Search results for: active front steering system
19902 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 12619901 Multiphysic Coupling Between Hypersonc Reactive Flow and Thermal Structural Analysis with Ablation for TPS of Space Lunchers
Authors: Margarita Dufresne
Abstract:
This study devoted to development TPS for small space re-usable launchers. We have used SIRIUS design for S1 prototype. Multiphysics coupling for hypersonic reactive flow and thermos-structural analysis with and without ablation is provided by -CCM+ and COMSOL Multiphysics and FASTRAN and ACE+. Flow around hypersonic flight vehicles is the interaction of multiple shocks and the interaction of shocks with boundary layers. These interactions can have a very strong impact on the aeroheating experienced by the flight vehicle. A real gas implies the existence of a gas in equilibrium, non-equilibrium. Mach number ranged from 5 to 10 for first stage flight.The goals of this effort are to provide validation of the iterative coupling of hypersonic physics models in STAR-CCM+ and FASTRAN with COMSOL Multiphysics and ACE+. COMSOL Multiphysics and ACE+ are used for thermal structure analysis to simulate Conjugate Heat Transfer, with Conduction, Free Convection and Radiation to simulate Heat Flux from hypersonic flow. The reactive simulations involve an air chemical model of five species: N, N2, NO, O and O2. Seventeen chemical reactions, involving dissociation and recombination probabilities calculation include in the Dunn/Kang mechanism. Forward reaction rate coefficients based on a modified Arrhenius equation are computed for each reaction. The algorithms employed to solve the reactive equations used the second-order numerical scheme is obtained by a “MUSCL” (Monotone Upstream-cantered Schemes for Conservation Laws) extrapolation process in the structured case. Coupled inviscid flux: AUSM+ flux-vector splitting The MUSCL third-order scheme in STAR-CCM+ provides third-order spatial accuracy, except in the vicinity of strong shocks, where, due to limiting, the spatial accuracy is reduced to second-order and provides improved (i.e., reduced) dissipation compared to the second-order discretization scheme. initial unstructured mesh is refined made using this initial pressure gradient technique for the shock/shock interaction test case. The suggested by NASA turbulence models are the K-Omega SST with a1 = 0.355 and QCR (quadratic) as the constitutive option. Specified k and omega explicitly in initial conditions and in regions – k = 1E-6 *Uinf^2 and omega = 5*Uinf/ (mean aerodynamic chord or characteristic length). We put into practice modelling tips for hypersonic flow as automatic coupled solver, adaptative mesh refinement to capture and refine shock front, using advancing Layer Mesher and larger prism layer thickness to capture shock front on blunt surfaces. The temperature range from 300K to 30 000 K and pressure between 1e-4 and 100 atm. FASTRAN and ACE+ are coupled to provide high-fidelity solution for hot hypersonic reactive flow and Conjugate Heat Transfer. The results of both approaches meet the CIRCA wind tunnel results.Keywords: hypersonic, first stage, high speed compressible flow, shock wave, aerodynamic heating, conugate heat transfer, conduction, free convection, radiation, fastran, ace+, comsol multiphysics, star-ccm+, thermal protection system (tps), space launcher, wind tunnel
Procedia PDF Downloads 7219900 Smart Sustainable University Campus: Aspects on Efficient Space Utilization at National Taiwan University of Science and Technology
Authors: Wei-Hwa Chiang, Yu-Ching Cheng, Pei-Hsien Kao, Yu-Chi Lai
Abstract:
A smart sustainable university campus is multi-dimensional. The success requires intensive inter-disciplinary coordination among all users and the expert group and long-term optimization. This paper reported the design and realization process of the dense and campus NTUST campus where space sharing is essential. Two-phase web-based interviews with students were conducted regarding where they study between classes as well as how they move within the campus. Efficient and active utilization of public and semi-public spaces, in particular, the ones near the ground, were progressively designed and realized where lobbies, corridors, reading rooms, and classrooms not in use were considered. Most of the spaces were equipped with smart monitoring and controls in terms of access, lighting, ceiling fans, air condition, and energy use. Mobile device apps were developed regarding the management of the spaces while information about energy use, environmental quality, and the smart sustainable campus project itself were provided to stimulate the awareness of sustainability and active participation in optimizing the campus.Keywords: smart, sustainability, campus, space utilization
Procedia PDF Downloads 15819899 Study of Heat Conduction in Multicore Chips
Authors: K. N. Seetharamu, Naveen Teggi, Kiranakumar Dhavalagi, Narayana Kamath
Abstract:
A method of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore chips. A physical model which has salient features of multicore chips is incorporated for the analysis. The model consists of active and background cell laid out in a checkered pattern, and this pattern repeats itself in each fine grain active cells. The die has three layers i) body ii) buried oxide layer iii) wiring layer, stacked one above the other with heat source placed at the interface between wiring and buried oxide layer. With this model we propose analytical method to calculate the target hotspot temperature, heat flow to top and bottom layers of the die and thermal resistance components at each granularity level, assuming appropriate values of die dimensions and parameters. Finally we attempt to find an easier method for the calculation of the target hotspot temperature using graph.Keywords: checkered pattern, granularity level, heat conduction, multicore chips, target hotspot temperature
Procedia PDF Downloads 46819898 Vibration Control of a Flexible Structure Using MFC Actuator
Authors: Jinsiang Shaw, Jeng-Jie Huang
Abstract:
Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper employs a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to reject the disturbance. A notch filter with an adaptive tuning algorithm, the leaky filtered-X least mean square algorithm (leaky FXLMS algorithm), is developed and applied to the system. Experimental results show that the controller and MFC actuator was very effective in attenuating the structural vibration. Furthermore, this notch filter controller was compared with the traditional skyhook controller. It was found that its performance was better, with over 88% vibration suppression near the first resonant frequency of the structure.Keywords: macro-fiber composite, notch filter, skyhook controller, vibration suppression
Procedia PDF Downloads 46319897 Control and Automation of Sensors in Metering System of Fluid
Authors: Abdelkader Harrouz, Omar Harrouz, Ali Benatiallah
Abstract:
This paper is to present the essential definitions, roles and characteristics of automation of metering system. We discuss measurement, data acquisition and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.Keywords: communication, metering, computer, sensor
Procedia PDF Downloads 55819896 Ointment of Rosella Flower Petals Extract (Hibiscus sabdariffa): Pharmaceutical Preparations Formulation Development of Herbs for Antibacterial S. aureus
Authors: Muslihatus Syarifah
Abstract:
Introduction: Rosella flower petals can be used as an antibacterial because it contains alkaloids, flavonoids, phenolics, and terpenoids) for the . Bacteria activity is S. aureus can cause skin infections and pengobatanya most appropriate use of topical preparations. Ointment is a topical preparation comprising the active substance and ointment base. Not all the base matches the active substances or any type of disease. In this study using flavonoid active substances contained in rosella flower petals (Hibiscus sabdariffa) to be made ointment by testing a variety of different bases in order to obtain a suitable basis for the formulation of ointment extract rosella flower petals. Methods: Experimental research with research methods Post test control group design using the ointment is hydrocarbon sample, absorption, leached water and dissolved water. Then tested for bacteria S. aureus with different concentrations of 1%, 2%, 4%, 8%, 16, 32%. Data were analyzed using One Way ANOVA followed by Post Hoc test. Results: Ointment with a hydrocarbon base, absorption, leached water and dissolved water having no change in physical properties during storage. Base affect the physical properties of an ointment that adhesion, dispersive power and pH. The physical properties of the ointment with different concentrations produce different physical properties including adhesion, dispersive power and pH. The higher the concentration the higher dispersive power, but the smaller the adhesion and pH. Conclusion: Differences bases, storage time, the concentration of the extract can affect the physical properties of the ointment. Concentration of extract in the ointment extract rosella flower petals is 32%.Keywords: rosella, physical properties, ointments, antibacterial
Procedia PDF Downloads 37119895 A Study on Energy Efficiency of Vertical Water Treatment System with DC Power Supply
Authors: Young-Kwan Choi, Gang-Wook Shin, Sung-Taek Hong
Abstract:
Water supply system consumes large amount of power load during water treatment and transportation of purified water. Many energy conserving high efficiency materials such as DC motor and LED light have recently been introduced to water supply system for energy conservation. This paper performed empirical analysis on BLDC, AC motors, and comparatively analyzed the change in power according to DC power supply ratio in order to conserve energy of a next-generation water treatment system called vertical water treatment system. In addition, a DC distribution system linked with photovoltaic generation was simulated to analyze the energy conserving effect of DC load.Keywords: vertical water treatment system, DC power supply, energy efficiency, BLDC
Procedia PDF Downloads 50319894 IT System in the Food Supply Chain Safety, Application in SMEs Sector
Authors: Mohsen Shirani, Micaela Demichela
Abstract:
Food supply chain is one of the most complex supply chain networks due to its perishable nature and customer oriented products, and food safety is the major concern for this industry. IT system could help to minimize the production and consumption of unsafe food by controlling and monitoring the entire system. However, there have been many issues in adoption of IT system in this industry specifically within SMEs sector. With this regard, this study presents a novel approach to use IT and tractability systems in the food supply chain, using application of RFID and central database.Keywords: food supply chain, IT system, safety, SME
Procedia PDF Downloads 47919893 Development of a Vegetation Searching System
Authors: Rattanathip Rattanachai, Kunyanuth Kularbphettong
Abstract:
This paper describes the development of a Vegetation Searching System based on Web Application in case of Suan Sunandha Rajabhat University. The model was developed by PHP, JavaScript, and MySQL database system and it was designed to support searching endemic and rare species of tree on web site. We describe the design methods and functional components of this prototype. To evaluate the system performance, questionnaires for system usability and Black Box Testing were used to measure expert and user satisfaction. The results were satisfactory as followed: Means for experts and users were 4.3 and 4.5, and standard deviation for experts and users were 0.61 and 0.73 respectively. Further analysis showed that the quality of plant searching web site was also at a good level as well.Keywords: endemic species, vegetation, web-based system, black box testing, Thailand
Procedia PDF Downloads 31019892 The Pro-Active Public Relations of Faculty of Management Science, Suan Sunandha Rajabhat University
Authors: Kanyakorn Sujarittnetikarn, Surangkana Pipatchokchaiyo
Abstract:
The objective of this research was to study the pro-active public relations of according to the characteristic of Faculty of Management Science, Suan Sunandha Rajabhat University. The sample group for this research report was students from 4 year curriculum and continued / extended curriculum, made a random distribution proportion as follows: a group of 400 students who are working while studying and a group of non – working students. The tools used in this research were questionnaires, asking about the acknowledgement of public relations information of Faculty of Management Science in the academic year 2007. The result found that friends were the most influential in choosing the education institute. The differences of method to receive information of non-working student and working student were the entertainment magazine which was interested mostly by working students and they preferred to search the information on the website after 24:00 O’clock. However, the non-working students preferred 21:00-24:00 O’clock the most.Keywords: development guidelines systems, faculty of management science, public relation planning, proactive public relations
Procedia PDF Downloads 29019891 DC/DC Boost Converter Applied to Photovoltaic Pumping System Application
Authors: S. Abdourraziq, M. A. Abdourraziq
Abstract:
One of the most famous and important applications of solar energy systems is water pumping. It is often used for irrigation or to supply water in countryside or private firm. However, the cost and the efficiency are still a concern, especially with a continued variation of solar radiation and temperature throughout the day. Then, the improvement of the efficiency of the system components is one of the different solutions to reducing the cost. In this paper, we will present a detailed definition of each element of a PV pumping system, and we will present the different MPPT algorithm used in the literature. Our system consists of a PV panel, a boost converter, a motor-pump set, and a storage tank.Keywords: PV cell, converter, MPPT, MPP, PV pumping system
Procedia PDF Downloads 15919890 Thermal Conductivity and Optical Absorption of GaInAsSb/GaSb Laser Structure: Impact of Annealing Time
Authors: Soufiene Ilahi, Noureddine Yacoubi
Abstract:
GaInAsSb grown on GaSb substrate is an interesting material employed as an active layer in vertical-cavity surface-emitting lasers (VCSELs) operating in mid-infrared emission. This material presents some advantages like highs optical absorption coefficient and good thermal conductivity, which is very desirable for VCSEL application. In this paper, we have investigated the effects of thermal annealing on optical properties and thermal conductivity of GaInAsSb/GaSb. The studies are carried out by means of the photo thermal deflection spectroscopy technique (PDS). In fact, optical absorption spectrum and thermal conductivity have been determined by a comparison between the experimental and theoretical phases of the PDS signal. We have found that thermal conductivity increased significantly to 13 W/m.K for GaInAsSb annealed during 60 min. In addition, we have found that bandgap energy is blue-shifted around 30 meV. The amplitudes signal of PDS reveals multiple reflections as a function of annealing time, which reflect the high crystalline quality of the layer.Keywords: thermal conductivity, bandgap energy of GaInAsSb, GaInAsSb active layer, optical absorption
Procedia PDF Downloads 15219889 Feedback Preference and Practice of English Majors’ in Pronunciation Instruction
Authors: Claerchille Jhulia Robin
Abstract:
This paper discusses the perspective of ESL learners towards pronunciation instruction. It sought to determine how these learners view the type of feedback their speech teacher gives and its impact on their own classroom practice of providing feedback. This study utilized a quantitative-qualitative approach to the problem. The respondents were Education students majoring in English. A survey questionnaire and interview guide were used for data gathering. The data from the survey was tabulated using frequency count and the data from the interview were then transcribed and analyzed. Results showed that ESL learners favor immediate corrective feedback and they do not find any issue in being corrected in front of their peers. They also practice the same corrective technique in their own classroom.Keywords: ESL, feedback, learner perspective, pronunciation instruction
Procedia PDF Downloads 23519888 Heat Transfer Phenomena Identification of a Non-Active Floor in a Stack-Ventilated Building in Summertime: Empirical Study
Authors: Miguel Chen Austin, Denis Bruneau, Alain Sempey, Laurent Mora, Alain Sommier
Abstract:
An experimental study in a Plus Energy House (PEH) prototype was conducted in August 2016. It aimed to highlight the energy charge and discharge of a concrete-slab floor submitted to the day-night-cycles heat exchanges in the southwestern part of France and to identify the heat transfer phenomena that take place in both processes: charge and discharge. The main features of this PEH, significant to this study, are the following: (i) a non-active slab covering the major part of the entire floor surface of the house, which include a concrete layer 68 mm thick as upper layer; (ii) solar window shades located on the north and south facades along with a large eave facing south, (iii) large double-glazed windows covering the majority of the south facade, (iv) a natural ventilation system (NVS) composed by ten automatized openings with different dimensions: four are located on the south facade, four on the north facade and two on the shed roof (north-oriented). To highlight the energy charge and discharge processes of the non-active slab, heat flux and temperature measurement techniques were implemented, along with airspeed measurements. Ten “measurement-poles” (MP) were distributed all over the concrete-floor surface. Each MP represented a zone of measurement, where air and surface temperatures, and convection and radiation heat fluxes, were intended to be measured. The airspeed was measured only at two points over the slab surface, near the south facade. To identify the heat transfer phenomena that take part in the charge and discharge process, some relevant dimensionless parameters were used, along with statistical analysis; heat transfer phenomena were identified based on this analysis. Experimental data, after processing, had shown that two periods could be identified at a glance: charge (heat gain, positive values) and discharge (heat losses, negative values). During the charge period, on the floor surface, radiation heat exchanges were significantly higher compared with convection. On the other hand, convection heat exchanges were significantly higher than radiation, in the discharge period. Spatially, both, convection and radiation heat exchanges are higher near the natural ventilation openings and smaller far from them, as expected. Experimental correlations have been determined using a linear regression model, showing the relation between the Nusselt number with relevant parameters: Peclet, Rayleigh, and Richardson numbers. This has led to the determination of the convective heat transfer coefficient and its comparison with the convective heat coefficient resulting from measurements. Results have shown that forced and natural convection coexists during the discharge period; more accurate correlations with the Peclet number than with the Rayleigh number, have been found. This may suggest that forced convection is stronger than natural convection. Yet, airspeed levels encountered suggest that it is natural convection that should take place rather than forced convection. Despite this, Richardson number values encountered indicate otherwise. During the charge period, air-velocity levels might indicate that none air motion occurs, which might lead to heat transfer by diffusion instead of convection.Keywords: heat flux measurement, natural ventilation, non-active concrete slab, plus energy house
Procedia PDF Downloads 41719887 Glass-Ceramics for Emission in the IR Region
Authors: V. Nikolov, I. Koseva, R. Sole, F. Diaz
Abstract:
Cr4+ doped oxide compounds are particularly preferred active media for solid-state lasers with a wide emission region from 1.1 to 1.6 µm. However, obtaining of single crystals of these compounds is often problematic. An alternative solution of this problem is replacing the single crystals with a transparent glassceramics containing the desired crystalline phase. Germanate compounds, especially Li2MgGeO4, Li2ZnGeO4 and Li2CaGeO4, are suitable for Cr4+ doped glass-ceramics because of their relatively low melting temperature and tetrahedral coordination of all ions. The latter ensures the presence of chromium in the 4+ valence. Cr doped Li2CaGeO4 g lass-ceramic was synthesized by thermal treating using glasses from the Li2O-CaO-GeO2-B2O3 system. Special investigations were carried out for optimizing the initial glasscomposition, as well as the thermal treated conditions. The synthesis of the glass ceramics was accompanied by appropriate characterization methods such as: XRD, TEM, EPR, UVVIS-NIR, emission spectra and time decay as main characteristic for the laser emission. From the systematic studies carried out in the four-component system Li2O-CaO-GeO2-B2O3 for establishing the Li2CaGeO4 crystallization area and suitable thermal treatment conditions, several main conclusions can be drawn: 1. The crystallization region of Li2CaGeO4 is relatively narrow, localized around the stoichiometric composition of the Li2CaGeO4 compound. 2. The presence of the glass former B2O3 strongly supports the obtaining of homogeneous glasses at relatively low temperatures, but it is also the reason for the crystallization of borate phases. 3. The crystallization of glasses during thermal treatment is related to the production of more than one phase and it is correct to speak for crystallization of a main phase and accompanying crystallization of other phases. The crystallization of a given phase is related to changing the composition of the residual glass and creating conditions for the crystallization of other phases. 4. The separate studies show that glass-ceramics with different crystallized phases in different quantitative ratios can be obtained from the same composition of glass playing by the thermal treatment conditions. In other words, the choice of temperature and time of thermal treatment of the glass is an extremely important condition, along with the optimization of the starting glass composition. As a result of the conducted research, an optimal composition of the starting glass and an optimal mode of thermal treatment were selected. Glass-ceramic with a main phase Li2CaGeO4 doped by Cr4+ was obtained. The obtained glass-ceramic possess very good properties containing up to 60 mass% of Li2CaGeO4, with an average size of nanoparticles of 20 nm and with transparency about 70 % relative to the transparency of the parent glass. The emission of the obtained glass-ceramics is in a wide range between 1050 and 1500 nm. The obtained results are the basis for further optimization of the glass-ceramic characteristics to obtain an effective laser-active medium with radiation in the 1.1-1.6 nm range.Keywords: glass, glass-ceramics, multicomponent systems, NIR emission
Procedia PDF Downloads 2119886 System Identification and Quantitative Feedback Theory Design of a Lathe Spindle
Authors: M. Khairudin
Abstract:
This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process.Keywords: lathe spindle, QFT, robust control, system identification
Procedia PDF Downloads 54319885 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions
Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams
Abstract:
The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.Keywords: architecture, central pavilions, classicism, machine learning
Procedia PDF Downloads 14119884 Renal Angiomyolipoma Rupture Following COVID-19 Infection: A Case Report
Authors: Mohammed Abdurabu, Akram Al-Warqi, Ebrahim M. A. Ebrahim, Jouhar Kollari, Salman Mirza
Abstract:
The novel coronavirus (COVID-19) is one of the most recent pandemics that invaded earth that left and still leaving hundreds of thousands of patients and ended with high morbidity and mortality rates with no clear cure till this moment. COVID-19 has been proven to be associated with pathologic changes in coagulation, characterized by either thromboembolic or bleeding events. We present this case of a 44-year-old male patient that presented to our Emergency Department with flank pain that later was found to have renal angiomyolipoma (AML) rupture during his COVID-19 infection, ultimately requiring admission for hemorrhage control via Interventional Radiology (IR) drainage. Here, we discuss the role of the front-line physicians and how they should keep a low threshold for the different presentations that could be associated with COVID-19 infection.Keywords: angiomyolipoma, COVID-19, renal, rupture
Procedia PDF Downloads 13119883 Usability and Biometric Authentication of Electronic Voting System
Authors: Nighat Ayub, Masood Ahmad
Abstract:
In this paper, a new voting system is developed and its usability is evaluated. The main feature of this system is the biometric verification of the voter and then a few easy steps to cast a vote. As compared to existing systems available, e.g dual vote, the new system requires no training in advance. The security is achieved via multiple key concept (another part of this project). More than 100 student voters were participated in the election from University of Malakanad, Chakdara, PK. To achieve the reliability, the voters cast their votes in two ways, i.e. paper based and electronic based voting using our new system. The results of paper based and electronic voting system are compared and it is concluded that the voters cast their votes for the intended candidates on the electronic voting system. The voters were requested to fill a questionnaire and the results of the questionnaire are carefully analyzed. The results show that the new system proposed in this paper is more secure and usable than other systems.Keywords: e-voting, security, usability, authentication
Procedia PDF Downloads 39519882 Study of Structural Health Monitoring System for Vam Cong Cable-Stayed Bridge
Authors: L. M. Chinh
Abstract:
Vam Cong Bridge beside Can Tho Bridge is the next cable-stayed bridge spanning the Hau River, connecting Lap Vo district with Thot Not district. After construction by the end of 2018, the Vam Cong Bridge with Cao Lanh Bridge will help to improve the road network in this region of Mekong Delta. For this bridge, the SHM system also had designed for two stages – construction stage and exploitation stage. At the moment over 65% of the bridge construction had completed, and the bridge will be completed at the end of 2018. During the construction stage, the SHM system had been install to monitor behaviors of the bridge. Based on the study of the design documentation of the SHM system of the Vam Cong Bridge and site visit during construction work, many designs and installation errors have been detected. In this paper author thoroughly analyzed the pros and cons of this SHM system, simultaneously make conclusions and recommendations for this system. Specially concentrated on the possibility of implementing the acoustic emission method (AE) into this SHM system, which is an alternative to the further development of the system, enabling a full and cost-effective solution for the bridge management, which is of utmost importance for the service life and safe operation of the bridge.Keywords: SHM system, design and installation, Vam Cong bridge, construction stage, acoustic emission method (AE)
Procedia PDF Downloads 23719881 Monitoring System for Electronic Procurement Systems
Authors: Abdulah Fajar
Abstract:
Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.Keywords: procurement system, SNMP, LKPP, LPSE
Procedia PDF Downloads 42719880 High Electrochemical Performance of Electrode Material Based On Mesoporous RGO@(Co,Mn)3O4 Nanocomposites
Authors: Charmaine Lamiel, Van Hoa Nguyen, Deivasigamani Ranjith Kumar, Jae-Jin Shim
Abstract:
The quest for alternative sources of energy storage had led to the exploration on supercapacitors. Hybrid supercapacitors, a combination of carbon-based material and transition metals, had yielded long and improved cycle life as well as high energy and power densities. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an active electrode material. The advantages of this method include the non-use of reducing agents and acidic medium, and no further post-heat treatment. Additionally, it offers shorter reaction time at low temperature and low power requirement, which allows low fabrication and energy cost. The as-prepared electrode material demonstrated a high capacitance of 953 F•g−1 at 1 A•g−1 in a 6 M KOH electrolyte. Furthermore, the electrode exhibited a high energy density of 76.2 Wh•kg−1 (power density of 720 W•kg−1) and a high power density of 7200 W•kg−1 (energy density of 38 Wh•kg−1). The successful synthesis was considered to be efficient and cost-effective, with very promising electrochemical performance that can be used as an active material in supercapacitors.Keywords: cobalt manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor
Procedia PDF Downloads 35819879 Providing Resilience: An Overview of the Actions in an Elderly Suburban Area in Rio de Janeiro
Authors: Alan Silva, Carla Cipolla
Abstract:
The increase of life expectancy in the world is a current challenge for governments, demanding solutions towards elderly people. In this context, service design and age-friendly design appear as an approach to create solutions which favor active aging by social inclusion and better life quality. In essence, the age-friendly design aims to include elderly people in the democratic process of creation in order to strengthen the participation and empowerment of them through intellectual, social, civic, recreational, cultural and spiritual activities. All of these activities aim to provide resilience to this segment by granting access to the reserves needed for adaptation and growth in the face of life's challenges. On that approach, the following research brings an overview of the actions related to the integration and social qualification of the elderly people, considering a suburban area of Rio de Janeiro. Based on Design Thinking presented by Brown (2009), this research has a qualitative-exploratory approach demanding certain necessities and actions, which are collected through observation and interviews about the daily life of the elderly community individuals searching for information about personal capacitation and social integration of the studied population. Subsequently, a critical analysis is done on this overview, pointing out the potentialities and limitations of these actions. At the end of the research, a well-being map of solutions classified as physical, mental and social is created, also indicating which current services are relevant and which activities can be transformed into services to that community. In conclusion, the contribution of this research is the construction of a map of solutions that provides resilience to the studied public and favors the concept of active aging in society. From this map of solutions, it is possible to discriminate what are the resources necessary for the solutions to be operationalized and their journeys with the users of the elderly segment.Keywords: resilience, age-friendly design, service design, active aging
Procedia PDF Downloads 9819878 Evaluating the Total Costs of a Ransomware-Resilient Architecture for Healthcare Systems
Authors: Sreejith Gopinath, Aspen Olmsted
Abstract:
This paper is based on our previous work that proposed a risk-transference-based architecture for healthcare systems to store sensitive data outside the system boundary, rendering the system unattractive to would-be bad actors. This architecture also allows a compromised system to be abandoned and a new system instance spun up in place to ensure business continuity without paying a ransom or engaging with a bad actor. This paper delves into the details of various attacks we simulated against the prototype system. In the paper, we discuss at length the time and computational costs associated with storing and retrieving data in the prototype system, abandoning a compromised system, and setting up a new instance with existing data. Lastly, we simulate some analytical workloads over the data stored in our specialized data storage system and discuss the time and computational costs associated with running analytics over data in a specialized storage system outside the system boundary. In summary, this paper discusses the total costs of data storage, access, and analytics incurred with the proposed architecture.Keywords: cybersecurity, healthcare, ransomware, resilience, risk transference
Procedia PDF Downloads 13519877 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time
Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla
Abstract:
Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time
Procedia PDF Downloads 17919876 Coil-Over Shock Absorbers Compared to Inherent Material Damping
Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major
Abstract:
Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.Keywords: damper structures, material damping, PDMS, TPU
Procedia PDF Downloads 11519875 Design and Development of a Computerized Medical Record System for Hospitals in Remote Areas
Authors: Grace Omowunmi Soyebi
Abstract:
A computerized medical record system is a collection of medical information about a person that is stored on a computer. One principal problem of most hospitals in rural areas is using the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved, this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to quickly retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.Keywords: programming, computing, data, innovation
Procedia PDF Downloads 12019874 Synthesis of Highly Stable Multi-Functional Iron Oxide Nanoparticles for Active Mitochondrial Targeting in Immunotherapy
Authors: Masome Moeni, Roya Abedizadeh, Elham Aram, Hamid Sadeghi-Abandansari, Davood Sabour, Robert Menzel, Ali Hassanpour
Abstract:
Mitochondria- targeting immunogenic cell death inducers (MT-ICD) have been designed to trigger intrinsic apoptosis signalling pathway in malignant cells and revive the antitumour immune system. MT-ICD inducers have considered to be non-specific, which can deteriorate the ability to initiate mitochondria-selective oxidative stress, causing high toxicity. Iron oxide nanoparticles (IONPs) can be an ideal candidate as vehicles for utilizing in immunotherapy due to their biocompatibility, modifiable surface chemistry, magnetic characteristics and multi-functional applications in single platform. These types of NPs can facilitate a real time imaging which can provide an effective strategy to analyse pharmacokinetic parameters of nano-formula, including blood circulation time, targeted and controlled release at tumour microenvironment. To our knowledge, the conjugation of IONPs with MT-ICD and oxaliplatin (a chemotherapeutic agent used for the treatment of colorectal cancer) for immunotherapy have not been investigated. Herein, IONPs were generated via co-precipitation reaction at high temperatures, followed by coating the colloidal suspension with tetraethyl orthosilicate and 3-aminopropyltriethoxysilane to optimize their bio-compatibility, preventing aggregation and maintaining stability at physiological pH, then functionalized with (3-carboxypropyl) triphenyl phosphonium bromide for mitochondrial delivery. Analytical results demonstrated the successful process of IONPs functionalization. In particular, the colloidal particles of doped IONPs exhibited an excellent stability and dispersibility. The resultant particles were also successfully loaded with the oxaliplatin for an active mitochondrial targeting in immunotherapy, resulting in well-maintained super-paramagnetic characteristics and stable structure of the functionalized IONPs with nanoscale particle sizes.Keywords: Immunotherapy, mitochondria, cancer, iron oxide nanoparticle
Procedia PDF Downloads 7519873 Developement of a New Wearable Device for Automatic Guidance Service
Authors: Dawei Cai
Abstract:
In this paper, we present a new wearable device that provide an automatic guidance servie for visitors. By combining the position information from NFC and the orientation information from a 6 axis acceleration and terrestrial magnetism sensor, the head's direction can be calculated. We developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensor. If visitors want to know some explanation about an exhibit in front of him, what he has to do is just lift up his mobile device. The identification program will automatically identify the status based on the information from NFC and MEMS, and start playing explanation content for him. This service may be convenient for old people or disables or children.Keywords: wearable device, ubiquitous computing, guide sysem, MEMS sensor, NFC
Procedia PDF Downloads 425