which are often called ‘original’ metaphors in the world of Translation Studies. An original metaphor is the most extreme form of figurative language, often dramatic and shocking in effect. It displays unexpected juxtapositions of language, suggesting there could be as many different translations as there are translators. However, some theorists say original metaphors should be translated ‘literally’ or ‘word for word’ as far as possible, suggesting a similarity between translators’ solutions. How do literary translators approach this challenge? This study focuses on Spanish-English translations of a novel full of original metaphors: Nada by Carmen Laforet (1921 – 2004). Original metaphors from the text were compared to the four published English translations by Inez Muñoz, Charles Franklin Payne, Glafyra Ennis, and Edith Grossman. These four translators employed a variety of translation methods, but they translated ‘literally’ in well over half of the original metaphors studied. In a two-part translation exercise and questionnaire, professional literary translators were asked to translate a number of these metaphors. Many different methods were employed, but again, over half of the original metaphors were translated literally. Although this investigation was limited to one author and language pair, it gives a clear indication that, although literary translators’ solutions vary, on the whole, they prefer to translate original metaphors as literally as possible within the confines of English grammar and syntax. It also reveals literary translators’ desire to reproduce the distinctive character of an author’s work as accurately as possible for the target reader.Keywords: translation, original metaphor, literature, translator training
Procedia PDF Downloads 278455 Techniques to Teach Reading at Pre-Reading Stage
Authors: Anh Duong
Abstract:
The three-phase reading lesson has been put forth around the world as the new and innovative framework which is corresponding to the learner-centered trend in English language teaching and learning. Among three stages, pre-reading attracts many teachers’ and researchers’ attention for its vital role in preparing students with knowledge and interest in reading class. The researcher’s desire to exemplify effectiveness of activities prior to text reading has provoked the current study. Three main aspects were investigated in this paper, i.e. teachers’ and student’s perception of pre-reading stage, teachers’ exploitation of pre-reading techniques and teachers’ recommendation of effective pre-reading activities. Aiming at pre-reading techniques for first-year students at English Department, this study involved 200 fresh-men and 10 teachers from Division 1 to participate in the questionnaire survey. Interviews with the teachers and classroom observation were employed as a tool to take an insight into the responses gained from the early instrument. After a detailed procedure of analyzing data, the researcher discovered that thanks to the participants’ acclamation of pre-reading stage, this phase was frequently conducted by the surveyed teachers. Despite the fact that pre-reading activities apparently put a hand in motivating students to read and creating a joyful learning atmosphere, they did not fulfill another function as supporting students’ reading comprehension. Therefore, a range of techniques and notices when preparing and conducting pre-reading phase was detected from the interviewed teachers. The findings assisted the researcher to propose some related pedagogical implications concerning teachers’ source of pre-reading techniques, variations of suggested activities and first-year reading syllabus.Keywords: pre-reading stage, pre-reading techniques, teaching reading, language teaching
Procedia PDF Downloads 486454 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems
Authors: Rodolfo Lorbieski, Silvia Modesto Nassar
Abstract:
Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.Keywords: stacking, multi-layers, ensemble, multi-class
Procedia PDF Downloads 269453 Exploring the Difficulties of Acceleration Concept from the Perspective of Historical Textual Analysis
Authors: Yun-Ju Chiu, Feng-Yi Chen
Abstract:
Kinematics is the beginning to learn mechanics in physics course. The concept of acceleration plays an important role in learning kinematics. Teachers usually instruct the conception through the formulas and graphs of kinematics and the well-known law F = ma. However, over the past few decades, a lot of researchers reveal numerous students’ difficulties in learning acceleration. One of these difficulties is that students frequently confuse acceleration with velocity and force. Why is the concept of acceleration so difficult to learn? The aim of this study is to understand the conceptual evolution of acceleration through the historical textual analysis. Text analysis and one-to-one interviews with high school students and teachers are used in this study. This study finds the history of science constructed from textbooks is usually quite different from the real evolution of history. For example, most teachers and students believe that the best-known law F = ma was written down by Newton. The expression of the second law is not F = ma in Newton’s best-known book Principia in 1687. Even after more than one hundred years, a famous Cambridge textbook titled An Elementary Treatise on Mechanics by Whewell of Trinity College did not express this law as F = ma. At that time of Whewell, the early mid-nineteenth century Britain, the concept of acceleration was not only ambiguous but also confused with the concept of force. The process of learning the concept of acceleration is analogous to its conceptual development in history. The study from the perspective of historical textual analysis will promote the understanding of the concept learning difficulties, the development of professional physics teaching, and the improvement of the context of physics textbooks.Keywords: acceleration, textbooks, mechanics, misconception, history of science
Procedia PDF Downloads 252452 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 82451 Evaluation of Video Development about Exclusive Breastfeeding as a Nutrition Education Media for Posyandu Cadre
Authors: Ari Istiany, Guspri Devi Artanti, M. Si
Abstract:
Based on the results Riskesdas, it is known that breastfeeding awareness about the importance of exclusive breastfeeding is still low at only 15.3 %. These conditions resulted in a very infant at risk for infectious diseases, such as diarrhea and acute respiratory infection. Therefore, the aim of this study to evaluate the video development about exclusive breastfeeding as a nutrition education media for posyandu cadre. This research used development methods for making the video about exclusive breastfeeding. The study was conducted in urban areas Rawamangun, East Jakarta. Respondents of this study were 1 media experts from the Department of Educational Technology - UNJ, 2 subject matter experts from Department of Home Economics - UNJ and 20 posyandu cadres to assess the quality of the video. Aspects assessed include the legibility of text, image display quality, color composition, clarity of sound, music appropriateness, duration, suitability of the material and language. Data were analyzed descriptively likes frequency distribution table, the average value, and deviation standard. The result of this study showed that the average score assessment according to media experts, subject matter experts, and posyandu cadres respectively was 3.43 ± 0.51 (good), 4.37 ± 0.52 (very good) and 3.6 ± 0.73 (good). The conclusion is on exclusive breastfeeding video as feasible as a media for nutrition education. While suggestions for the improvement of visual media is multiply illustrations, add material about the correct way of breastfeeding and healthy baby pictures.Keywords: exclusive breastfeeding, posyandu cadre, video, nutrition education
Procedia PDF Downloads 412450 Enhanced Retrieval-Augmented Generation (RAG) Method with Knowledge Graph and Graph Neural Network (GNN) for Automated QA Systems
Authors: Zhihao Zheng, Zhilin Wang, Linxin Liu
Abstract:
In the research of automated knowledge question-answering systems, accuracy and efficiency are critical challenges. This paper proposes a knowledge graph-enhanced Retrieval-Augmented Generation (RAG) method, combined with a Graph Neural Network (GNN) structure, to automatically determine the correctness of knowledge competition questions. First, a domain-specific knowledge graph was constructed from a large corpus of academic journal literature, with key entities and relationships extracted using Natural Language Processing (NLP) techniques. Then, the RAG method's retrieval module was expanded to simultaneously query both text databases and the knowledge graph, leveraging the GNN to further extract structured information from the knowledge graph. During answer generation, contextual information provided by the knowledge graph and GNN is incorporated to improve the accuracy and consistency of the answers. Experimental results demonstrate that the knowledge graph and GNN-enhanced RAG method perform excellently in determining the correctness of questions, achieving an accuracy rate of 95%. Particularly in cases involving ambiguity or requiring contextual information, the structured knowledge provided by the knowledge graph and GNN significantly enhances the RAG method's performance. This approach not only demonstrates significant advantages in improving the accuracy and efficiency of automated knowledge question-answering systems but also offers new directions and ideas for future research and practical applications.Keywords: knowledge graph, graph neural network, retrieval-augmented generation, NLP
Procedia PDF Downloads 42449 FracXpert: Ensemble Machine Learning Approach for Localization and Classification of Bone Fractures in Cricket Athletes
Authors: Madushani Rodrigo, Banuka Athuraliya
Abstract:
In today's world of medical diagnosis and prediction, machine learning stands out as a strong tool, transforming old ways of caring for health. This study analyzes the use of machine learning in the specialized domain of sports medicine, with a focus on the timely and accurate detection of bone fractures in cricket athletes. Failure to identify bone fractures in real time can result in malunion or non-union conditions. To ensure proper treatment and enhance the bone healing process, accurately identifying fracture locations and types is necessary. When interpreting X-ray images, it relies on the expertise and experience of medical professionals in the identification process. Sometimes, radiographic images are of low quality, leading to potential issues. Therefore, it is necessary to have a proper approach to accurately localize and classify fractures in real time. The research has revealed that the optimal approach needs to address the stated problem and employ appropriate radiographic image processing techniques and object detection algorithms. These algorithms should effectively localize and accurately classify all types of fractures with high precision and in a timely manner. In order to overcome the challenges of misidentifying fractures, a distinct model for fracture localization and classification has been implemented. The research also incorporates radiographic image enhancement and preprocessing techniques to overcome the limitations posed by low-quality images. A classification ensemble model has been implemented using ResNet18 and VGG16. In parallel, a fracture segmentation model has been implemented using the enhanced U-Net architecture. Combining the results of these two implemented models, the FracXpert system can accurately localize exact fracture locations along with fracture types from the available 12 different types of fracture patterns, which include avulsion, comminuted, compressed, dislocation, greenstick, hairline, impacted, intraarticular, longitudinal, oblique, pathological, and spiral. This system will generate a confidence score level indicating the degree of confidence in the predicted result. Using ResNet18 and VGG16 architectures, the implemented fracture segmentation model, based on the U-Net architecture, achieved a high accuracy level of 99.94%, demonstrating its precision in identifying fracture locations. Simultaneously, the classification ensemble model achieved an accuracy of 81.0%, showcasing its ability to categorize various fracture patterns, which is instrumental in the fracture treatment process. In conclusion, FracXpert has become a promising ML application in sports medicine, demonstrating its potential to revolutionize fracture detection processes. By leveraging the power of ML algorithms, this study contributes to the advancement of diagnostic capabilities in cricket athlete healthcare, ensuring timely and accurate identification of bone fractures for the best treatment outcomes.Keywords: multiclass classification, object detection, ResNet18, U-Net, VGG16
Procedia PDF Downloads 124448 The Impact of Psychiatric Symptoms on Return to Work after Occupational Injury
Authors: Kuan-Han Lin, Kuan-Yin Lin, Ka-Chun Siu
Abstract:
The purpose of this systematic review was to determine the impact of post-traumatic stress disorders (PTSD) symptom or depressive symptoms on return to work (RTW) after occupational injury. The original articles of clinical trials and observational studies from PubMed, MEDLINE, and PsycINFO between January 1980 and November 2016 were retrieved. Two reviewers evaluated the abstracts identified by the search criteria for full-text review. To be included in the final analysis, studies were required to use either intervention or observational study design to examine the association between psychiatric symptoms and RTW. A modified checklist designed by Downs & Black and Crombie was used to assess the methodological quality of included study. A total of 58 articles were identified from the electronic databases after duplicate removed. Seven studies fulfilled the inclusion criteria and were critically reviewed. The rates of RTW in the included studies were reported to be 6% to 63.6% among workers after occupational injuries. This review found that post-traumatic stress symptom and depressive symptoms were negatively associated with RTW. Although the impact of psychiatric symptoms on RTW after occupational injury remains poorly understood, this review brought up the important information that injured workers with psychiatric symptoms had poor RTW outcome. Future work should address the effective management of psychiatric factors affecting RTW among workers.Keywords: depressive symptom, occupational injury, post-traumatic stress disorder, return to work
Procedia PDF Downloads 264447 Challenging the Stereotypes: A Critical Study of Chotti Munda, His Arrow, and Sula
Authors: Khushboo Gokani, Renu Josan
Abstract:
Mahasweta Devi and Toni Morrison are the two stalwarts of the Indian-English and the Afro-American literature respectively. The writings of these two novelists are authentic and powerful records of the lives of the people because much of their personal experiences have gone into the making of their works. Devi, a representative force of the Indian English literature, is also a social activist working with the tribals of Bihar, Jharkhand, Orissa and West Bengal. Most of her works echo the lives and struggles of the subalterns as is evident in her 'best-beloved book' Chotti Munda and His Arrow. The novelist focuses on the struggle of the tribals against the colonial and the feudal powers to create their identity, thereby, embarking on the ideological project called Setting the Record Straight. The Nobel laureate Toni Morrison, on the other hand, brings to the fore the crucial issues of gender, race, and class in many of her significant works. In one of her representative works, Sula, the protagonist emerges as a non-conformist and directly confronts the notion of a ‘good woman’ nurtured by the community of the Blacks. In addition to this, the struggle of the Blacks against the White domination, also become an important theme of the text. The thrust of the paper lies in making a critical analysis of the portrayal of the heroic attempts of the subaltern protagonist and the artistic endeavor of the novelists in challenging the stereotypes.Keywords: the struggle of the muted groups, subaltern, center and periphery, challenging the stereotypes
Procedia PDF Downloads 238446 The Universal Theory: Role of Imaginary Pressure on Different Relative Motions
Authors: Sahib Dino Naseerani
Abstract:
The presented scientific text discusses the concept of imaginary pressure and its role in different relative motions. It explores how imaginary pressure, which is the combined effect of external atmospheric pressure and real pressure, affects various substances and their physical properties. The study aims to understand the impact of imaginary pressure and its potential applications in different contexts, such as spaceflight. The main objective of this study is to investigate the role of imaginary pressure on different relative motions. Specifically, the researchers aim to examine how imaginary pressure affects the contraction and mass variation of a body when it is in motion at the speed of light. The study seeks to provide insights into the behavior and consequences of imaginary pressure in various scenarios. The data was collected using three research papers. This research contributes to a better understanding of the theoretical implications of imaginary pressure. It elucidates how imaginary pressure is responsible for the contraction and mass variation of a body in motion, particularly at the speed of light. The findings shed light on the behavior of substances under the influence of imaginary pressure, providing valuable insights for future scientific studies. The study addresses the question of how imaginary pressure influences various relative motions and their associated physical properties. It aims to understand the role of imaginary pressure in the contraction and mass variation of a body, particularly at high speeds. By examining different substances in liquid and solid forms, the research explores the consequences of imaginary pressure on their volume, length, and mass.Keywords: imaginary pressure, contraction, variation, relative motion
Procedia PDF Downloads 114445 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 37444 Investigating Online Literacy among Undergraduates in Malaysia
Authors: Vivien Chee Pei Wei
Abstract:
Today we live in a scenario in which letters share space with images on screens that vary in size, shape, and style. The popularization of television, then the computer and now the e-readers, tablets, and smartphones made the electronic assume the role that previously was restricted to printed materials. Since the extensive use of new technologies to produce, disseminate, collect and access electronic publications began, the changes to reading has been intensified. To be able to read online, it involves more than just utilizing specific skills, strategies, and practices, but also in negotiating multiple information sources. In this study, different perspectives of digital reading are being explored in order to define the key aspects of the term. The focus is to explore how new technologies affect how undergraduates’ reading behavior, which in turn, gives readers different reading levels and engagement with the text and other support materials in the same media. There is also the importance of the relationship between reading platforms, reading levels and formats of electronic publications. The study looks at the online reading practices of about 100 undergraduates from a local university. The data collected using the survey and interviews with the respondents are analyzed thematically. Findings from this study found that both digital and traditional reading are interrelated, and should not be viewed as separate, but complementary to each other. However, reading online complicates some of the skills required by traditional reading. Consequently, in order to successfully read and comprehend multiple sources of information online, undergraduates need regular opportunities to practice and develop their skills as part of their natural reading practices.Keywords: concepts, digital reading, literacy, traditional reading
Procedia PDF Downloads 311443 The World View of Tere Liye in Negeri Para Bedebah an Analysis of Genetic Structuralism Lucien Goldmann
Authors: Muhammad Fadli Muslimin
Abstract:
Negeri Para Bedebah is known as one of the works of Tere Liye, an Indonesia author. In the literary works, the fiction as always tries to reflect the reality of the society where the author or the social groups lived in. The essential or nature of society is generally a reality while literary work is fiction and both of them are social fact. Negeri Para Bedebah is a novel fiction which is a social fact and which holds an important role in reality. It is more likely as the representation of social, economy and politic aspects in Indonesia. The purpose of this study is to reveal the world view of Tere Liye throughout novel Negeri Para Bedebah. By analyzing the object using genetic structuralism Lucien Goldmann which chiefly focuses on world view, it is stated that the literary work is an structure and it has homology with the structure in society. The structure of literary work is not chiefly homolog to the structure of society but homolog to the world view which is growing and developing inside the society. The methodological research used in this paper is a dialectic method which focuses on the starting and ending points lied in the literary text by paying attention to the coherent meanings. The result of this study is that Tere Liye shows us his world view about the structure of the society where he is living in, but one is an imaginative form of the world and the homology to the reality itself.Keywords: homology, literary work, society, structure, world view
Procedia PDF Downloads 511