Search results for: joint source channel coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7246

Search results for: joint source channel coding

6256 Freshwater Source of Sapropel for Healthcare

Authors: Ilona Pavlovska, Aneka Klavina, Agris Auce, Ivars Vanadzins, Alise Silova, Laura Komarovska, Linda Paegle, Baiba Silamikele, Linda Dobkevica

Abstract:

Freshwater sapropel is a common material formed by complex biological transformations of Holocene sediments in the water basement of the lakes in Latvia that has the potential to be used as medical mud. Sapropel forms over a long period in shallow waters by slowly decomposing organic sediment and has different compositions depending on the location of the source, surroundings, the water regime, etc. Official geological survey of Latvia lakes, from Latvian lake database (ezeri.lv), used in the selection of the area of the exploration. The multifunctional effect of sapropel on the whole organism explained by its complex chemical and biological structure. This unique, organic substance and its ability to maintain heat for a long time ensures deep tissue warming and has a positive effect on the treatment of various joint and skin diseases. Sapropel is a valuable resource with multiple areas of application. Investigation of sapropel sediments and survey of the five sites selected according to the criteria performed in the current study. Also, our study includes sampling at different depths and their initial treatment, evaluation of external signs, and study of physical-chemical parameters, as well as analysis of biochemical parameters and evaluation of microbiological indicators. The main selection criteria were sapropel deposits depth, hydrological regime, the history of agriculture next to the lake, and the potential exposure to industrial waste. One hundred and five sapropel samples obtained from five lakes (Audzelu, Dunakla, Ivusku, Zielu, and Mazars Kivdalova) during the wintertime. The main goal of the study is to carry out detailed and systematic research on the medical properties of sapropel to be obtained in Latvia, to promote its scientifically based use in balneology, to develop new medical procedures and services, and to promote the development of new exportable products. Latvian freshwater sapropel could be used as raw material for getting sapropel extract and use it as a remedy. All mentioned above brings us to the main question for sapropel usage in medicine, balneology, and pharmacy “how to develop quality criteria for raw sapropel and its extracts. The research was co-financed by the project "Analysis of characteristics of medical sapropel and its usage for medical purposes and elaboration of industrial extraction methods" No.1.1.1.1/16/A/165.

Keywords: balneology, extracts, freshwater sapropel, Latvian lakes, medical mud, sapropel

Procedia PDF Downloads 245
6255 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique

Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram

Abstract:

Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.

Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm

Procedia PDF Downloads 152
6254 Impact of Capture Effect on Receiver Initiated Collision Detection with Sequential Resolution in WLAN

Authors: Sethu Lekshmi, Shahanas, Prettha P.

Abstract:

All existing protocols in wireless networks are mainly based on Carrier Sense Multiple Access with Collision avoidance. By applying collision detection in wireless networks, the time spent on collision can be reduced and thus improves system throughput. However in a real WLAN scenario due to the use of nonlinear modulation techniques only receiver can decided whether a packet loss take place, even there are multiple transmissions. In this proposed method, the receiver or Access Point detects the collision when multiple data packets are transmitted from different wireless stations. Whenever the receiver detects a collision, it transmits a jamming signal to all the transmitting stations so that they can immediately stop their on-going transmissions. We also provide preferential access to all collided packet to reduce unfairness and to increase system throughput by reducing contention. However, this preferential access will not block the channel for the long time. Here, an in-band transmission is considered in which both the data frames and control frames are transmitted in the same channel. We also provide a simple mathematical model for the proposed protocol and give the simulation result of WLAN scenario under various capture thresholds.

Keywords: 802.11, WLAN, capture effect, collision detection, collision resolution, receiver initiated

Procedia PDF Downloads 343
6253 Comparison of Isokinetic Powers (Flexion and Knee Extension) of Basketball and Football Players (Age 17–20)

Authors: Ugur Senturk, Ibrahım Erdemır, Faruk Guven, Cuma Ece

Abstract:

The objective of this study is to compare flexion and extension movements in knee-joint group by measuring isokinetic knee power of amateur basketball and football players. For this purpose, total 21 players were included, which consist of football players (n=12) and basketball players (n=9), within the age range of 17–20. After receiving the age, length, body weight, vertical jump, and BMI measurements of all subjects, the measurement of lower extremity knee-joint movement (Flexion-Extension) was made with isokinetic dynamometer (isomed 2000) at 60 o/sec. and 240 o/sec. angular velocity. After arrangement and grouping of collected information forms and knee flexion and extension parameters, all data were analyzed with SPSS for Windows. Descriptive analyses of the parameters were made. Non-parametric t test and Mann-Whitney U test were used to compare the parameters of football players and basketball players and to find the inter-group differences. The comparisons and relations in the range p<0.05 and p<0.01 between the groups were surveyed. As a conclusion, no statistical differences were found between isokinetic knee flexion and extension parameters of football and basketball players. However, it was found that the football players were older than the basketball players. In addition to this, the average values of the basketball players in the highest torque and the highest torque average curve were found higher than football players in comparisons of left knee extension. However, it was found that fat levels of the basketball players were found to be higher than the football players.

Keywords: isokinetic contraction, isokinetic dynamometer, peak torque, flexion, extension, football, basketball

Procedia PDF Downloads 514
6252 CE Method for Development of Japan's Stochastic Earthquake Catalogue

Authors: Babak Kamrani, Nozar Kishi

Abstract:

Stochastic catalog represents the events module of the earthquake loss estimation models. It includes series of events with different magnitudes and corresponding frequencies/probabilities. For the development of the stochastic catalog, random or uniform sampling methods are used to sample the events from the seismicity model. For covering all the Magnitude Frequency Distribution (MFD), a huge number of events should be generated for the above-mentioned methods. Characteristic Event (CE) method chooses the events based on the interest of the insurance industry. We divide the MFD of each source into bins. We have chosen the bins based on the probability of the interest by the insurance industry. First, we have collected the information for the available seismic sources. Sources are divided into Fault sources, subduction, and events without specific fault source. We have developed the MFD for each of the individual and areal source based on the seismicity of the sources. Afterward, we have calculated the CE magnitudes based on the desired probability. To develop the stochastic catalog, we have introduced uncertainty to the location of the events too.

Keywords: stochastic catalogue, earthquake loss, uncertainty, characteristic event

Procedia PDF Downloads 278
6251 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method

Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah

Abstract:

LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.

Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping

Procedia PDF Downloads 275
6250 Event Monitoring Based On Web Services for Heterogeneous Event Sources

Authors: Arne Koschel

Abstract:

This article discusses event monitoring options for heterogeneous event sources as they are given in nowadays heterogeneous distributed information systems. It follows the central assumption, that a fully generic event monitoring solution cannot provide complete support for event monitoring; instead, event source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Following from this, the core result of the work presented here is the extension of a configurable event monitoring (Web) service for a variety of event sources. A service approach allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.

Keywords: event monitoring, ECA, CEP, SOA, web services

Procedia PDF Downloads 720
6249 Analytical Formulae for the Approach Velocity Head Coefficient

Authors: Abdulrahman Abdulrahman

Abstract:

Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.

Keywords: broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow

Procedia PDF Downloads 256
6248 Analysis of a Discrete-time Geo/G/1 Queue Integrated with (s, Q) Inventory Policy at a Service Facility

Authors: Akash Verma, Sujit Kumar Samanta

Abstract:

This study examines a discrete-time Geo/G/1 queueing-inventory system attached with (s, Q) inventory policy. Assume that the customers follow the Bernoulli process on arrival. Each customer demands a single item with arbitrarily distributed service time. The inventory is replenished by an outside supplier, and the lead time for the replenishment is determined by a geometric distribution. There is a single server and infinite waiting space in this facility. Demands must wait in the specified waiting area during a stock-out period. The customers are served on a first-come-first-served basis. With the help of the embedded Markov chain technique, we determine the joint probability distributions of the number of customers in the system and the number of items in stock at the post-departure epoch using the Matrix Analytic approach. We relate the system length distribution at post-departure and outside observer's epochs to determine the joint probability distribution at the outside observer's epoch. We use probability distributions at random epochs to determine the waiting time distribution. We obtain the performance measures to construct the cost function. The optimum values of the order quantity and reordering point are found numerically for the variety of model parameters.

Keywords: discrete-time queueing inventory model, matrix analytic method, waiting-time analysis, cost optimization

Procedia PDF Downloads 16
6247 Numerical Investigation of Al2O3/Water Nanofluid Heat Transfer in a Microtube with Viscous Dissipation Effect

Authors: Misagh Irandoost Shahrestani, Hossein Shokouhmand, Mohammad Kalteh, Behrang Hasanpour

Abstract:

In this paper, nanofluid conjugate heat transfer through a microtube with viscous dissipation effect is investigated numerically. The fluid flow is considered as a laminar regime. A constant heat flux is applied on the microtube outer wall and the two ends of its wall are considered adiabatic. Conjugate heat transfer problem is solved and investigated for this geometry. It is shown that viscous dissipation effect which is induced by shear stresses can not be neglected in microtubes. Viscous heating behaves as an energy source in the fluid and affects the temperature distribution. The effect of Reynolds number, particle volume fraction and the nanoparticles diameter on the energy source are investigated and an attempt on establishing suitable equations for assessing the value of the energy source based on Re, Dp and Φ is performed and they are depicted as 3D diagrams. Finally, the significance of viscous dissipation and the influence of these parameters on convective heat transfer coefficient are studied.

Keywords: convective heat transfer coefficient, heat transfer, microtube, nanofluid, viscous dissipation

Procedia PDF Downloads 494
6246 Implementation of Distributor Management Solution and Its Effects on Supply Chain Performance

Authors: Charles Amoatey, Ebenezer Kumah

Abstract:

Purpose: The purpose of this paper is to assess the effects of implementation of Distributor Management Solution (DMS) on supply chain performance in the Fast Moving Consumer Goods (FMCG) industry in Ghana. Methodology: A purposive sampling approach was used in selecting the respondents for the study. Data was collected from senior management and field supervisors from sales, distribution and customer service units of the case study firm and its channel members. This study made use of systematic literature review and results of survey data analysis to assess how information system has been used to improve supply chain performance. Findings: Results from the study showed that the critical effect factors from implementation of a DMS include (1) Obtain prompt and reliable feedback from the market; (2) Building the capacity and skills levels of employees as well as 3rd Party Agents; (3) Motivated top management to invest in MIS; and (4) Performance improvement in sales route management. The most critical challenges to an effective and sustainable MIS implementation are lack of enough trained IT employees and high barriers to cultural change especially with distributors. The paper recommends consistent investment in IS infrastructure and development of IT skills. Research limitations/implications: This study contributes to the literature by exploring the effects of distribution management solution implementation and supply chain performance in a developing country context. Considering the fact that this study is based on data from only one case study firm and its channel members, generalization of the results should be treated with caution. Practical implications: The findings have confirmed the benefits of implementing a Management Information System. The result should encourage channel members to allocate adequate resources for building MIS capacity to enhance their supply chain performance. Originality/Value: In this paper, the relationship between DMS/MIS implementation and improvement in supply chain performance, in the Ghanaian context, has been established.

Keywords: distributor management solution, fast-moving consumer goods, supply chain management, information systems, Ghana

Procedia PDF Downloads 551
6245 Channel Sounding and PAPR Reduction in OFDM for WiMAX Using Software Defined Radio

Authors: B. Siva Kumar Reddy, B. Lakshmi

Abstract:

WiMAX is a high speed broadband wireless access technology that adopted OFDM/OFDMA techniques to supply higher data rates with high spectral efficiency. However, OFDM suffers in view of high Peak to Average Power Ratio (PAPR) and high affect to synchronization errors. In this paper, the high PAPR problem is solved by using phase modulation to get Constant Envelop Orthogonal Frequency Division Multiplexing (CE-OFDM). The synchronization failures are brought down by employing a frequency lock loop, Poly phase clock synchronizer, Costas loop and blind equalizers such as Constant Modulus Algorithm (CMA) equalizer and Sign Kurtosis Maximization Adaptive Algorithm (SKMAA) equalizers. The WiMAX physical layer is executed on Software Defined Radio (SDR) prototype by utilizing USRP N210 as hardware and GNU Radio as software plat-forms. A SNR estimation is performed on the signal received through USRP N210. To empathize wireless propagation in specific environments, a sliding correlator wireless channel sounding system is designed by using SDR testbed.

Keywords: BER, CMA equalizer, Kurtosis equalizer, GNU Radio, OFDM/OFDMA, USRP N210

Procedia PDF Downloads 331
6244 Preparation of Nano-Scaled linbo3 by Polyol Method

Authors: Gabriella Dravecz, László Péter, Zsolt Kis

Abstract:

Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached.

Keywords: lithium-niobate, nanoparticles, polyol, SEM

Procedia PDF Downloads 112
6243 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.

Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number

Procedia PDF Downloads 159
6242 The Determination of the Potassium Nitrate, Sodium Hydroxide and Boric Acid Molar Ratio in the Synthesis of Potassium Borates via Hydrothermal Method

Authors: M. Yildirim, A. S. Kipcak, F. T. Senberber, M. O. Asensio, E. M. Derun, S. Piskin

Abstract:

Potassium borates, which are widely used in welding and metal refining industry, as a lubricating oil additive, cement additive, fiberglass additive and insulation compound, are one of the important groups of borate minerals. In this study the production of a potassium borate mineral via hydrothermal method is aimed. The potassium source of potassium nitrate (KNO3) was used along with a sodium source of sodium hydroxide (NaOH) and boron source of boric acid (H3BO3). The constant parameters of reaction temperature and reaction time were determined as 80°C and 1 h, respectively. The molar ratios of 1:1:3 (as KNO3:NaOH:H3BO3), 1:1:4, 1:1:5, 1:1:6 and 1:1:7 were used. Following the synthesis the identifications of the produced products were conducted by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The results of the experiments and analysis showed in the ratio of 1:1:6, the Santite mineral with powder diffraction file number (pdf no.) of 01-072-1688, which is known as potassium pentaborate (KB5O8•4H2O) was synthesized as best.

Keywords: hydrothermal synthesis, potassium borate, potassium nitrate, santite

Procedia PDF Downloads 445
6241 3D Simulation and Modeling of Magnetic-Sensitive on n-type Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (DGMOSFET)

Authors: M. Kessi

Abstract:

We investigated the effect of the magnetic field on carrier transport phenomena in the transistor channel region of Double-Gate Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET). This explores the Lorentz force and basic physical properties of solids exposed to a constant external magnetic field. The magnetic field modulates the electrons and potential distribution in the case of silicon Tunnel FETs. This modulation shows up in the device's external electrical characteristics such as ON current (ION), subthreshold leakage current (IOF), the threshold voltage (VTH), the magneto-transconductance (gm) and the output magneto-conductance (gDS) of Tunnel FET. Moreover, the channel doping concentration and potential distribution are obtained using the numerical method by solving Poisson’s transport equation in 3D modules semiconductor magnetic sensors available in Silvaco TCAD tools. The numerical simulations of the magnetic nano-sensors are relatively new. In this work, we present the results of numerical simulations based on 3D magnetic sensors. The results show excellent accuracy comportment and good agreement compared with that obtained in the experimental study of MOSFETs technology.

Keywords: single-gate MOSFET, magnetic field, hall field, Lorentz force

Procedia PDF Downloads 165
6240 Design and Validation of a Darrieus Type Hydrokinetic Turbine for South African Irrigation Canals Experimentally and Computationally

Authors: Maritz Lourens Van Rensburg, Chantel Niebuhr

Abstract:

Utilizing all available renewable energy sources is an ever-growing necessity, this includes a newfound interest into hydrokinetic energy systems, which open the door to installations where conventional hydropower shows no potential. Optimization and obtaining high efficiencies are key in these installations. In this study a vertical axis Darrieus hydrokinetic turbine is designed and constructed to address certain drawbacks experience by axial flow horizontal axis turbines in an irrigation channel. Many horizontal axis turbines have been well developed and optimized to have high efficiencies but depending on the conditions experienced in an open channel, the performance of these turbines may be adversely affected. The study analyses how the designed vertical axis turbine addresses the problems experienced by a horizontal axis turbine while still achieving a satisfactory efficiency. To be able to optimize the vertical axis turbine, a computational fluid dynamics model was validated to the experimental results obtained from the power generated from a test turbine installation operating at various rotational speeds. It was found that an accurate validated model can be obtained through validation of generated power output.

Keywords: hydrokinetic, Darrieus, computational fluid dynamics, vertical axis turbine

Procedia PDF Downloads 101
6239 Design of RF Generator and Its Testing in Heating of Nickel Ferrite Nanoparticles

Authors: D. Suman, M. Venkateshwara Rao

Abstract:

Cancer is a disease caused by an uncontrolled division of abnormal cells in a part of the body, which is affecting millions of people leading to death. Even though there have been tremendous developments taken place over the last few decades the effective therapy for cancer is still not a reality. The existing techniques of cancer therapy are chemotherapy and radio therapy which are having their limitations in terms of the side effects, patient discomfort, radiation hazards and the localization of treatment. This paper describes a novel method for cancer therapy by using RF-hyperthermia application of nanoparticles. We have synthesized ferromagnetic nanoparticles and characterized by using XRD and TEM. These nanoparticles after the biocompatibility studies will be injected in to the body with a suitable tracer element having affinity to the specific tumor site. When RF energy is applied to the nanoparticles at the tumor site it produces heat of excess room temperature and nearly 41-45°C is sufficient to kill the tumor cells. We have designed a RF source generator provided with a temperature feedback controller to control the radiation induced temperature of the tumor site. The temperature control is achieved through a negative feedback mechanism of the thermocouple and a relay connected to the power source of the RF generator. This method has advantages in terms of its effect like localized therapy, less radiation, and no side effects. It has several challenges in designing the RF source provided with coils suitable for the tumour site, biocompatibility of the nanomaterials, cooling system design for the RF coil. If we can overcome these challenges this method will be a huge benefit for the society.

Keywords: hyperthermia, cancer therapy, RF source generator, nanoparticles

Procedia PDF Downloads 447
6238 The Many Faces of Inspiration: A Study on Socio-Cultural Influences in Design

Authors: Nithya Venkataraman

Abstract:

The creative journey in design often starts with a spark of inspiration, the source of which can be from myriad stimuli- nature, poetry, personal experiences or even fleeting thoughts and images. While it is indeed an important source of creative exploration, interpretation of this inspiration may often times be influenced by demographic and psychographic variables of the creator - Age, gender, lifecycle stage, personal experiences and individual personality traits being some of these factors. Common sources of inspiration can thus be interpreted differently, translating to different elements of design, and using varied principles in their execution. Do such variables in the creator influence the nature of the creative output? If yes, what are the visible matrices in the output which can be differentiated? An observational study with two groups of Design students, studying in the same design institute, under the guidance of the same design mentor, was conducted to map this influence. Both the groups were unaware of each other but worked with a common source of inspiration as provided by the instructor. In order to maintain congruence, both the groups were provided with lyrical compositions from well-known ballads and poetry as the source of their inspiration. The outputs were abstract renditions using lines, colors and shapes; and these were analyzed under matrices for the elements and principles used to create the compositions. The study indicated that there was a demarcation in terms of the choice of lines, colors and shapes chosen to create the composition, between both groups. The groups also tended to use repetition, proportion and emphasis differently; giving rise to varied uses of the Design principles. The study threw interesting observations on how Design interpretation can vary for the same source of inspiration, based on demographic and psychographic variances. The implications can be traced not just to the process of creative design, but also to the deep social roots that bind creative thinking and Design ideation; which can provide an interesting commentary between different cohorts on what constitutes ‘Good Design’.

Keywords: design compositions, inspiration, interpretation, psychographic factors, social factors

Procedia PDF Downloads 108
6237 ANN Based Simulation of PWM Scheme for Seven Phase Voltage Source Inverter Using MATLAB/Simulink

Authors: Mohammad Arif Khan

Abstract:

This paper analyzes and presents the development of Artificial Neural Network based controller of space vector modulation (ANN-SVPWM) for a seven-phase voltage source inverter. At first, the conventional method of producing sinusoidal output voltage by utilizing six active and one zero space vectors are used to synthesize the input reference, is elaborated and then new PWM scheme called Artificial Neural Network Based PWM is presented. The ANN based controller has the advantage of the very fast implementation and analyzing the algorithms and avoids the direct computation of trigonometric and non-linear functions. The ANN controller uses the individual training strategy with the fixed weight and supervised models. A computer simulation program has been developed using Matlab/Simulink together with the neural network toolbox for training the ANN-controller. A comparison of the proposed scheme with the conventional scheme is presented based on various performance indices. Extensive Simulation results are provided to validate the findings.

Keywords: space vector PWM, total harmonic distortion, seven-phase, voltage source inverter, multi-phase, artificial neural network

Procedia PDF Downloads 438
6236 Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening

Authors: Rehab I. Abdul Rahman, Mazhar B. Tayel

Abstract:

This paper presents a method of hardening the 8051 microcontroller, that able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 microcontroller, Hamming code protection was used in its SRAM memory and registers. A VHDL code and its simulation have been used for this hamming code protection.

Keywords: radiation, hardening, bitflip, hamming

Procedia PDF Downloads 486
6235 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 252
6234 Joint Optimal Pricing and Lot-Sizing Decisions for an Advance Sales System under Stochastic Conditions

Authors: Maryam Ghoreishi, Christian Larsen

Abstract:

In this paper, we investigate the effect of stochastic inputs on problem of joint optimal pricing and lot-sizing decisions where the inventory cycle is divided into advance and spot sales periods. During the advance sales period, customer can make reservations while customer with reservations can cancel their order. However, during the spot sales period customers receive the order as soon as the order is placed, but they cannot make any reservation or cancellation during that period. We assume that the inter arrival times during the advance sales and spot sales period are exponentially distributed where the arrival rate is decreasing function of price. Moreover, we assume that the number of cancelled reservations is binomially distributed. In addition, we assume that deterioration process follows an exponential distribution. We investigate two cases. First, we consider two-state case where we find the optimal price during the spot sales period and the optimal price during the advance sales period. Next, we develop a generalized case where we extend two-state case also to allow dynamic prices during the spot sales period. We apply the Markov decision theory in order to find the optimal solutions. In addition, for the generalized case, we apply the policy iteration algorithm in order to find the optimal prices, the optimal lot-size and maximum advance sales amount.

Keywords: inventory control, pricing, Markov decision theory, advance sales system

Procedia PDF Downloads 304
6233 Environmental Modeling of Storm Water Channels

Authors: L. Grinis

Abstract:

Turbulent flow in complex geometries receives considerable attention due to its importance in many engineering applications. It has been the subject of interest for many researchers. Some of these interests include the design of storm water channels. The design of these channels requires testing through physical models. The main practical limitation of physical models is the so called “scale effect”, that is, the fact that in many cases only primary physical mechanisms can be correctly represented, while secondary mechanisms are often distorted. These observations form the basis of our study, which centered on problems associated with the design of storm water channels near the Dead Sea, in Israel. To help reach a final design decision we used different physical models. Our research showed good coincidence with the results of laboratory tests and theoretical calculations, and allowed us to study different effects of fluid flow in an open channel. We determined that problems of this nature cannot be solved only by means of theoretical calculation and computer simulation. This study demonstrates the use of physical models to help resolve very complicated problems of fluid flow through baffles and similar structures. The study applies these models and observations to different construction and multiphase water flows, among them, those that include sand and stone particles, a significant attempt to bring to the testing laboratory a closer association with reality.

Keywords: open channel, physical modeling, baffles, turbulent flow

Procedia PDF Downloads 272
6232 Acoustic Modeling of a Data Center with a Hot Aisle Containment System

Authors: Arshad Alfoqaha, Seth Bard, Dustin Demetriou

Abstract:

A new multi-physics acoustic modeling approach using ANSYS Mechanical FEA and FLUENT CFD methods is developed for modeling servers mounted to racks, such as IBM Z and IBM Power Systems, in data centers. This new approach allows users to determine the thermal and acoustic conditions that people are exposed to within the data center. The sound pressure level (SPL) exposure for a human working inside a hot aisle containment system inside the data center is studied. The SPL is analyzed at the noise source, at the human body, on the rack walls, on the containment walls, and on the ceiling and flooring plenum walls. In the acoustic CFD simulation, it is assumed that a four-inch diameter sphere with monopole acoustic radiation, placed in the middle of each rack, provides a single-source representation of all noise sources within the rack. Ffowcs Williams & Hawkings (FWH) acoustic model is employed. The target frequency is 1000 Hz, and the total simulation time for the transient analysis is 1.4 seconds, with a very small time step of 3e-5 seconds and 10 iterations to ensure convergence and accuracy. A User Defined Function (UDF) is developed to accurately simulate the acoustic noise source, and a Dynamic Mesh is applied to ensure acoustic wave propagation. Initial validation of the acoustic CFD simulation using a closed-form solution for the spherical propagation of an acoustic point source is performed.

Keywords: data centers, FLUENT, acoustics, sound pressure level, SPL, hot aisle containment, IBM

Procedia PDF Downloads 158
6231 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model

Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar

Abstract:

In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.

Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model

Procedia PDF Downloads 361
6230 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy

Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan

Abstract:

Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.

Keywords: biomechanical energy management, knee exosuit, gait rehabilitation, wearable robotics

Procedia PDF Downloads 141
6229 Modelling of Meandering River Dynamics in Colombia: A Case Study of the Magdalena River

Authors: Laura Isabel Guarin, Juliana Vargas, Philippe Chang

Abstract:

The analysis and study of Open Channel flow dynamics for River applications has been based on flow modelling using discreet numerical models based on hydrodynamic equations. The overall spatial characteristics of rivers, i.e. its length to depth to width ratio generally allows one to correctly disregard processes occurring in the vertical or transverse dimensions thus imposing hydrostatic pressure conditions and considering solely a 1D flow model along the river length. Through a calibration process an accurate flow model may thus be developed allowing for channel study and extrapolation of various scenarios. The Magdalena River in Colombia is a large river basin draining the country from South to North with 1550 km with 0.0024 average slope and 275 average width across. The river displays high water level fluctuation and is characterized by a series of meanders. The city of La Dorada has been affected over the years by serious flooding in the rainy and dry seasons. As the meander is evolving at a steady pace repeated flooding has endangered a number of neighborhoods. This study has been undertaken in pro of correctly model flow characteristics of the river in this region in order to evaluate various scenarios and provide decision makers with erosion control measures options and a forecasting tool. Two field campaigns have been completed over the dry and rainy seasons including extensive topographical and channel survey using Topcon GR5 DGPS and River Surveyor ADCP. Also in order to characterize the erosion process occurring through the meander, extensive suspended and river bed samples were retrieved as well as soil perforation over the banks. Hence based on DEM ground digital mapping survey and field data a 2DH flow model was prepared using the Iber freeware based on the finite volume method in a non-structured mesh environment. The calibration process was carried out comparing available historical data of nearby hydrologic gauging station. Although the model was able to effectively predict overall flow processes in the region, its spatial characteristics and limitations related to pressure conditions did not allow for an accurate representation of erosion processes occurring over specific bank areas and dwellings. As such a significant helical flow has been observed through the meander. Furthermore, the rapidly changing channel cross section as a consequence of severe erosion has hindered the model’s ability to provide decision makers with a valid up to date planning tool.

Keywords: erosion, finite volume method, flow dynamics, flow modelling, meander

Procedia PDF Downloads 305
6228 Asymmetrically Contacted Tellurium Short-Wave Infrared Photodetector with Low Dark Current and High Sensitivity at Room Temperature

Authors: Huang Haoxin

Abstract:

Large dark current at room temperature has long been the major bottleneck that impedes the development of high-performance infrared photodetectors towards miniaturization and integration. Although infrared photodetectors based on layered 2D narrow bandgap semiconductors have shown admirable advantages compared with those based on conventional compounds, which typically suffer from expensive cryogenic operations, it is still urgent to develop a simple but effective strategy to further reduce the dark current. Herein, a tellurium (Te) based infrared photodetector is reported with a specifically designed asymmetric electrical contact area. The deliberately introduced asymmetric electrical contact raises the electric field intensity difference in the Te channel near the drain and the source electrodes, resulting in spontaneous asymmetric carrier diffusion under global infrared light illumination under zero bias. Specifically, the Te-based photodetector presents promising detector performance at room temperature, including a low dark current of≈1 nA, an ultrahigh photocurrent/dark current ratio of 1.57×10⁴, a high specific detectivity (D*) of 3.24×10⁹ Jones, and relatively fast response speed of ≈720 μs at zero bias. The results prove that the simple design of asymmetric electrical contact areas can provide a promising solution to high-performance 2D semiconductor-based infrared photodetectors working at room temperature.

Keywords: asymmetrical contact, tellurium, dark current, infrared photodetector, sensitivity

Procedia PDF Downloads 25
6227 Marginalized Two-Part Joint Models for Generalized Gamma Family of Distributions

Authors: Mohadeseh Shojaei Shahrokhabadi, Ding-Geng (Din) Chen

Abstract:

Positive continuous outcomes with a substantial number of zero values and incomplete longitudinal follow-up are quite common in medical cost data. To jointly model semi-continuous longitudinal cost data and survival data and to provide marginalized covariate effect estimates, a marginalized two-part joint model (MTJM) has been developed for outcome variables with lognormal distributions. In this paper, we propose MTJM models for outcome variables from a generalized gamma (GG) family of distributions. The GG distribution constitutes a general family that includes approximately all of the most frequently used distributions like the Gamma, Exponential, Weibull, and Log Normal. In the proposed MTJM-GG model, the conditional mean from a conventional two-part model with a three-parameter GG distribution is parameterized to provide the marginal interpretation for regression coefficients. In addition, MTJM-gamma and MTJM-Weibull are developed as special cases of MTJM-GG. To illustrate the applicability of the MTJM-GG, we applied the model to a set of real electronic health record data recently collected in Iran, and we provided SAS code for application. The simulation results showed that when the outcome distribution is unknown or misspecified, which is usually the case in real data sets, the MTJM-GG consistently outperforms other models. The GG family of distribution facilitates estimating a model with improved fit over the MTJM-gamma, standard Weibull, or Log-Normal distributions.

Keywords: marginalized two-part model, zero-inflated, right-skewed, semi-continuous, generalized gamma

Procedia PDF Downloads 160