Search results for: temperature response
10795 Effect of Fire Exposure on the Ultimate Strength of Loaded Columns
Authors: Hatem Hamdy Ghieth
Abstract:
In the recent time many fires happened in many skeleton buildings. The fire may be continues for a long time. This fire may cause a collapse of the building. This collapse may be happened due to the time of exposure to fire as well as the rate of the loading to the carrying elements. In this research a laboratory study for reinforced concrete columns under effect of fire with temperature reaches (650 ْ C) on the behavior of columns which loaded with axial load and with exposing to fire temperature only from all sides of columns. the main parameters of this study are level of load applying to the column, and the temperature applied to the fire, this temperatures was 500oC and 650oc. Nine concrete columns with dimensions 20x20x100 cms were casted one of these columns was tested to determine the ultimate load while the least were fired according to the experimental schedule.Keywords: columns, fire duration, concrete strength, level of loading
Procedia PDF Downloads 43810794 Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process
Authors: Jong Kook Lee, Sangcheol Eum, Jaehong Kim
Abstract:
Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content.Keywords: wollastonite, hydroxyapatite composite coatings, room temperature spay process, zirconia
Procedia PDF Downloads 47510793 Examining Effects of Electronic Market Functions on Decrease in Product Unit Cost and Response Time to Customer
Authors: Maziyar Nouraee
Abstract:
Electronic markets in recent decades contribute remarkably in business transactions. Many organizations consider traditional ways of trade non-economical and therefore they do trade only through electronic markets. There are different categorizations of electronic markets functions. In one classification, functions of electronic markets are categorized into classes as information, transactions, and value added. In the present paper, effects of the three classes on the two major elements of the supply chain management are measured. The two elements are decrease in the product unit cost and reduction in response time to the customer. The results of the current research show that among nine minor elements related to the three classes of electronic markets functions, six factors and three factors influence on reduction of the product unit cost and reduction of response time to the customer, respectively.Keywords: electronic commerce, electronic market, B2B trade, supply chain management
Procedia PDF Downloads 39110792 Melanoma Antigen Proteins Are Involved in DNA Damage Response
Authors: Olivier de Backer, Alexis Khelfi, Olivier Svensek, Axelle Nolmans, Dominique Desnoeck
Abstract:
The SMC5-SMC6 complex helps replication and repair of DNA double-strand breaks. Nse1, Nse3 and Nse4 are non-SMC components of the complex in which Nse3 stimulates the E3 ubiquitin ligase activity of Nse1 and is required for recruiting the complex on DNA. In most eukaryotes, Nse3 is a single protein, but in eutherians (placental mammals), it belongs to a large family of proteins called MAGE (Melanoma antigen) that share a conserved domain of about 200 aa known as MHD (Mage homology domain). MAGE assembles specific RING and HECT ubiquitin ligases and determines new substrates for ubiquitination. The MHD is required for the interaction with the cognate E3 ligase. Some MAGEs (referred to as Type I) are exclusively expressed in germ cells of the testis but are often expressed ectopically in cancer cells as the result of epigenetic modifications. The 12 MAGE-A genes belong to this category. Serval MAGE-A proteins could promote tumorigenesis by targeting tumor suppressor proteins (including p53) for ubiquitination and degradation. We showed that depletion of MAGE-A proteins in melanoma cells results in impaired DNA damage response and increased double-strand breaks after exposure to camptothecin. Moreover, it was shown that other actors of the DNA Damage Response were impacted when cells were depleted of MAGEA proteins.Keywords: DNA damage response, melanoma, camptothecin, new role, MAGEA
Procedia PDF Downloads 9910791 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method
Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai
Abstract:
In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon
Procedia PDF Downloads 16010790 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers
Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou
Abstract:
Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.Keywords: ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties
Procedia PDF Downloads 37710789 Predictive Maintenance of Electrical Induction Motors Using Machine Learning
Authors: Muhammad Bilal, Adil Ahmed
Abstract:
This study proposes an approach for electrical induction motor predictive maintenance utilizing machine learning algorithms. On the basis of a study of temperature data obtained from sensors put on the motor, the goal is to predict motor failures. The proposed models are trained to identify whether a motor is defective or not by utilizing machine learning algorithms like Support Vector Machines (SVM) and K-Nearest Neighbors (KNN). According to a thorough study of the literature, earlier research has used motor current signature analysis (MCSA) and vibration data to forecast motor failures. The temperature signal methodology, which has clear advantages over the conventional MCSA and vibration analysis methods in terms of cost-effectiveness, is the main subject of this research. The acquired results emphasize the applicability and effectiveness of the temperature-based predictive maintenance strategy by demonstrating the successful categorization of defective motors using the suggested machine learning models.Keywords: predictive maintenance, electrical induction motors, machine learning, temperature signal methodology, motor failures
Procedia PDF Downloads 11510788 Relationship between Monthly Shrimp Catch Rates and the Oceanography-Related Variables
Authors: Hussain M. Al-foudari, Weizhong Chen, James M. Bishop
Abstract:
Correlations between oceanographic variables and monthly catch rates of total shrimp and those of each of the major species (Penaeus semisulcatus, Metapenaeus affinis and Parapenaeopsis stylifera) showed significant differences for particular conditions. Catches of P. semisulcatus were basically positively correlated with temperature, i.e., the higher the temperature, the higher the catch rate, while those of M. affinis and P. stylifera were negatively correlated with temperature, i.e., high catch rates occurred in the low temperature waters. Thus, during the months January and April, P. semisulcatus preferred waters with high temperature, usually the offshore and southern areas, while M. affinis and P. stylifera preferred waters with low temperature, usually inshore and northern areas. The relationships between the catch rate of P. semisulcatus and salinity were not so clear. Results indicated that although salinity was one of the factors affecting the distribution of P. semisulcatus, it was not the principal factor, and impacts from other variables, such as temperature, might overshadow the correlation between the catch rates of P. semisulcatus and salinity. The relationship between shrimp catch rates and dissolved oxygen (DO) also showed mixed results. The catch rates of M. affinis increased with a decrease of surface DO in November 2013, but decreased with lower bottom DO in December. These results indicated that DO might be a factor affecting distributions of the shrimp; however; the true correlation between catch rate and DO might be easily overshadowed by other environmental variables. Catch rates of P. semisulcatus did not show any relationship with depth. P. semisulcatus is a migratory species and widely distributed in Kuwait's waters.During the shrimp season from July through December, P. semisulcatus occurs in almost all areas in Kuwait's waters irrespective of water depth. The catch rates of M. affinis and P. stylifera, however, showed clear relationships with depth. Both species had significantly higher catch rates in shallower waters, indicative of their restricted distribution.Keywords: Kuwait, Penaeus semisulcatus, Metapenaeus affinis, Parapenaeopsis stylifera, Arabian gulf
Procedia PDF Downloads 48910787 Simulation Study on Comparison of Thermal Comfort during Heating with All-Air System and Radiant Floor System
Authors: Shiyun Liu
Abstract:
Radiant heating systems work fundamentally differently from air systems by taking advantage of both radiant and convective heat transfer to remove space heating load. There are rare studies on differences of heating systems between all-air system and radiant floor system. This paper uses the method of simulation based on state-space to calculate the indoor temperature and wall temperature of each system and shows how the dynamic heat transfer in rooms conditioned by a radiant system is different from an air system. Then this paper analyses the changes of indoor temperature of these two systems, finding out the differences between all-air heating system and radiant floor heating system to help the designer choose a more suitable heating system.Keywords: radiant floor, all-air system, thermal comfort, simulation, heating system
Procedia PDF Downloads 16310786 Effect of Austenitization Temperature on Wear Behavior of Carbidic Austempered Ductile Iron (CADI)
Authors: Ajay Likhite, Prashant Parhad, D. R. Peshwe, S. U. Pathak
Abstract:
Chromium bearing Austempered Ductile Iron (ADI) has been recently in the news for its improved wear performance over the ADI. The work presented below was taken up to study the effect of different austenitisation temperatures on the microstructure and wear performance of the Carbidic Austempered Ductile Iron (CADI). In this investigation Cr bearing ductile iron was subjected to austempering treatment to obtain an ausferritic microstructure. Two different austenitisation temperatures were selected whereas, the austempering temperature and time was kept unchanged. Microstructure and wear performance of this alloy, austenitized at two different temperatures was studied.Keywords: austempered ductile iron, carbidic austempered ductile iron, austenitization temperature, wear behavior
Procedia PDF Downloads 43710785 Different Biological and Chemical Parameters that Influence the Polyphenols from Some Medicinal Plants in Western Algeria
Authors: Mustapha Mahmoud, Fouzia Toumi Benali, Mohamed Benyahia, Sofiane Bouazza
Abstract:
This work focuses on the influences of biological and chemical parameters on the phenolic compounds such as flavonoids and tannins in different medicinal plants in western Algeria (Papaver rhoeas, Daphnegnidium, Lavandula multifida, Lavandula dentata, Lavandula stoicha, ...). Thus we look the difference between species of the same genus, difference between the different organs of the same species, the influence of environment all temperature influences, time, percentage of solvent on the extraction. Quantification of the phenolic compounds was performed by spectrophotometric method then treated with statistics tools such as variance analysis, multivariant analyzes, response surface methodology). The results show that the polyphenols are influenced by the parameters mentioned.Keywords: polyphenols, influences, medicinal plants, west Algeria
Procedia PDF Downloads 29110784 Physicochemical Properties and Thermal Inactivation of Polyphenol Oxidase of African Bush Mango (Irvingia Gabonensis) Fruit
Authors: Catherine Joke Adeseko
Abstract:
Enzymatic browning is an economically important disorder that degrades organoleptic properties and prevent the consumer from purchasing fresh fruit and vegetables. Prevention and control of enzymatic browning in fruit and its product is imperative. Therefore, this study sought to investigate the catalytic effect of polyphenol oxidase (PPO) in the adverse browning of African bush mango (Irvingia gabonensis) fruit peel and pulp. PPO was isolated and purified, and its physicochemical properties, such as the effect of pH with SDS, temperature, and thermodynamic studies, which invariably led to thermal inactivation of purified PPO at 80 °C, were evaluated. The pH and temperature optima of PPO were found at 7.0 and 50, respectively. There was a gradual increase in the activity of PPO as the pH increases. However, the enzyme exhibited a higher activity at neutral pH 7.0, while enzymatic inhibition was observed at acidic region, pH 2.0. The presence of SDS at pH 5.0 downward was found to inhibit the activity of PPO from the peel and pulp of I. gabonensis. The average value of enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) obtained at 20 min of incubation and temperature 30 – 80 °C were respectively 39.93 kJ.mol-1, 431.57 J.mol-1 .K-1 and -107.99 kJ.mol-1 for peel PPO, and 37.92 kJ.mol-1, -442.51J.mol-1.K-1, and -107.22 kJ.mol-1 for pulp PPO. Thermal inactivation of PPO from I. gabonensis exhibited a reduction in catalytic activity as the temperature and duration of heat inactivation increases using catechol, reflected by an increment in k value. The half-life of PPO (t1/2) decreases as the incubation temperature increases due to the instability of the enzyme at high temperatures and was higher in pulp than peel. Both D and Z values decrease with increase in temperature. The information from this study suggests processing parameters for controlling PPO in the potential industrial application of I. gabonensis fruit in order to prolong the shelf-life of this fruit for maximum utilization.Keywords: enzymatic, browning, characterization, activity
Procedia PDF Downloads 8810783 A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam
Authors: T. M. Ismail, M. A. El-Salam
Abstract:
A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process.Keywords: computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier
Procedia PDF Downloads 40410782 Ultrasound-Assisted Extraction of Bioactive Compounds from Cocoa Shell and Their Encapsulation in Gum Arabic and Maltodextrin: A Technology to Produce Functional Food Ingredients
Authors: Saeid Jafari, Khursheed Ahmad Sheikh, Randy W. Worobo, Kitipong Assatarakul
Abstract:
In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45-65 ◦C), extraction time (30–60 min), and ethanol concentration (60–100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 ◦C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.Keywords: functional foods, coco shell powder, antioxidant activity, encapsulation, extraction
Procedia PDF Downloads 5510781 DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)
Authors: Mohamed Tamer, Wink Michael
Abstract:
DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control.Keywords: alkaloids, Chelidonium majus, DNA intercalation, Tm
Procedia PDF Downloads 50010780 Optimization Analysis of Controlled Cooling Process for H-Shape Steam Beams
Authors: Jiin-Yuh Jang, Yu-Feng Gan
Abstract:
In order to improve the comprehensive mechanical properties of the steel, the cooling rate, and the temperature distribution must be controlled in the cooling process. A three-dimensional numerical model for the prediction of the heat transfer coefficient distribution of H-beam in the controlled cooling process was performed in order to obtain the uniform temperature distribution and minimize the maximum stress and the maximum deformation after the controlled cooling. An algorithm developed with a simplified conjugated-gradient method was used as an optimizer to optimize the heat transfer coefficient distribution. The numerical results showed that, for the case of air cooling 5 seconds followed by water cooling 6 seconds with uniform the heat transfer coefficient, the cooling rate is 15.5 (℃/s), the maximum temperature difference is 85℃, the maximum the stress is 125 MPa, and the maximum deformation is 1.280 mm. After optimize the heat transfer coefficient distribution in control cooling process with the same cooling time, the cooling rate is increased to 20.5 (℃/s), the maximum temperature difference is decreased to 52℃, the maximum stress is decreased to 82MPa and the maximum deformation is decreased to 1.167mm.Keywords: controlled cooling, H-Beam, optimization, thermal stress
Procedia PDF Downloads 36810779 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study
Authors: G. Singh, H.Schuster, U. Füssel
Abstract:
The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode
Procedia PDF Downloads 18410778 Structure and Magnetic Properties of Low-Temperature Synthesized M-W Hexaferrite Composites
Authors: Young-Min Kang
Abstract:
M-type Sr-hexaferrites (SrFe12O19) is one of the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. For a M-type Sr-hexaferrite with a saturation magnetization (MS) of ~74.0 emu/g the practical limits of remanent flux density (Br) and maximum energy product (BH) max are ~4.6 kG and ~5.3 MGOe. Meanwhile, W-type hexaferrite (SrFe18O27) with higher MS ~81emu/g can be a good candidate for the development of enhanced ferrite magnet. However the W-type hexaferrite is stable at the temperature over 1350 ºC in air, and thus it is hard to control grain size and the coercivity. We report here high-MS M-W composite hexaferrites synthesized at 1250 ºC in air by doping Ca, Co, Mn, and Zn into the hexaferrite structures. The hexaferrites samples of stoichiometric SrFe12O19 (SrM) and Ca-Co-Mn-Zn doped hexaferrite (Sr0.7Ca0.3Fen-0.6Co0.2Mn0.2Zn0.2Oa) were prepared by conventional solid state reaction process with varying Fe content (10 ≤ n ≤ 17). Analysis by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were performed for phase identification and microstructural observation respectively. Magnetic hysteresis curves were measured using vibrating sample magnetometer (VSM) at room temperature (300 K). Single M-type phase could be obtained in the non-doped SrM sample after calcinations at the range of 1200 ºC ~ 1300 ºC, showing MS in the range of 72 ~ 72.6 emu/g. The Ca-Co-Mn-Zn doped SrM with Fe content, 10 ≤ n ≤ 13, showed both M and W-phases peaks in the XRD after respective calcinations at 1250 ºC. The sample with n=13 showed the MS of 70.7, 75.3, 78.0 emu/g, respectively, after calcination at 1200, 1250, 1300 ºC. The high MS over that of non-doped SrM (~72 emu/g) is attributed to the volume portion of W-phase. It is also revealed that the high MS W-phase could not formed if only one of the Ca, Co, Zn is missed in the substitution. These elements are critical to form the W-phase at the calcinations temperature of 1250 ºC, which is 100 ºC lower than the calcinations temperature for non-doped Sr-hexaferrites.Keywords: M-type hexaferrite, W-type hexaferrite, saturation magnetization, low-temperature synthesis
Procedia PDF Downloads 16510777 Observation of Inverse Blech Length Effect during Electromigration of Cu Thin Film
Authors: Nalla Somaiah, Praveen Kumar
Abstract:
Scaling of transistors and, hence, interconnects is very important for the enhanced performance of microelectronic devices. Scaling of devices creates significant complexity, especially in the multilevel interconnect architectures, wherein current crowding occurs at the corners of interconnects. Such a current crowding creates hot-spots at the respective corners, resulting in non-uniform temperature distribution in the interconnect as well. This non-uniform temperature distribution, which is exuberated with continued scaling of devices, creates a temperature gradient in the interconnect. In particular, the increased current density at corners and the associated temperature rise due to Joule heating accelerate the electromigration induced failures in interconnects, especially at corners. This has been the classic reliability issue associated with metallic interconnects. Herein, it is generally understood that electromigration induced damages can be avoided if the length of interconnect is smaller than a critical length, often termed as Blech length. Interestingly, the effect of non-negligible temperature gradients generated at these corners in terms of thermomigration and electromigration-thermomigration coupling has not attracted enough attention. Accordingly, in this work, the interplay between the electromigration and temperature gradient induced mass transport was studied using standard Blech structure. In this particular sample structure, the majority of the current is forcefully directed into the low resistivity metallic film from a high resistivity underlayer film, resulting in current crowding at the edges of the metallic film. In this study, 150 nm thick Cu metallic film was deposited on 30 nm thick W underlayer film in the configuration of Blech structure. Series of Cu thin strips, with lengths of 10, 20, 50, 100, 150 and 200 μm, were fabricated. Current density of ≈ 4 × 1010 A/m² was passed through Cu and W films at a temperature of 250ºC. Herein, along with expected forward migration of Cu atoms from the cathode to the anode at the cathode end of the Cu film, backward migration from the anode towards the center of Cu film was also observed. Interestingly, smaller length samples consistently showed enhanced migration at the cathode end, thus indicating the existence of inverse Blech length effect in presence of temperature gradient. A finite element based model showing the interplay between electromigration and thermomigration driving forces has been developed to explain this observation.Keywords: Blech structure, electromigration, temperature gradient, thin films
Procedia PDF Downloads 25310776 On the PTC Thermistor Model with a Hyperbolic Tangent Electrical Conductivity
Authors: M. O. Durojaye, J. T. Agee
Abstract:
This paper is on the one-dimensional, positive temperature coefficient (PTC) thermistor model with a hyperbolic tangent function approximation for the electrical conductivity. The method of asymptotic expansion was adopted to obtain the steady state solution and the unsteady-state response was obtained using the method of lines (MOL) which is a well-established numerical technique. The approach is to reduce the partial differential equation to a vector system of ordinary differential equations and solve numerically. Our analysis shows that the hyperbolic tangent approximation introduced is well suitable for the electrical conductivity. Numerical solutions obtained also exhibit correct physical characteristics of the thermistor and are in good agreement with the exact steady state solutions.Keywords: electrical conductivity, hyperbolic tangent function, PTC thermistor, method of lines
Procedia PDF Downloads 32010775 Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents
Authors: Anders S. Kristensen, Dewan Ahsan, Saqib Mehmood, Shakeel Ahmed
Abstract:
Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives.Keywords: automated external defibrillator, medical emergency, response time, unmanned aerial system
Procedia PDF Downloads 22710774 New Refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ for Application in Magnetic Refrigeration
Authors: Essebti Dhahri
Abstract:
We present a new refrigerant La₀.₇Ca₀.₁₅Sr₀.₁₅Mn₁₋ₓGaₓO₃ (x = 0.0-0.1) manganites. These compounds were prepared by the sol-gel method. The refinement of the X-ray diffraction reveals that all samples crystallize in a rhombohedral structure (space group R3 ̅c). Detailed measurements of the magnetization as a function of temperature and magnetic applied field M (µ₀H, T) were carried out. From the M(µ₀H, T) curves, we have calculated the magnetic entropy change (ΔSM) according to the Maxwell relation. The temperature dependence of the magnetization M(T) reveals a decrease of M when increasing the x content. The magnetic entropy change (ΔSM) reaches a maximum value near room temperature. It was also found that this compound exhibits a large magnetocaloric effect MCE which increases when decreasing Ga concentration. So, the studied compounds could be considered potential materials for magnetic refrigeration application.Keywords: magnetic measurements, Rietveld refinement, magnetic refrigeration, magnetocaloric effect
Procedia PDF Downloads 8710773 Dynamic Process of Single Water Droplet Impacting on a Hot Heptane Surface
Authors: Mingjun Xu, Shouxiang Lu
Abstract:
Understanding the interaction mechanism between the water droplet and pool fire has an important significance in engineering application of water sprinkle/spray/mist fire suppression. The micro impact process is unclear when the droplet impacts on the burning liquid surface at present. To deepen the understanding of the mechanisms of pool fire suppression with water spray/mist, dynamic processes of single water droplet impinging onto a hot heptane surface are visualized with the aid of a high-speed digital camera at 2000 fps. Each test is repeated 20 times. The water droplet diameter is around 1.98 mm, and the impact Weber number ranges from 30 to 695. The heptane is heated by a hot plate to mimic the burning condition, and the temperature varies from 30 to 90°C. The results show that three typical phenomena, including penetration, crater-jet and surface bubble, are observed, and the pool temperature has a significant influence on the critical condition for the appearance of each phenomenon. A global picture of different phenomena is built according to impact Weber number and pool temperature. In addition, the pool temperature and Weber number have important influences on the characteristic parameters including maximum crater depth, crown height and liquid column height. For a fixed Weber number, the liquid column height increases with pool temperature.Keywords: droplet impact, fire suppression, hot surface, water spray
Procedia PDF Downloads 24210772 Modeling the Effects of Temperature on Ambient Air Quality Using AERMOD
Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson
Abstract:
Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO₂) – as a model air pollutant. The research uses AERMOD model to predict the SO₂ dispersion trends in the surrounding area. Emissions from five (5) industrial stacks on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1ᵒC, + 3ᵒC and + 5ᵒC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO₂ at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO₂ concentration levels. The average increase of SO₂ levels was 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees, respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.Keywords: air quality, sulfur dioxide, dispersion models, global warming, KSA
Procedia PDF Downloads 8010771 Fabrication of Eco-Friendly Pigment Printed Textiles by Reducing Formaldehyde Content
Authors: Sidra Saleemi, Raja Fahad Qureshi, Farooq Ahmed, Rabia Almas, Tahir Jameel
Abstract:
This research aimed to decrease formaldehyde content in substrates printed by pigments using different fixation temperature and concentration of urea in order to produce eco-friendly textiles. Substrates were printed by hand screen printing method as per recipe followed by drying and curing. Standard test methods were adapted to measure formaldehyde content washing and rubbing fastness. Formaldehyde content is instantaneously decreased by raising the temperature during curing printed fabric. Good results of both dry and wet rubbing fastness were found at 160˚C slightly improved dry rubbing results are achieved with 2% urea at a curing temperature of 150˚C.Keywords: formaldehyde content, pigment printing, urea, washing fastness, rubbing fastness
Procedia PDF Downloads 30910770 Soil-Structure Interaction in Stiffness and Strength Degrading Systems
Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak
Abstract:
We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.Keywords: inelastic, seismic, building, foundation, interaction
Procedia PDF Downloads 28410769 Diffusion Mechanism of Aroma Compound (2-Acetyl-1-Pyrroline) in Rice During Storage
Authors: Mary Ann U. Baradi, Arnold R. Elepaño, Manuel Jose C. Regalado
Abstract:
Aromatic rice has become popular and continues to command higher price than ordinary rice because of its distinctive scent that makes it special. Freshly harvested aromatic rice exhibits strong aromatic scent but decreases with time and conditions during storage. Of the many volatile compounds in aromatic rice, 2-acetyl-1-pyrroline (2AP) is a major compound that gives rice its popcorn-like aroma. The diffusion mechanism of 2AP in rice was investigated. Semi-empirical models explaining 2AP diffusion as affected by temperature and duration were developed. Storage time and temperature affected 2AP loss via diffusion. The amount of 2AP in rice decreased with time. Free 2AP, being volatile, is lost due to diffusion. Storage experiment indicated rapid 2AP loss during the first five weeks and subsequently leveled off afterwards; attaining level of starch bound 2AP. Decline of 2AP during storage followed exponential equation and exhibited four stages; i.e. the initial, second, third and final stage. Free 2AP is easily lost while bound 2AP is left, only to be released upon exposure to high temperature such as cooking. Both free and bound 2AP is found in endosperm while free 2AP is in the bran. Around 63–67% of total 2AP was lost in brown and milled rice of MS 6 paddy kept at ambient. Samples stored at higher temperature (27°C) recorded higher 2AP loss than those kept at lower temperature (15°C). The study should be able to guide processors in understanding and controlling parameters in storage to produce high quality rice.Keywords: 2-acetyl-1-pyrroline, aromatic rice, diffusion mechanism, storage
Procedia PDF Downloads 33610768 The Shape Memory Recovery Properties under Load of a Polymer Composite
Authors: Abdul Basit, Gildas Lhostis, Bernard Durand
Abstract:
Shape memory polymers (SMPs) are replacing shape memory alloys (SMAs) in many applications as SMPs have certain superior properties than SMAs. However, SMAs possess some properties like recovery under stress that SMPs lack. SMPs cannot give complete recovery even under a small load. SMPs are initially heated close to their transition temperature (glass transition temperature or the melting temperature). Then force is applied to deform the heated SMP to a specific position. Subsequently, SMP is allowed to cool keeping it deformed. After cooling, SMP gets the temporary shape. This temporary shape can be recovered by heating it again at the same temperature that was given it while heating it initially. As a result, it will recover its original position. SMP can perform unconstrained recovery and constrained recovery, however; under the load, it only recovers partially. In this work, the recovery under the load of an asymmetrical shape memory composite called as CBCM-SMPC has been investigated. It is found that it has the ability to recover under different loads. Under different loads, it shows powerful complete recovery in reference to initial position. This property can be utilized in many applications.Keywords: shape memory, polymer composite, thermo-mechanical testing, recovery under load
Procedia PDF Downloads 43410767 Magnetic, Magnetocaloric, and Electrical Properties of Pr0.7Ca0.3Mn0.9M0.1O3
Authors: A. Selmi, A. Bettaibi, H. Rahmouni, R. M’nassri, N. Chniba Boudjada, A. Chiekhrouhou, K. Khirouni
Abstract:
Investigation of magnetic and magnetocaloric properties of Pr₀.₇Ca₀.₃Mn₀.₉M₀.₁O₃ perovskite manganites (M=Cr and Ni) has been carried out. Our compounds were prepared by the conventional solid-state reaction method at high temperatures. Rietveld refinement of X-ray diffraction pattern using FULLPROF method shows that all compounds adopt the orthorhombic structure with Pnma space group. The partial substitution of Mn-site drives the system from charge order state to ferromagnetic one with a Curie temperature T𝒸=150K, 118k and 116K for M=Cr and Ni, respectively. Magnetization measurements versus temperature in a magnetic applied field of 0.05T show that all our samples exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. From M(H) isotherms, we have deduced the magnetic entropy change, which present maximum values of 2.37 J/kg.K and 2.94 J/kg.K, in a magnetic field change of 5T for M=Cr and Ni, respectively.Keywords: manganites, magnetocaloric, magnetic, refrigeration
Procedia PDF Downloads 7510766 Modeling the Effects of Temperature on Air Pollutant Concentration
Authors: Mustapha Babatunde, Bassam Tawabini, Ole John Nielson
Abstract:
Air dispersion (AD) models such as AERMOD are important tools for estimating the environmental impacts of air pollutant emissions into the atmosphere from anthropogenic sources. The outcome of these models is significantly linked to the climate condition like air temperature, which is expected to differ in the future due to the global warming phenomenon. With projections from scientific sources of impending changes to the future climate of Saudi Arabia, especially anticipated temperature rise, there is a potential direct impact on the dispersion patterns of air pollutants results from AD models. To our knowledge, no similar studies were carried out in Saudi Arabia to investigate such impact. Therefore, this research investigates the effects of climate temperature change on air quality in the Dammam Metropolitan area, Saudi Arabia, using AERMOD coupled with Station data using Sulphur dioxide (SO2) – as a model air pollutant. The research uses AERMOD model to predict the SO2 dispersion trends on the surrounding area. Emissions from five (5) industrial stacks, on twenty-eight (28) receptors in the study area were considered for the climate period (2010-2019) and future period of mid-century (2040-2060) under different scenarios of elevated temperature profiles (+1oC, + 3oC and + 5oC) across averaging time periods of 1hr, 4hr and 8hr. Results showed that levels of SO2 at the receiving sites under current and simulated future climactic condition fall within the allowable limit of WHO and KSA air quality standards. Results also revealed that the projected rise in temperature would only have mild increment on the SO2 concentration levels. The average increase of SO2 levels were 0.04%, 0.14%, and 0.23% due to the temperature increase of 1, 3, and 5 degrees respectively. In conclusion, the outcome of this work elucidates the degree of the effects of global warming and climate changes phenomena on air quality and can help the policymakers in their decision-making, given the significant health challenges associated with ambient air pollution in Saudi Arabia.Keywords: air quality, sulphur dioxide, global warming, air dispersion model
Procedia PDF Downloads 130